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OBJECTIVES: This study aims to evaluate the ability of deep learning algorithms to detect and grade prostate
cancer (PCa) in radical prostatectomy specimens.

METHODS: We selected 12 whole-slide images of radical prostatectomy specimens. These images were divided
into patches, and then, analyzed and annotated. The annotated areas were categorized as follows: stroma,
normal glands, and Gleason patterns 3, 4, and 5. Two analyses were performed: i) a categorical image classi-
fication method that labels each image as benign or as Gleason 3, Gleason 4, or Gleason 5, and ii) a scanning
method in which distinct areas representative of benign and different Gleason patterns are delineated and
labeled separately by a pathologist. The Inception v3 Convolutional Neural Network architecture was used in
categorical model training, and a Mask Region-based Convolutional Neural Network was used to train the
scanning method. After training, we selected three new whole-slide images that were not used during the
training to evaluate the model as our test dataset. The analysis results of the images using deep learning
algorithms were compared with those obtained by the pathologists.

RESULTS: In the categorical classification method, the trained model obtained a validation accuracy of 94.1%
during training; however, the concordance with our expert uropathologists in the test dataset was only 44%.
With the image-scanning method, our model demonstrated a validation accuracy of 91.2%. When the test
images were used, the concordance between the deep learning method and uropathologists was 89%.

CONCLUSION: Deep learning algorithms have a high potential for use in the diagnosis and grading of PCa.
Scanning methods are likely to be superior to simple classification methods.
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Bl INTRODUCTION conducted subjectively by pathologists, and although there
are many initiatives aiming to train as many specialists as
possible, the number of pathologists is insufficient for
dealing with the increasing number and complexity of the
actual requirements (5-7).

Among expert uropathologists, the disagreement in deter-
mination based on the Gleason score reaches up to 12%;
however, this number increases to 50% when considering
generalist pathologists (8,9).

In the last few years, the field of knowledge on artificial
intelligence has rapidly increased. Machine learning has
become prevalent, and is present in many high-tech pro-
ducts, including web search results, speech recognition in
smartphones, and video recommendations, among other

The high prevalence and complex management of prostate
cancer (PCa) have imposed significant amounts of invest-
ment in healthcare systems (1,2). The wide spectrum of agg-
ressiveness of PCa, ranging from an indolent disease that can
be managed with surveillance to an aggressive disease with a
poor prognosis, necessitates accurate diagnosis and classifi-
cation. Tumor grading using the Gleason/ISUP score is the
main prognostic factor, and together with staging, indicates
the choice of treatment and probable outcome (3,4). Histo-
logical analysis and Gleason/ISUP grading are currently
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tasks.

In 2006, Hinton et al. (10) described how to train a machine
that is capable of recognizing handwritten digits with high
precision (>98%), an approach they called “deep learning.”

Deep learning is a branch of artificial intelligence that
processes data and creates patterns for use in decision-
making (11). In recent years, researchers have tried to solve
the problem of PCa diagnosis and grading using deep
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learning techniques to overcome the current limitations of
human-made diagnoses (12-14).

In this study, we used prostatectomy specimens evaluated
by experienced uropathologists to train a deep learning
algorithm in the detection and grading of PCa.

B MATERIALS AND METHODS

Study population, slide digitization, and
annotation

We randomly selected 12 whole-slide images of hematox-
ylin-and-eosin-stained =~ formalin-fixed paraffin-embedded
prostatectomy specimens from our database slides. Each
analyzed slide belonged to a different patient. These slides
were digitized at a magnification of 20x using a Pannoramic
Flash II 250 scanner (3DHISTECH Ltd., Budapest, Hungary).
The whole slides were segmented into 1,525 image patches
with a pixel resolution of 2,000 x 2,000 using Python 3 (https://
www.python.org). These image patches were then analyzed
and annotated by two experienced uropathologists (K.R.M.L.
and CLN.E.). The annotations were initially conducted
separately by the pathologists, and all images were shown.
When a disagreement occurred in any image, the pathologists
discussed the particular image and reached a consensus. Two
different analyses and annotations were employed.

— Categorical image classification method: We labeled each
image according to the presence or absence of malignancy.
Within the cancer images, each image was labeled accord-
ing to the most prevalent Gleason pattern present on the
slide. As the output, each predicted image was classified
into one of four patterns: benign, Gleason 3, Gleason 4,
or Gleason 5.

— Image scanning method: Using this method, we delineated
and annotated specific areas in each image, rather than
simply classifying the entire image with a single label.
To accomplish this task, we used the co-annotator tool
(https:/ / github.com/jsbroks/coco-annotator/). Each anno-
tation belonged to one of five categories: stroma, normal
glands, or Gleason pattern 3, 4, or 5.

Development of deep learning algorithm

In the categorical classification method, we used the
Inception v3 Convolutional Neural Network Architecture
(https:/ / github.com/machine-learning /Inception-v3-tensor
flow) and TensorFlow library (https://www.tensorflow.org)
to train the model. The image patches were divided into
training and validation datasets. The training dataset is an
actual dataset used to train the model. The model observes
and learns from these data. Meanwhile, the validation
dataset is the sample of data used for frequent evaluations
of the model, the hyperparameters of which are turned. The
model sees the validation dataset, but never learns from it.
Because robust datasets are required for adequate network
training, we applied data augmentation on all image patches
of our training data: horizontal and vertical flipping,
rotation, and zooming.

With the scanning method, the image patches were
divided into training and validation data. The model was
trained using the Mask Region-based Convolutional Neural
Network (Mask R-CNN) (https://github.com/matterport/
Mask_RCNN), where the model learns from the delineated
areas annotated by the pathologists and generates its own
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bounding boxes and segmentation masks for each instance of
an object in the image.

Model evaluation

After the model training, we selected three new whole-
slide images that were not used in the training, to evaluate
the generalization capability of the model. We prepared these
images in the same way as with the training images, i..,
using image patches with a pixel resolution of 2000 x 2000.
From them, we randomly chose 100 different image patches
for each classification method. All images were evaluated
using deep learning algorithms after being read by the uro-
pathologists, and the concordance between the two results
was analyzed.

Ethics

The study was approved by the Institutional Review
Board and Ethics Committee, and informed consent was
considered unnecessary.

B RESULTS

Using the categorical classification method, 740 images in
the benign group and 785 images in the cancer group (251 for
Gleason 3, 254 for Gleason 4, and 280 for Gleason 5) were
categorized. The images were randomly separated into
training (1,220 images) and validation (305 images) data.

With the scanning method, from the 1,525 images, the
pathologists made 1,982 annotations, which were divided
into 559 normal glands, 535 stroma, 273 Gleason 3, 281
Gleason 4, and 334 Gleason 5 annotations. Likewise, the
images were randomly divided into two groups, i.e., training
(1,220) and validation (305) images.

Table 1 summarizes how the images and annotations were
distributed for both classification methods.

Using the categorical classification method, the trained
model obtained a 94.1% validation accuracy for determining
malignant tissue and its Gleason pattern. Subsequently, we
evaluated the model using 100 test images that were not
used during the training process. However, the concordance
with our expert uropathologist analysis was only 44%. When
we separately analyzed the correct prediction between
groups, we found that, when the true label was benign, the
model precision was 48%, whereas, for Gleason 3, 4, and 5,
it was 60%, 34.6%, and 33.3%, respectively (Table 2).

With the image scanning method, our model demon-
strated a validation accuracy of 91.2%. When the test images

Table 1 - Characteristics of annotated slides.

n (%)

Whole prostatectomy slides 12 (100)

Categorical classification method

Total no. of slide patches generated 1,525 (100)
Only benign tissue 740 (48.5)
Gleason 3 pattern predominant 251 (16.4)
Gleason 4 pattern predominant 254 (16.7)
Gleason 5 pattern predominant 280 (18.4)

Scanning method

Total no. of annotations generated 1,982 (100)
Stroma 535 (27.0)
Normal glands 559 (28.2)
Gleason 3 pattern 273 (13.8)
Gleason 4 pattern 281 (14.2)
Gleason 5 pattern 334 (16.8)
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Table 2 - Categorical classification method—true label (pathologist label) versus predicted label (deep learning label) in test dataset

images.
Predicted label
Benign Gleason 3 Gleason 4 Gleason 5 Total
True label Benign 12 (48%*) 4 7 25
Gleason 3 4 15 (60%*) 4 2 25
Gleason 4 4 9 (34.6%*) 6 26
Gleason 5 1 9 8 (33.3%%*) 24

*Correct concordance between pathologist analysis and trained model prediction.

were used, the concordance between the deep learning method
and uropathologists was surprisingly high; the approach
correctly detected benign and cancerous tissues, including their
patterns, in 89% of the never-before-seen images (Figure 1).
When the annotations were evaluated individually, 117 areas
were detected by the model in 100 of the images, among which
106 areas were detected correctly (90.5%) (Table 3). The correct
annotation rate was as follows: 31 predictions for benign tissue
(96.7% correct), 27 predictions for Gleason 3 (92.5% correct), 29
annotations for Gleason 4 (96.5% correct), and 30 predictions
for Gleason 5 (76.6% correct).

B DISCUSSION

A slide analysis of a biopsy or radical prostatectomy
specimen is traditionally conducted manually by patholo-
gists, using optical microscopes. In recent years, owing to
rapidly evolving visual system technologies, artificial intelli-
gence techniques have been developed to support the work
of pathologists (15).

In comparison to the results recorded by experienced
uropathologists, using the proposed deep learning scanning
method, we demonstrated an accuracy of 89% in real-world
images in the PCa diagnosis and determination of the
Gleason/ISUP grading. However, our categorical method
had a low global accuracy of 44% in the never-before-seen
images. These findings suggest that delimitating the areas of
interest in each image patch is an extremely time-consuming
and stressful activity, but can generate superior results. Using
Mask-RCNN, Couteaux (16) obtained a 90.6% accuracy in
automatically detecting meniscal tears in the knee, demon-
strating the effectiveness of this technique and its applic-
ability in any field of medicine.

In addition, Nagpal et al. (17) used an extremely robust
database, comprising 112 million pathologist-annotated
image patches from 1,226 whole-slide images, and achieved
a mean accuracy of 70% compared to 61% among the 29
general pathologists. Interestingly, they reported that the
tumor grading evaluations by uropathologists were signifi-
cantly more accurate than those of the general pathologists
(71.7% versus 58.0%, p<0.001), suggesting that the deep
learning model may have a higher proficiency for tumor
grading than general pathologists (18).

Litjens et al. (12) introduced deep learning as a tool for
improving the objectivity and efficiency of a histopathologi-
cal evaluation. They studied the deep learning performance
in the PCa identification during a biopsy, and their algorithm
was able to detect all slides containing PCa, whereas 30-40%
of the slides containing normal tissue needed human inter-
vention to be excluded. Using specimens from radical
prostatectomies segmented in a tissue microarray, Arvaniti

Figure 1 - Scanning method example—The upper image shows
an image patch extracted from a radical prostatectomy specimen
slide. The lower image demonstrates the scanning model
prediction. The method automatically detected a Gleason 3
pattern area in the upper part of the image and stroma tissue in
the lower part of the patch).
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Table 3 - Scanning classification method—true area label (pathologist analysis) versus deep learning predicted area label in test

dataset images.

Predicted area label

Benign Gleason 3 Gleason 4 Gleason 5 Total
True area label Benign 30 (96.7%*) 1 0 6 37
Gleason 3 1 25 (92.5%*) 1 0 27
Gleason 4 0 1 28 (96.5%*) 1 30
Gleason 5 0 0 0 23 (76.6%%*) 23

*Correct concordance between pathologist analysis and trained model prediction.

et al. (13) reached an inter-annotator agreement between the
model and two pathologists at 0.75 and 0.71, respectively,
comparable with the inter-pathologist agreement (kappa=
0.71).

The accuracy in the determination of the Gleason/ISUP
score depends directly on the experience of the pathologist.
However, the number of pathologists in most parts of the
world is insufficient for supporting the complexities of
sub-specialization, which is more serious in lower-income
countries such as Brazil.

Increasing the number of images is essential for improving
the accuracy of our model. In addition, by evaluating the
image sets, we noted that some morphologies are matter
of confusion, such as the seminal vesicle epithelium and
inflammatory infiltrate, which may be difficult for the algo-
rithm to solve. We observed that, in addition to increasing
the number of images, if we include different aspects of
Gleason pattern 5, (e.g., inflammation, atrophy, and post-
atrophic hyperplasia), we believe our algorithm will be able
to learn and distinguish the different morphological aspects
that may be a matter of confusion.

The involvement of multiple uropathologists may also
improve the quality of the image sets by selecting those
achieving a consensus.

With our numbers, we want to reinforce the satisfactory
results of deep learning algorithms in the diagnosis and
grading of PCa, as well as their utility as a tool used in daily
routines to improve quality and speed of pathologists,
thereby benefiting the welfare of the society.

This is a new type of knowledge, and many variables
should be assessed before excellence can be achieved. For
example, what is the best machine learning method avail-
able? How many images are necessary to achieve a good
agreement? Who should train the machine? Will the results
be based exclusively on machine observations or will
pathologists have to sign off on the final outcome? Such
questions need to be addressed in future large-scale studies,
which should be conducted globally.

Bl CONCLUSIONS

Our data have shown that a deep learning algorithm has
high potential for the detection and grading of PCa. Scanning
methods are likely to be superior to simple classification
methods when a limited dataset is available. Future applica-
tions of deep learning methods will be unlimited, and should
therefore be studied extensively during the next few years.
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