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Surgical neuromodulation therapies are still considered a last resort when standard therapies have failed for
patients with progressive heart failure (HF). Although a number of experimental studies have provided robust
evidence of its effectiveness, the lack of strong clinical evidence discourages practitioners. Thoracic unilateral
sympathectomy has been extensively studied and has failed to show significant clinical improvement in HF
patients. Most recently, bilateral sympathectomy effect was associated with a high degree of success in HF
models, opening the perspective to be investigated in randomized controlled clinical trials. In addition, a series
of clinical trials showed that bilateral sympathectomy was associated with a decreased risk of sudden death,
which is an important outcome in patients with HF. These aspects indicates that bilateral sympathectomy could
be an important alternative in the treatment of HF wherein pharmacological treatment barely reaches the
target dose.
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’ BACKGROUND

Heart failure (HF) affects approximately 2% of the adult
population in developed countries. This number increases
to 10% among people over the age of 70 years (1). Even in
developed countries, 50% of patients with HF die within
5 years after diagnosis. HF progression is highly linked to
an overactivated sympathetic nervous system (SNS) and
renin angiotensin aldosterone system (RAAS), which makes
them the main targets for medical treatment (2,3). Although
current medical treatments have improved survival after
diagnosis, mortality remains high (1).
HF patients have been treated with a combination of

angiotensin-converting enzyme inhibitor (ACEI) or angio-
tensin-II receptor blocker (ARB) if ACEI is not tolerated,
a b-blocker (BB), and a mineralocorticoid receptor antagonist
(MRA) (4). Most recently, a new drug was approved for
treatment of HF, a first-class angiotensin receptor neprilysin
inhibitor (ARNI) that contains an ARB, sacubitril, and an
inhibitor of neprilysin, valsartan (5,6).

Even though clinical treatment guidelines support the
combined therapy based on large randomized controlled
trials, medication use and dosage in clinical practice are
suboptimal. In the United States, the CHAMP-HF registry
presented significant gaps in the use and dose of the current
medical treatment for HF. Among patients eligible for the
combined therapy, 26.6%, 33%, and 76.6% did not receive
ACEI/ARB/ARNI, BB, and MRA, respectively. Additionally,
less than 30% of the patients received the target doses of BB
and ACEI/ARB/ARNI. Only 1% of the patients received
optimal treatment (ACEI/ARB/ARNI+BB+MRA) and tar-
get dosage (7).
Due to the continuing high mortality in patients with HF

and the continuous progression despite treatment, strategies
to improve this setting continues to be required. Blockade
through thoracic sympathectomy might be an alternative for
halting disease progression using different pathways.

’ PATHOPHYSIOLOGY

The most recent classification of HF stratifies into 2 groups
based on the contractile function of the left ventricle. Hence,
HF is classified in HF with reduced ejection fraction (HFrEF),
i.e., patients with left ventricular ejection fraction (LVEF)
lower than 40%, and HF with preserved ejection fraction
(HFpEF), i.e., patients with LVEF higher than 50%. A more
recent classification, HF with midrange ejection fraction
(HFmrEF) englobes those with LVEF between 41 to 49%.
On this review, we will be focusing on HFrEF, once the
development of this HF is directly linked to compensatory
mechanisms that aim to improve cardiac function. HFrEF isDOI: 10.6061/clinics/2021/e3248
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mainly caused by ischemic heart disease, dilated cardiomyo-
pathies of different etiologies or right heart failure secondary
to pulmonary arterial hypertension. As for the main com-
pensatory mechanisms, there are the neurohormonal systems
(SNS and RAAS), Frank Starling mechanism (stretch-induced
increase of preload) and myocardial structural changes
(hypertrophy and hyperplasia) (2).
Regardless of the cause of HF, a reduction in cardiac out-

put leads to an increase in the contraction force by elongation
of the cardiomyocyte sarcolemma (8). In addition, the SNS
and RAAS are activated and have pivotal roles in HFrEF
progression. The release of catecholamines by the SNS,
mainly norepinephrine, enhances heart rate and myocardial
contractility, which in the early clinical phase of the disease,
preserves cardiac output (9-12). Additionally, circulating
norepinephrine activates the RAAS, with subsequent release
of angiotensin-II. Angiotensin-II enhances the effects of
norepinephrine, with systemic vasoconstriction, as well as
water and sodium retention, augmenting the venous return
to the heart and increasing cardiac filling pressure (13,14).
When healthy, the heart is able to derive energy from fatty

acids, glucose, ketone bodies, and amino acids. Under normal
conditions, fatty acids are the main source of energy and are
responsible for up to 90% of ATP production. These metabolic
flexibilities support increased cardiac workload (15). Another
important compensatory mechanism is myocardial remodel-
ing through cardiomyocyte hypertrophy and an accelerated
apoptosis/regeneration cycle (2,16).
However, constant activation of the aforementioned

mechanisms leads to decompensation. Continued increases
in chronotropy and inotropy reduce coronary perfusion,
leading to myocardial ischemia and downregulation of myo-
cardial beta-adrenergic receptors, especially beta-1 receptor,
thus reducing inotropic response (17). Furthermore, systemic
vasoconstriction elevates afterload and augments ventricular
wall stress (18). Consequently, there is an increase in myo-
cardial oxygen demand despite the limited supply due to
myocardial ischemia (19).
As HFrEF progresses, the main source of energy shifts

from fatty acids to glucose oxidation. The diminished oxygen
supply reduces cardiomyocyte production of high-energy
phosphate availability, which is responsible for transporting
ATP to the myofibers. This metabolism changes with the
accumulation of toxic intermediates, leads to mitochondrial
dysfunction and increased oxidative stress (15). Damage by
reactive oxygen species (ROS) leads to further impairment of
cardiac energy homeostasis due to poor mitochondrial repair
capacity (20). As energy depletes and excessive elongation of
the fiber leads to the failure of muscle contractile unity, apop-
tosis and necrosis intensify. Cardiomyocytes are replaced
by fibrotic tissue, and the ventricular remodeling process
becomes pathological (21).
The development of myocardial fibrosis alters the mechan-

ical properties of the heart during contraction by untying the
cardiomyocyte contact and limiting the oxygen supply. The
band separation of the cardiomyocytes leads to a non-uniform
anisotropy in conduction speed, inducing micro-ischemic
conditions and prolonging the duration of action potential.
Increased SNS activity also has an arrhythmogenic effect on
HFrEF. The constant activation of B1 receptors induces
refractory tachycardia and malignant ventricular arrhythmias.
In addition, fibrotic tissue can act as a potential trigger for
reentry arrhythmia and is associated with sudden death, the
second most prevalent outcome in patients with HFrEF (22,2).

Along with life-threatening arrhythmias, HFrEF progres-
sion can lead to the development of pulmonary hypertension
(PH). An elevation in the left ventricular (LV) filling pressure
causes an increase in pulmonary venous pressure (23,24).
The resulting vascular remodeling increases pulmonary
vascular resistance, leading to a high right ventricular (RV)
afterload, further deteriorating the damaged heart. PH can
also cause HFrEF as idiopathic PH leads to increased RV
afterload due to pulmonary vascular remodeling (25,26). In
addition, the SNS promotes pulmonary vascular remodeling
and is further activated by it (27,28). Regardless of whether
PH is a cause or consequence of HFrEF, the presence of PH is
associated with a poor prognosis for mortality in patients
with HFrEF (29).

’ PHARMACOLOGICAL THERAPY

With increasing stiffness of the heart, cardiac systolic
function decreases even further. Eventually, the compensa-
tory mechanisms are overwhelmed and unable to sustain
cardiac function without further decompensation. The neuro-
hormonal system is the main target for the treatment of
HFrEF to dampen this vicious cycle (9-12).

The ACEI/ARB/ARNI and MRA target the RAAS, while
the SNS is directly targeted by the BB (5-7). Antiarrhythmic
drugs such as amiodarone and implantable cardioverter
defibrillators (ICDs) are also important in preventing sudden
death from life-threatening arrhythmias (30,31). However,
as previously mentioned, less than 30% of patients on gold
standard therapy receive the optimal dosage (7). Since
pharmacological therapy has a low percentage of optimal
dosage, surgical neuromodulation therapies could offer a
greater benefit, particularly those that target the SNS.

’ NEUROMODULATION THERAPIES

Renal denervation (RD) has been studied using various
experimental models and clinical trials. RD is based on
dampening renal sympathetic activity, which is responsible
for increasing sodium and fluid retention and activating the
RAAS. In experimental models of myocardial infarction in
rats, RD was associated with less fibrosis and cardiac remod-
eling, better cardiac function, decreased SNS activation,
and improved hemodynamics (32,33). In the clinical setting,
although the safety of the RD procedure is assured, its
efficacy in patients with HFrEF is not as clear. The REACH
trial showed that RD was associated with symptom and
exercise capacity improvements; however, the small group
size and lack of control groups preclude any robust conclu-
sions (34).

Another important point to discuss is whether reinnerva-
tion occurs after RD. Using a sheep model, Booth et al. showed
that 5 months after the RD procedure, almost complete
functional and anatomical reinnervation occurred. Eleven
months later, no differences were found in RD and non-RD
animals, in relation to the renal distribution of afferent and
efferent nerves and renal NE levels (35). There is still a lack of
clinical trials with long-term follow-up and strong clinical
endpoints to demonstrate whether RD might be an effective
alternative for patients with HFrEF.

Vagal nerve stimulation (VNS) is another therapy option,
which is based on the aforementioned disbalance between
the SNS and the parasympathetic nervous system in HFrEF.
Rather than attempting on or dampen SNS activation, VNS

2

Bilateral sympathectomy in heart failure
Coutinho e Silva RS et al.

CLINICS 2021;76:e3248



tries to balance the autonomic nervous system by stimulating
the vagal nerve with an implanted device. In experimental
studies using rat models of HFrEF, VNS baroreflex activation
decreased cardiac oxygen consumption, inflammation, SNS
activity, and overall mortality (36-38). In a canine model of
HFrEF, VNS was associated with improved LV function and
decreased levels of several cardiac biomarkers (39,40).
The success of VNS in experimental models has not been

replicated in clinical trials. In the randomized, sham-
controlled, double-blind NECTAR-HF trial, VNS did not
improve LV remodeling for 6 months, nor did it achieve any
of the secondary efficacy endpoints (41). INOVATE-HF was
another study that investigated VNS use in HFrEF. This was
a multicenter, randomized trial with chronic HFrEF patients
(NYHA III, left ventricular ejection fractiono40%) who were
enrolled for 16 months. The trial concluded that VNS does
not reduce mortality in patients with chronic HFrEF or
diminish HF events (42).
Pulmonary artery denervation (PADN) is an alternative

option for primary pulmonary arterial hypertension (PAH)
in an attempt to prevent HFrEF development. The PADN
mechanism is based on the removal of sympathetic nerves
from the main pulmonary artery trunk, thereby inhibiting
excessive activation of the SNS. An experimental model of
PH showed improved hemodynamics and diminished
pulmonary artery remodeling (43). In patients with idio-
pathic PH, PADN decreased the mean pulmonary arterial
pressure and improved the 6-minute walk test in a 3-month
follow-up (44). However, the small number of patients and
the lack of larger studies preclude the assessment of PADN
efficacy.

’ THORACIC SYMPATHECTOMY

Thoracic sympathectomy was first described as an alter-
native for arrhythmia control in patients with angina and
ventricular arrhythmia (45). Thoracic sympathectomy sur-
gery has improved and is now performed by thoracoscopy
with high levels of success and minimal collateral effects.
One of the main sympathectomy mechanisms is the increase
in the fibrillation threshold, in addition to enhancing efferent
vagal nerve activity. Besides to ICD therapy, left thoracic
sympathectomy (LS) is one of the main treatment options for
patients with long QT syndrome, sustained ventricular
tachycardia, and other heart rhythm disorders (46).
Although LS has positive results in controlling arrhyth-

mias, nervous plasticity of the stellate ganglion was observed
after LS treatment. Unilateral sympathectomy causes hyper-
trophy of the contralateral ganglion (47,48). This can be seen
when LS is compared with bilateral sympathectomy (BS).
Furthermore, LS and BS were compared in a rat model of
myocardial infarction, and BS was shown to be effective in
protecting LV function and morphology, while LS failed to
do so (49). In patients with ventricular arrhythmia, BS was
more beneficial than LS in terms of arrhythmia control and
decreased ICD shocks (47). In developing countries, this is an
important result, considering the high cost of such mechan-
ical devices. In comparison, BS surgery is a safe and low-cost
procedure.
One of the main concerns about performing BS rather than

unilateral sympathectomy was the maintenance of a minimal
adrenergic tonus in a patient with HFrEF. A clinical trial
verified the safety of BS in patients with ventricular
tachyarrhythmia (47). Another study confirmed the safety

of this procedure in patients with severe HFrEF. Also, it
showed that epidural thoracic blockade was responsible for
completely decreasing the sympathetic influence (50). In an
experimental setting, a study evaluated the effects of BS on
physiological scenarios. Interestingly, this study suggested
the possibility of an extracardiac sympathetic compensation
pathway that sustains the sympathetic tonus. The higher
concentration of peripheral catecholamines and increased
heart rate at rest in BS rats compared to non-operated rats
supported this hypothesis (51).
The potential benefits of LS were assessed in 10 patients

with dilated cardiomyopathy (DCM) and NYHA II or III
with reduced LVEF. On a short follow-up of 6 months, LS
improved the LVEF, exercise performance, and quality of life.
These results showed that LS is feasible; however, a larger
study is required to assess its long-term effects (52,53).
Recently, BS was performed in a patient with nonischemic

DCM, NYHA class IV, and 15% LVEF. After 1 year, the
patient had no ICD shock, improved LVEF to 25%, and was
removed from the transplant list, showing the potential
benefit of BS in a HFrEF patient (54). In another study, an
epidural thoracic blockade was performed in 20 patients,
followed for 30 days, with an increase in LVEF, reduction in
LV dilatation, and improvement in NYHA class. Although it
was a temporary blockade, it showed encouraging results
(50). However, no other clinical trial determining BS potential
benefits for patients with HFrEF has been performed or is
currently active.
Although clinical trials are lacking, experimental studies in

different DCM models are being published. Zanoni com-
pared the effect of LS to BS as a treatment for myocardial
infarction in rats. BS effectively controlled the overactive
SNS, preventing LV remodeling and decay of function. In
contrast, LS-treated rats showed a loss of wall thickness,
increased fibrosis, and decreased heart function. The
potential mechanism by which BS acts on ventricular remod-
eling is by decreasing myocardial apoptosis. BS-treated rats
had diminished expression of apoptosis proteins, as LS and
untreated rats had increased expression of these proteins. In
addition, BS decreased the expression of matrix metallopro-
teinases, which are known to play a role in myocardial
remodeling (49).
Once BS was shown to be superior to LS, BS was tested in

a DCM model induced by doxorubicin (55). DCM rats were
treated with either BS or conventional ACEI therapy. After
dobutamine stimulation, both treatments preserved LV
function; however, only BS was able to preserve LVEF and
myocardial efficiency under steady-state conditions. Addi-
tionally, only BS animals were able to respond adequately
to the preload maneuver, with increased preload recruitable
stroke work. These different responses in LV function were
correlated with histological analyses. On one hand, both
treatments decreased LV dilatation; on the other hand, only
BS was able to prevent the decrease in LV wall thickness.
This prevention was associated with diminished expression
of apoptosis proteins after BS treatment and could explain
the difference in function from ACEI treatment (55).
In another unpublished experimental study using a PAH

model, BS effects were evaluated in both lung microcircula-
tion and in the RV (Unpublished data). BS was successful in
preventing lung arterial wall hypertrophy, which is the pri-
mary pathological alteration observed in PAH. An interest-
ing finding was the diminished expression of a-smooth
muscle actin (a-SMA) by BS, since the augmented expression
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of this particular protein is associated with endothelial dys-
function and vascular remodeling. BS protected the RV from
dilation and hypertrophy by decreasing pulmonary vascular
resistance. Consequently, RV function was preserved under
steady-state conditions and responsive to preload changes.
In untreated PAH, cardiomyocyte hypertrophy was asso-
ciated with mitochondrial stress, decreased mitochondrial
copy number, and increased oxidative stress. BS could
decrease mitochondrial stress by enhancing radical scaven-
ging activity and mitigating oxidative stress. These results
could indicate a new mechanism by which BS halts the
vicious cycle of SNS-induced lesions by protecting the heart
from further damage and might contribute to reverse
remodeling (Unpublished data).
In both the myocardial infarction and PAH models, the

main cause of cardiac dysfunction was derived from an
overactivated SNS in response to a lesion. In contrast, the
doxorubicin model caused direct injury to cardiomyocytes.
This direct injury leads to cardiomyocyte death and replace-
ment of fibrotic tissue. It is important to highlight the success
of BS in all three models, even in a direct lesion model. These
results support the hypothesis that BS has a protective role in
myocardial apoptosis through an unknown pathway. This
mechanism might be key in preventing LV remodeling and
halting the progression of HFrEF. The doxorubicin model
showed that this mechanism might be different from that of
ACEI and could be synergistic.

’ FUTURE PERSPECTIVES

Thoracic BS is a minimally invasive and promising pro-
cedure for patients with HFrEF (50,54). Experimental (49)
and clinical (47,48) studies have shown that BS is superior to
LS. Furthermore, BS seems to have a number of potential
benefits for patients with HFrEF (Figure 1), such as attenua-
tion of maladaptive ventricular remodeling or even induc-
tion of reverse remodeling; prevention of sudden death by
decreasing myocardial fibrosis, which is the trigger for life-
threatening arrhythmias; inhibition of pulmonary artery
remodeling; and consequent prevention of primary or secon-
dary pulmonary hypertension.
The current pharmacological treatment does not prevent

the progression of HFrEF, as its dosage is mostly suboptimal
in patients (7). In addition, implantable devices, such as LV
mechanical assist devices and ICDs are expensive, especially
in developing countries. Therefore, along with its potential
benefits, BS could be an alternative for the scarcity of heart
transplants, the only option for end-stage patients with

HFrEF. The mechanisms by which BS acts has already been
studied in a number of experimental studies, but with few
clinical information, precluding definitive conclusions about
its potential benefits. The absence of severe complications
and side effects in patients submitted to BS for treatment of
ventricular arrhythmias (47) or hyperhidrosis (56) also does
not exclude possible risks in HF patients. Randomized
controlled trial in patients with HFrEF must be performed
to fully assess the effects of thoracic BS and provide real
evidence of its perspective as an alternative to the current
treatments.
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