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Complete blood count and C-reactive protein to predict positive blood
culture among neonates using machine learning algorithms
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H I G H L I G H T S

� It can take days to get the result of blood culture.
� CBC and CRP are readily available exams and could be used to predict blood culture.
� ML algorithms based on CBC and CRP couldn’t predict neonatal blood culture positivity.
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A B S T R A C T

Purpose: The authors aimed to develop a Machine-Learning (ML) algorithm that can predict positive blood culture
in the neonatal intensive care unit, using complete blood count and C-reactive protein values.
Methods: The study was based on patients’ electronic health records at a tertiary neonatal intensive care unit in
S~ao Paulo, Brazil. All blood cultures that had paired complete blood count and C-reactive protein measurements
taken at the same time were included. To evaluate the machine learning model’s performance, the authors used
accuracy, Area Under the Receiver Operating Characteristics (AUROC), recall, precision, and F1-score.
Results: The dataset included 1181 blood cultures with paired complete blood count plus c-reactive protein and
1911 blood cultures with paired complete blood count only. The f1-score ranged from 0.14 to 0.43, recall ranged
from 0.08 to 0.59, precision ranged from 0.29 to 1.00, and accuracy ranged from 0.688 to 0.864.
Conclusion: Complete blood count parameters and C-reactive protein levels cannot be used in ML models to pre-
dict bacteremia in newborns.
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globin; NLR, Neutrophil/Lymphocyte Ratio; MLR, Monocyte/Lymphocyte Ratio; PLR, Platelet/Lymphocyte Ratio;

.Y. Matsushita).

2; Accepted 17 November 2022

r España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
Introduction

Bacteremia is a deadly condition in adults, with mortality rates rang-
ing from 15.4 to 27.7%.1 The global mortality of neonatal sepsis is esti-
mated at 17.6%.2 Early diagnosis and treatment are therefore essential
for reducing morbimortality. The gold standard for diagnosing bacter-
emia is blood culture analysis, which might take hours or days to get a
result.3 Additionally, neonatal sepsis signs and symptoms may be mild
and challenging to distinguish from non-infectious conditions.4 There-
fore, in order to anticipate bacteremia detection prior to blood culture
end-result, laboratory biomarkers such as Complete Blood Count (CBC),
procalcitonin, and C-Reactive Protein (CRP) have been adopted into
clinical practice.

Both CBC parameters that relate to neonatal sepsis, such as the
immature to total neutrophil ratio and CRP, have wide-ranging
diagnostic accuracies.4,5 As a result, there aren’t any diagnostic indica-
tors available right now that are sensitive and specific enough to decide
whether or not to withhold antibiotics in neonatal sepsis.

It is challenging to translate the findings of clinical research into clin-
ical practice because of the complexity of medicine. Predictive models
utilizing machine learning algorithms are becoming increasingly popu-
lar in this context. Machine learning models are being used to forecast a
wide range of illnesses, including acute kidney injury and heart failure.6

The two most frequent laboratory tests performed on individuals
with suspected sepsis are CBC and CRP.7 However, the analysis of CBC
and CRP in machine-learning models in newborns has not been explored
yet. Procalcitonin appears to be more reliable than CRP in predicting
bacteremia, but it is more expensive.8

The authors created ML models to analyze the viability of using CBC
and CRP to predict and identify early bacteremia in neonates. The
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authors also investigated the capacity of ML to predict declines when
CRP is excluded.

Material and methods

Study population

This retrospective study was conducted at a single-center tertiary
neonatal intensive care unit in S~ao Paulo, Brazil. Data from all newborns
admitted to the neonatal intensive care unit who were born between
2018 and 2021 were examined. All data were obtained from electronic
medical records and uploaded to a data repository. The study protocol
was approved by the institutional ethics committee − Comite de �Etica do
Hospital das Clínicas da Faculdade de Medicina da Universidade de S~ao
Paulo (CAAE 15762719.6.0000.0068) and waived informed consent. All
blood cultures with paired CBC and CRP measurements that were taken
simultaneously were included. The samples with CBC and CRP has taken
on the same blood culture day but not at the same time were excluded
from the study.

Predictive parameters

A total of 25 feasible parameters were included in the machine-learn-
ing algorithms. These parameters included hemoglobin, hematocrit,
MCV (Mean Corpuscular Volume), MCH (Mean Corpuscular Hemoglo-
bin), MCHC (Mean corpuscular hemoglobin concentration), leukocytes,
neutrophils (%), neutrophils (absolute count) neutrophil left shift (%),
neutrophil left shift (absolute count), eosinophils (%), eosinophils (abso-
lute count), basophils (%), basophils (absolute count), lymphocytes (%),
lymphocytes (absolute count), monocytes (%), monocytes (absolute
count), platelets, NLR (Neutrophil/Lymphocyte Ratio), MLR (Mono-
cyte/Lymphocyte Ratio), PLR (Platelet/Lymphocyte Ratio), DNI (Delta
Neutrophil Index), CRP (C-Reactive Protein) and Lymphocyte to CRP
ratio. The authors did not include demographic data as predictive
parameters due to the high rate of missing data on these parameters.

Feature selection

The authors created a total of 9 different machine learning models,
with the main distinction between them being the subset of variables
that each model covered. In models 1 to 5, CBC parameters and CRP val-
ues were used. Only CBC variables were used in models 6 to 9.

Machine learning model development

For each of the 9 models, the authors compared the performance of
fourteen machine learning techniques to predict a positive blood cul-
ture: Random Forest Classifier, Extra Trees Classifier, Logistic Regres-
sion, Ridge Classifier, Linear Discriminant Analysis, Light Gradient
Boosting Machine, Gradient Boosting Classifier, Extreme Gradient Boost-
ing, K Neighbors Classifier, Ada Boost Classifier, Decision Tree Classifier,
Naïve Bayes, SVM − linear kernel, Quadratic Discriminant Analysis.
Patient datasets were randomly divided into two subsets: a training sub-
set (70%) for hyperparameter tuning to create a plausible model, and a
validation subset (30%) for testing the model’s performance. In the train-
ing phase, the authors selected the model with the highest accuracy and
performed the hyperparameter tuning only on this model.

Machine learning models

Model 1
The authors included all 25 parameters in the machine learning mod-

els. Random Forest Classifier achieved the highest accuracy. After tun-
ing, the following hyperparameters were used: bootstrap=True,
ccp_alpha=0.0, class_weight={}, criterion=’gini’, max_depth=11,
max_features=’sqrt’, max_leaf_nodes=None, max_samples=None,
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min_impurity_decrease=0.005, min_impurity_split=None, min_sample-
s_leaf=4, min_samples_split=9, min_weight_fraction_leaf=0.0, n_esti-
mators=150, n_jobs=-1, oob_score=False, random_state=142,
verbose=0, warm_start=False).

Model 2
Only variables that were statistically significant in univariate analy-

sis were included (Hemoglobin, Hematocrit, MCV, MCH, MCHC, Neutro-
phils (%), Neutrophils absolute count, Left shift (%), Left shift absolute
count, NLR, PLR, MLR, DNI, Basophils absolute count, Lymphocytes (%),
Lymphocytes absolute count, CRP, Platelet, and Lymphocyte/CRP ratio).
The following hyperparameters were used: bootstrap=False, ccp_al-
pha=0.0, class_weight=’balanced’, criterion=’entropy’, max_depth=8,
max_features=’log2′, max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0, min_impurity_split=None, min_sample-
s_leaf=5, min_samples_split=7, min_weight_fraction_leaf=0.0, n_esti-
mators=240, n_jobs=-1, oob_score=False, random_state=142,
verbose=0, warm_start=False.

Model 3
In this model, the authors used the Boruta SHAP feature selection

algorithm to select features into machine learning models (Hematocrit,
Neutrophils %, Lymphocyte to CRP ratio, MCH, Shift, Platelet, PLR,
MCV, Monocyte, C-reactive protein). This algorithm combines the Bor-
uta algorithm (which identifies only features that have importance to
the desired outcome) and SHAP (Shapley Additive exPlanations) tech-
nique(9). The following hyperparameters were used: bootstrap=False,
ccp_alpha=0.0, class_weight=’balanced’, criterion=’entropy’, max_-
depth=8, max_features=’log2′, max_leaf_nodes=None, max_sam-
ples=None, min_impurity_decrease=0, min_impurity_split=None,
min_samples_leaf=5, min_samples_split=7, min_weight_fraction_-
leaf=0.0, n_estimators=240, n_jobs=-1, oob_score=False, random_-
state=142, verbose=0, warm_start=False.

Model 4
In this model, the authors included features according to experts’

opinions in machine learning models (Neutrophils left shift (%), DNI,
Lymphocytes (%), CRP, and platelet). Linear Discriminant Analysis
achieved the highest accuracy. After tuning, the following hyperpara-
meters were used: LinearDiscriminantAnalysis (n_components=None,
priors=None, shrinkage=0.3, solver=’eigen’, store_covariance=False,
tol=0.0001).

Model 5
In this model, the authors activated PyCaret’s feature_selection (it

uses a combination of feature selection techniques to select the subset of
features that are most important for modeling) and remove_multicolli-
nearity (which drop features that are highly correlated with each other)
parameters.10 The extra Trees Classifier model achieved the highest
accuracy. The following hyperparameters were used: bootstrap=False,
ccp_alpha=0.0, class_weight=’balanced’, criterion=’entropy’, max_-
depth=6, max_features=’sqrt’, max_leaf_nodes=None, max_samples=-
None, min_impurity_decrease=0.002, min_impurity_split=None,
min_samples_leaf=4, min_samples_split=5, min_weight_fraction_-
leaf=0.0, n_estimators=70, n_jobs=-1, oob_score=False, random_-
state=142, verbose=0, warm_start=False.

Model 6
In this model, the authors included all 23 parameters in machine

learning models. Gradient Boosting Classifier achieved the highest accu-
racy. The following hyperparameters were used: ccp_alpha=0.0, criter-
ion=’friedman_mse’, init=None, learning_rate=0.05, loss=’deviance’,
max_depth=1, max_features=1.0, max_leaf_nodes=None, min_impuri-
ty_decrease=0.2, min_impurity_split=None, min_samples_leaf=3,
min_samples_split=4, min_weight_fraction_leaf=0.0, n_estima-
tors=150, n_iter_no_change=None, presort=’deprecated’,



Fig. 1. F1-score of all 9 Models.
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random_state=142, subsample=0.85, tol=0.0001, validation_frac-
tion=0.1, verbose=0, warm_start=False).

Model 7
Only variables that were statistically significant in univariate analy-

sis were included. Extra Trees Classifier achieved the highest accuracy.
The following hyperparameters were used: bootstrap=False, ccp_al-
pha=0.0, class_weight=’balanced’, criterion=’entropy’, max_depth=8,
max_features=’log2′, max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0, min_impurity_split=None, min_sample-
s_leaf=5, min_samples_split=7, min_weight_fraction_leaf=0.0, n_esti-
mators=240, n_jobs=-1, oob_score=False, random_state=142,
verbose=0, warm_start=False.

Model 8
In this model, the authors used Boruta SHAP feature selection algo-

rithm9 to select features into machine learning models (Monocytes/Lym-
phocytes ratio, Hemoglobin, Neutrophils/Lymphocytes ratio, Monocytes
(%), CHM, Platelets, Neutrophils (%), Platelet/Lymphocytes ratio, CVM,
Hematocrit). Linear Discriminant Analysis achieved the highest accu-
racy. After tuning, the following hyperparameters were used: n_compo-
nents=None, priors=None, shrinkage=0.4, solver=’eigen’,
store_covariance=False, tol=0.0001.

Model 9
In this model, the authors activated PyCaret’s feature_selection and

remove_multicollinearity.10 The extra Trees Classifier model achieved
the highest accuracy. The following hyperparameters were used: boot-
strap=False, ccp_alpha=0.0, class_weight=’balanced’, criterion=’en-
tropy’, max_depth=8, max_features=’log2′, max_leaf_nodes=None,
max_samples=None, min_impurity_decrease=0, min_impurity_split=-
None, min_samples_leaf=5, min_samples_split=7, min_weight_frac-
tion_leaf=0.0, n_estimators=240, n_jobs=-1, oob_score=False,
random_state=142, verbose=0, warm_start=False.

Statistical analysis

Continuous variables were tested for normality using the Kolmo-
gorov-Smirnov test. To compare laboratory parameters between positive
and negative blood culture the authors used the Mann-Whitney test for
continuous variables. All analyses were conducted using Python version
3.8.2 and the Pycaret python library.10 All patients with missing data
were excluded from the study. The code is available at: https://github.
com/fymatsushita/bloodculture.

Performance measures

The accuracy, AUROC, recall, precision, and F1 score were used in
this present work to evaluate the prediction performance. Accuracy is
the number of correct predictions over all data points. Precision is the
positive predictive value, while recall is also known as sensitivity. High
precision means the ability to return all the relevant cases, and a high
recall means the ability to identify only the relevant data points The
authors utilized F1-score as the main performance metric due to the
unbalanced nature of the problem (there are more negative blood cul-
tures than positive blood cultures). F1-score combines the recall and pre-
cision of a classifier into a single metric. F1-score will be low if either
precision or recall is low. None of the models achieved an F1 score
greater than 0.5 (Fig. 1).

Results

Between 2018 and 2021, 2641 patients were admitted to the neona-
tal intensive care unit. The authors identified a total of 1181 blood cul-
tures with paired Complete Blood Count and C-reactive protein
collected at the same time. Fourteen samples were excluded due to
3

missing data. Univariate analyses for blood culture positivity are pre-
sented in Table 1. Patients with positive blood cultures had lower hemo-
globin, lymphocytes, and platelet levels, and higher neutrophils left shift
and CRP levels (Table 1).

In Model 1, the Random Forest Classifier achieved the highest accu-
racy (0.858) with an AUC of 0.767 in the training phase. After hyper-
parameter tuning, the model achieved an accuracy of 0.864, AUC of
0.765, Recall of 0.08, Precision of 1.00, and F1-score of 0.142 (Table 2).
In Model 2 (Supplementary Table 1), the Extra Trees Classifier
achieved the highest accuracy (0.856) with an AUC of 0.728 in the
training phase. After hyperparameter tuning, the model achieved an
accuracy of 0.774, AUC of 0.760, Recall of 0.596, Precision of 0.344,
and F1-score of 0.436. In Model 3, the Extra Trees Classifier achieved
the highest accuracy (0.859) with an AUC of 0.737 in the training
phase. After hyperparameter tuning, the predictions made by the
model in predicting bacteremia achieved an accuracy of 0.791, AUC of
0.775, Recall of 0.59, Precision of 0.36, and F1-score of 0.455 (Supple-
mentary Table 2). In Model 4, the Linear Discriminant Analysis
achieved the highest accuracy (0.856) with an AUC of 0.733. After
hyperparameter tuning, the predictions made by the model in predict-
ing bacteremia achieved an accuracy of 0.845, AUC of 0.733, Recall of
0.129, Precision of 0.628, and F1-score of 0.205 (Supplementary
Table 3). In Model 5, the Extra Tree Classifier achieved the highest
accuracy (0.863) with an AUC of 0.747. After hyperparameter tuning,
the predictions made by the model in predicting bacteremia achieved
an accuracy of 0.732, AUC of 0.748, Recall of 0.57, Precision of 0.29,
and F1-score of 0.38 (Supplementary Table 4).

The authors identified 1911 blood cultures with paired CBC collected
at the same time. Univariate analyses for blood culture positivity are pre-
sented in Table 3.

In Model 6, the Gradient Boosting Classifier achieved the highest
accuracy (0.848) with an AUC of 0.737. After hyperparameter tuning,
the predictions made by the model in predicting bacteremia achieved
an accuracy of 0.808, AUC of 0.727, Recall of 0.08, Precision of 0.56,
and F1-score of 0.14 (Supplementary Table 5). In Model 7, the Extra
Trees Classifier achieved the highest accuracy (0.844) with an AUC of
0.726. After hyperparameter tuning, the predictions made by the
model in predicting bacteremia achieved an accuracy of 0.688, AUC of
0.706, Recall of 0.56, Precision of 0.32, and F1-score of 0.41 (Supple-
mentary Table 6). In Model 8, the Linear Discriminant Analysis
achieved the highest accuracy (0.848) with an AUC of 0.742. After
hyperparameter tuning, the predictions made by the model in predict-
ing bacteremia achieved an accuracy of 0.803, AUC of 0.695, Recall of
0.12, Precision of 0.48, and F1-score of 0.19 (Supplementary Table 7).
In Model 9, the Extra Trees Classifier achieved the highest accuracy
(0.849) with an AUC of 0.744. After hyperparameter tuning, the pre-
dictions made by the model in predicting bacteremia achieved an accu-
racy of 0.716, AUC of 0.714, Recall of 0.56, Precision of 0.35, and F1-
score of0.43 (Supplementary Table 8).
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Table 1
Comparison between CBC and CRP values and blood culture positivity in
neonates, univariate analysis.

Parameter Negative blood
culture (n = 1006)

Positive blood
culture (n = 175)

p-value

Hemoglobin (g/dL),
median (IQR)

13 (10.9−15.6) 11.6 (10−13.1) <0.001a

Hematocrit (%),
median (IQR)

37.6 (31.8−45.2) 33.3 (28.3−37) <0.001a

MCV (fL), median
(IQR)

100.4 (91.8−109.4) 94 (86.2−103.1) <0.001a

MCH (pg) median
(IQR)

34.8 (31.5−37.3) 32.5 (30.4−34.9) <0.001a

MCHC (g/dL),
median (IQR)

34.2 (33.2−35.6) 34.7 (33.6−36.3) 0.005a

Leukocytes, absolute
count, median
(IQR)

11070 (7490
−16130)

12650 (7830
−18610)

0.059a

Neutrophils (%),
median (IQR)

53 (39.3−65) 54 (40−72) 0.070a

Neutrophils, absolute
count, median
(IQR)

5704 (3005−9450) 6663 (3276−11255) 0.044a

Left shift (%), median
(IQR)

1 (0−4) 3 (0−9) <0.001a

Left shift, absolute
count, median
(IQR)

69.3 (0−543) 350.4 (0−1234) <0.001a

NLR, median (IQR) 1.58 (0.87−2.76) 1.93 (0.97−3.75) 0.009a

MLR, median (IQR) 0.28 (0.17−0.5) 0.38 (0.2−0.68) <0.001a

PLR, median (IQR) 0.06 (0.04−0.09) 0.04 (0.02−0.08) <0.001a

DNI, median (IQR) 0.02 (0−0.08) 0.06 (0−0.15) <0.001a

Eosinophils (%),
median (IQR)

2 (0.7−4) 2 (0.1−4.7) 0.941a

Eosinophils, absolute
count, median
(IQR)

185.2 (49.2−448.8) 180.3 (17.8−547) 0.963a

Basophils (%),
median (IQR)

0.2 (0−0.8) 0 (0−0.9) 0.092a

Basophils, absolute
count, median
(IQR)

20.6 (0−73.2) 0 (0−63.75) 0.041a

Lymphocytes (%),
median (IQR)

33 (22.9−45) 30 (18−41.3) <0.001a

Lymphocytes, abso-
lute count, median
(IQR)

3448 (2219−4969) 3036 (2047−4415) 0.031a

Monocytes (%),
median (IQR)

9.3 (6−13) 10 (6−16.8) 0.320a

Monocytes, absolute
count, median
(IQR)

1022 (573−1710) 1127 (582−1959) 0.079a

CRP (mg/L), median
(IQR)

2.9 (0.7−10.9) 16.3 (2.9−46.2) <0.001a

Platelet (K/mm3),
median (IQR)

204 (127−291) 121 (69−234) <0.001a

Lymphocyte to CRP
ratio, median
(IQR)

1238 (277−4462) 178 (60.5−1486) <0.001a

a Mann-Whitney test.MCV, Mean Corpuscular Volume; MCH, Mean Cor-
puscular Hemoglobin, MCHC, Mean Corpuscular Hemoglobin Concentra-
tion; NLR, Neutrophil/Lymphocyte Ratio; MLR, Monocyte/Lymphocyte
Ratio; PLR, Platelet/Lymphocyte Ratio; DNI, Delta Neutrophil Index; CRP,
C-Reactive Protein.

Table 2
Model 1 including all 25 parameters.

Model Accuracy AUROC Recall Precision F1-score

Random Forest Classifier 0.858 0.767 0.128 0.57 0.20
Extra Trees Classifier 0.856 0.733 0.097 0.66 0.16
Logistic Regression 0.852 0.716 0.121 0.47 0.17
Ridge Classifier 0.851 0.000 0.081 0.47 0.13
Linear Discriminant Analysis 0.851 0.718 0.154 0.55 0.22
Light Gradient Boosting

Machine
0.851 0.743 0.178 0.47 0.25

Gradient Boosting Classifier 0.849 0.746 0.227 0.51 0.30
Extreme Gradient Boosting 0.845 0.709 0.146 0.48 0.21
K Neighbors Classifier 0.839 0.630 0.064 0.30 0.10
Ada Boost Classifier 0.835 0.702 0.228 0.41 0.28
Decision Tree Classifier 0.797 0.586 0.285 0.35 0.30
Naïve Bayes 0.793 0.706 0.381 0.34 0.35
SVM − Linear Kernel 0.783 0.000 0.234 0.24 0.22
Quadratic Discriminant

Analysis
0.686 0.612 0.462 0.25 0.32

SVM, Support Vector Machine; AUROC, Area Under the Receiver Operating
Characteristic.
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Discussion

The present study shows that ML models based on CBC and CRP can-
not be used to predict neonatal bacteremia in routine clinical practice in
the neonatal intensive care unit. Although the models had a reasonable
accuracy (0.688−0.864) and AUROC (0.695−0.765), the prediction of
bacteremia is an unbalanced situation, where there are significantly
more negative blood cultures than positive ones. Recall, precision, and
F1-score are superior metrics to assess ML classification performance in
4

unbalanced problems. All of the models showed poor recall, precision,
and F1-score Table 4.

Bacteremia is a potentially fatal condition that requires early diagno-
sis and prompt treatment. Laboratory biomarkers have been widely
examined to detect early bacteremia due to challenges in evaluating
blood culture, which are the gold standard and the fact that signs and
symptoms of neonatal sepsis might be subtle and challenging to inter-
pret. Unfortunately, there are still no diagnostic biomarkers that can
determine whether or not to withhold antibiotics.

Two major objectives of clinical research are inference and predic-
tion. To understand or test a hypothesis, inference is crucial. Statistics
uses a sample to draw inferences about the population. Without know-
ing the underlying mechanism, prediction aims to foresee outcomes.
Generalizable predictive patterns are discovered using machine learn-
ing. Both inference and prediction are significant in clinical research.
The authors are interested in both the whys of biological processes and
their future developments.11 Due to growing computer power and the
massive healthcare data generation, machine learning is now increas-
ingly frequently employed to predict outcomes in medicine.12

The authors tested several feature selection methods, machine learn-
ing algorithms, and hyperparameter tweaking techniques, without being
able to build a high-performing ML model. It is likely that the selected
variables (CBC and CRP values) are insufficient to predict positive blood
culture in neonates. Even though artificial intelligence and machine
learning are revolutionizing healthcare, if the correct variables are not
incorporated into ML models predictions will be poor. Thus, it is not
that biomarkers are not useful to predict bacteremia; rather, CBC and
CRP are the incorrect biomarkers for this purpose. As a result, the
authors recommend that novel biomarkers be investigated in machine
learning models instead of using CBC and CRP to predict a positive
blood culture in newborns. In a study by Boerman et al., the authors ana-
lyzed machine learning to predict blood culture outcomes13 in the emer-
gency department. The authors found a similar AUROC to the present
study (0.77‒0.78) even using demographic data as parameters. How-
ever, the F1-score was very low (0.14−0.17).

It is important to note the limitations of the study. First, although it is
a frequent contaminant, Coagulase-negative Staphylococcus can be a
pathogen in newborns. The authors included all blood cultures positive
for Coagulase-negative Staphylococci because it can be challenging to
distinguish between contamination and true infection in neonates. Sec-
ond, the decision to take blood cultures was dependent on the attending
physician’s clinical assessment, so patient heterogeneity may be taken
into account. Those variables can be controlled in a prospective study.
Third, the scope of this investigation was restricted to looking only into
bacterial bloodstream infections. It is important to note that the authors



Table 3
Comparison between CBC parameters and blood culture positivity in neonates, univariate analysis.

Parameter Negative blood culture (n = 1585) Positive blood culture (n = 326) p-value

Hemoglobin (g/dL), median (IQR) 12.8 (10.7−15.4) 11.3 (9.8−12.9) <0.001a

Hematocrit (%), median (IQR) 37.3 (31.6−44.9) 32.7 (28.5−37) <0.001a

MCV (fL), median (IQR) 100 (90.4−109.4) 92.7 (85.9−102.6) <0.001a

MCH (pg), median (IQR) 34.5 (30.7−37.3) 32.1 (29.8−34.9) <0.001a

MCHC (g/dL), median (IQR) 34.2 (33−35.4) 34.4 (33.3−35.9) 0.007a

Leukocytes, absolute count, median (IQR) 11220 (7440−16030) 13175 (8030−18880) <0.001a

Neutrophils (%), median (IQR) 52 (38.4−64) 55 (40.4−72) <0.001a

Neutrophils, absolute count, median (IQR) 5519 (2956−9104) 7125 (3314−11890) <0.001a

Left shift (%), median (IQR) 1 (0−4) 3 (0−8) <0.001a

Left shift, absolute count, median (IQR) 91.1 (0−545.1) 342 (0−1206) <0.001a

NLR, median (IQR) 1.5 (0.84−2.67) 1.95 (1−4.05) <0.001a

MLR, median (IQR) 0.27 (0.16−0.48) 0.375 (0.18−0.64) <0.001a

PLR, median (IQR) 0.06 (0.04−0.09) 0.04 (0.02−0.07) <0.001a

DNI, median (IQR) 0.02 (0−0.09) 0.05 (0−0.13) <0.001a

Eosinophils (%), median (IQR) 2 (0.8−4.4) 2 (0.4−4.1) 0.315a

Eosinophils, absolute count, median (IQR) 194.6 (52.4−515.1) 193 (30−583) 0.665a

Basophils (%), median (IQR) 0.2 (0−0.8) 0 (0−0.7) 0.003a

Basophils, absolute count, median (IQR) 9.96 (0−73.1) 0 (0−59.1) 0.002a

Lymphocytes (%), median (IQR) 34.2 (23.2−46) 28.7 (17−41) <0.001a

Lymphocytes, absolute count, median (IQR) 3556 (2322−5117) 3141 (2047−4704) 0.005a

Monocytes (%), median (IQR) 9 (6−13) 9 (5−15.3) 0.810a

Monocytes, absolute count, median (IQR) 985 (557−1661) 121 (50−226) 0.010a

Platelet (K/mm3), median (IQR) 203 (127−292) 121 (50−226) <0.001a

a Mann-Whitney test.MCV, Mean Corpuscular Volume; MCH, Mean Corpuscular Hemoglobin; MCHC, Mean Corpuscular Hemo-
globin Concentration; NLR, Neutrophil/Lymphocyte Ratio; MLR, Monocyte/Lymphocyte Ratio; PLR, Platelet/Lymphocyte Ratio;
DNI, Delta Neutrophil Index.

Table 4
Summary of metrics for the 9 ML models.

Best Algorithm Accuracy AUROC Recall Precision F1

Model 1 Random Forest Classifier 0.864 0.765 0.08 1.00 0.14
Model 2 Extra Trees Classifier 0.774 0.760 0.59 0.34 0.43
Model 3 Extra Trees Classifier 0.791 0.775 0.59 0.36 0.45
Model 4 Linear Discriminant Analysis 0.845 0.743 0.13 0.41 0.20
Model 5 Extra Trees Classifier 0.732 0.748 0.57 0.29 0.38
Model 6 Gradient Boosting Classifier 0.808 0.727 0.08 0.56 0.14
Model 7 Extra Trees Classifier 0.688 0.706 0.56 0.32 0.41
Model 8 Linear Discriminant Analysis 0.803 0.695 0.12 0.48 0.19
Model 9 Extra Trees Classifier 0.716 0.714 0.56 0.35 0.43
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did not include demographic and clinical data as parameters in the pre-
diction models.

Conclusion

In conclusion, this study has demonstrated that it is not possible to
predict bacteremia in neonates using ML models based on CBC and CRP.
Other biomarkers should be evaluated in machine-learning models to
predict bloodstream infections in neonates.
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