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ABSTRACT. The objective of this study was to evaluate the relationship between excess manganese and 
waterlogging tolerance in 18th selection cycle Zea mays L. cv. Saracura plants. Maize plants were transferred 
to plastic receptacles containing solutions with different concentrations of manganese. Leaves and roots 
were evaluated at the beginning of treatment and after 7, 14, and 21 days for chlorophyll content, biomass 
production and antioxidant metabolism. Mn was strongly translocated from the roots to the leaves, 
triggering a decrease in chlorophyll content. Excess Mn promoted an increase in reactive oxygen species 
that was accompanied by higher levels of antioxidative enzyme activity and lipid peroxidation. Zea mays L. 
cv. Saracura efficiently sequestered relatively large amounts of Mn in the leaves, with a significant impact 
on metabolism; however, we did not observe visual symptoms or a large decrease in biomass production. 
Keywords: hypoxia, chlorophyll, oxidative stress. 

Relação entre a toxicidade de manganês e a tolerância ao alagamento em plantas de Zea 
mays L. cv. Saracura 

RESUMO. O objetivo desse trabalho foi avaliar a relação entre a toxicidade de manganês e a tolerância ao 
alagamento em plantas de Zea mays L. cv. Saracura do 18º ciclo de seleção. Plantas de milho foram 
transferidas para recipientes plástico contendo soluções com diferentes concentrações de manganês. Folhas 
e raízes foram coletadas antes dos tratamentos, 7, 14 e 21 após a imposição dos tratamentos para as análises 
de conteúdo de clorofilas e carotenoides, produção de biomassa e metabolismo antioxidante. O Mn foi 
fortemente translocado das raízes para as folhas desencadeando uma considerável redução no conteúdo 
foliar de clorofila. O excesso de Mn desencadeou uma aumento na produção de espécies reativas de 
oxigênio, o que foi acompanhado por uma elevação na atividade das enzimas do metabolismo antioxidante 
e da peroxidação lipídica. Zea mays L. cv. Saracura demonstrou ser eficiente no sequestro de uma grande 
quantidade de Mn nas folhas, com um significativo impacto no metabolismo, no entanto sem o 
aparecimento de sintomas visuais e sem uma grande redução no seu crescimento. 
Palavras-chave: hypoxia, clorofila, estresse oxidativo. 

Introduction 

Soil waterlogging is a major abiotic stress 
affecting maize (Zea mays L.) grain yields (Yu et al., 
2015). Waterlogging is typically caused by poor soil 
drainage combined with high levels of precipitation 
(Visser, Voesenek, Vartapetian, & Jackson, 2003) and 
is becoming increasingly frequent in many regions 
due to the changing climate. Long periods of soil 
inundation can have serious economic consequences 
for maize producers, inhibiting plant growth and 
resulting in severe yield loss (Bailey-Serres et al., 
2012). 

The main physiological consequence of 
waterlogging is oxygen deprivation, which restricts 
aerobic  respiration  (Fukao,  &  Bailey-Serres,  2004). 

When exposed to prolonged low-oxygen stress, 
plants typically overproduce reactive oxygen species 
(ROS), which can cause oxidative damage to plant 
cells at high concentrations (Shabala, 2011). This 
damage is the result of ROS reacting with 
macromolecules, such as proteins, lipids and nucleic 
acids, leading to a loss of enzyme activity, altered 
membrane fluidity and genomic damage (Mittler  
et al., 2004). Efficient antioxidant systems that 
involve both nonenzymatic and enzymatic 
molecules can provide some protection against the 
deleterious effects of ROS (Mittler et al., 2004). For 
example, superoxide dismutases (SODs) are 
(uniquely) capable of scavenging O2

-, producing 
H2O2. Catalase (CAT) degrades H2O2 without any 
reducing power, providing plants with an energy-
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efficient way to remove this compound. However, 
catalase is active only at relatively high 
concentrations of H2O2. At lower concentrations, 
H2O2 molecules are eliminated by ascorbate 
peroxidase (APX) and other peroxidases with the aid 
of various reductants, such as ascorbate and 
glutathione (Gechev, Van Breusegem, Stone, 
Denev, & Laloi, 2006). 

In addition to reducing oxygen availability, water 
inundation leads a progressive decrease in soil redox 
potential (Zengin, 2013). Many metal oxides, 
including iron oxide III and manganese oxide IV, are 
utilized as alternative electron acceptors. Thus, the 
concentration of iron oxide II and manganese oxide 
II increases beyond that required by plants (Khabaz-
Saberi & Rengel, 2010). Under these conditions, 
Mn is easily taken up by the roots, reducing plant 
growth and altering various physiological processes 
(Hauck, Paul, Gross, & Raubuch, 2003). For 
example, a significant increase in iron and 
manganese concentrations was reported in maize 
leaves growing in sandy loam soil subjected to 34 
days of waterlogging (Ashraf & Rehman, 1999). 
Excess exposure to metals also leads to chlorophyll 
degradation, probably as a consequence of the action 
of ROS on cell membranes (Zengin, 2013). Excess 
Mn-induced Fe deficiency may also cause reduced 
chlorophyll concentrations in plants, as Fe is 
essential for chlorophyll biosynthesis (El-Jaoual & 
Cox, 1998). Fe is required for the conversion of 
protoporphyrin IX to protochlorophyllide in 
chlorophyll biosynthesis (Beale, 1999). 

Zea mays L. is one of the most sensitive cultivated 
species to hypoxia, restricting its production to areas 
that are not subject to waterlogging. In 1997, the 
Embrapa (Brazilian Agricultural Research Agency) 
Maize and Sorghum program launched (after nine 
cycles of selection) the Maize variety BRS 4154, 
commonly known as "Saracura". The main 
characteristic of this cultivar is its high tolerance to 
waterlogging, principally due to the enhanced 
development of aerenchyma, which increases 
oxygen availability to the plant (Alves et al., 2002). 
Saracura is the result of plant breeding for 
waterlogging tolerance, which has traditionally 
targeted traits that increase oxygen availability, 
prevent oxygen loss from root tissues or improve 
oxygen transport and storage in the roots (Jackson, 
& Armstrong, 1999). In contrast, the impacts of ion 
toxicity caused by waterlogging stress have rarely 
been studied despite their demonstrated importance 
(Shabala, 2011). 

Improving waterlogging tolerance by targeting 
plant tolerance to ion toxicities has yet to be fully 
accepted in the plant breeding community (Huang 

et al., 2015). Nevertheless, evidence is accumulating 
that this could be an effective strategy. For example, 
wheat genotypes with an improved ability to 
remediate the toxic effects of ions, such as Mn2+, 
performed better than control genotypes in 
waterlogged soils (Khabaz-Saberi, Barker, & Rengel, 
2012). To our knowledge, there have been no 
studies showing the adverse effects of the greater 
availability of manganese due to waterlogging in Zea 
mays L. cultivar Saracura. To address this research 
gap, we exposed maize plants (Saracura cultivar) to 
excess manganese and hypoxia and evaluated 
changes in biomass production, levels of 
photosynthetic pigments and antioxidant defense 
systems. 

Material and methods 

Zea mays L. (cv. Saracura) seeds were germinated 
on germination paper in a growth chamber (B.O.D. 
type) for ten days. The paper was first moistened 
with distilled water, another paper was placed on 
top, and both papers were made into a roll. The 
amount of distilled water was determined according 
Maia et al. (2012) in relation to the weight of the 
paper (2.5 mL g-1 paper). After selection for 
uniformity in size and vigor, plants were transferred 
to 10 L plastic containers (33x31x38 - WxHxD) 
containing a nutrient solution (Hoaglang, & Arnon, 
1950). Plants were acclimated for 28 days, after 
which solutions with increasing concentrations were 
added in the following order: ¼ strength for 7 days, 
½ strength for 7 days, and full strength for 14 days. 
Plants were then subjected to hypoxic conditions 
and two treatments: control and excess manganese. 
The original concentration of the nutrient solution 
was used for the both the control (2 μM Mn) and 
the excess Mn treatment, with the latter also 
exposed to manganese (500 μM Mn). The volume 
of the nutrient solution was replenished with 
deionized water on a daily basis. The pH of the 
solution was also adjusted daily to 5.5 ± 0.5 with 
NaOH solution (1 mol L-1), and solutions were 
completely replaced on a weekly basis. All plants 
were maintained under hypoxia, by aeration 
suspension, throughout the experimental period. 

Evaluations were performed on leaves and roots 
at the beginning of the experiment and after 7, 14 
and 21 days. The experimental design was 
completely randomized (CRD) using a 2 x 4 
factorial scheme: two treatments (control and excess 
Mn) and four time periods (0, 7, 14, and 21 days), 
for a total of 8 treatments with five replications. 
Each experimental plot consisted of five seedlings. 
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was found between H2O2 and MDA (0.80 for leaves 
and 0.82 for roots), as well as a negative correlation 
between the concentrations of H2O2 and chlorophyll 
a (-0.70). These results support the negative impact 
of ROS on cellular components and photosynthetic 
pigments. Similarly, excess Mn elevated H2O2 levels 
and induced oxidative stress in Hordeum vulgare L. 
and Cucumis sativus plants (Demirevska-Kepova, 
Simova-Stoilova, Stoyanova, Holzer, & Feller, 2004; 
Shi et al., 2005). 

ROS generation and detoxification are well 
regulated under normal conditions. However, when 
plants are exposed to excess metals, they can 
overproduce ROS, leading to oxidative stress and an 
imbalance in cellular antioxidants (Sharma & 
Dubey, 2007). Excess Mn has been shown to induce 
oxidative stress in many plant species and alter the 
activity of antioxidative enzymes (Demirevska-
Kepova et al., 2004; Boojar, & Goodarzi, 2008). 

ROS are scavenged enzymatically by a variety of 
antioxidant enzymes (Apel, & Hirt, 2004). Among 
the antioxidative enzymes, superoxide dismutase 
(SOD) is responsible for the conversion of 
superoxide radical into hydrogen peroxide and 
water. H2O2 is the substrate of the enzyme catalase. 
In this way, a positive correlation is anticipated 
between the activities of these enzymes. If there is 
an overproduction of H2O2 followed by poor 
neutralization by antioxidant systems, this will result 
in damage to cell membranes. Under this scenario, 
SOD activity must also be correlated with MDA 
levels. However, in our study, these correlations 
were only observed in the roots. This is because 
H2O2 in the leaves can be produced by other 
pathways in addition to dismutation of superoxide 
radicals. Indeed, there is increasing evidence that, at 
least partially, metal toxicity is due to oxidative 
damage (Xiong, Fu, Tao, & Zhu, 2010). 

Increased SOD activity in response to Mn 
toxicity suggests induction of a protective 
mechanism against oxidative damage in Mn-stressed 
plants caused by O2

.-. Similar increases in SOD 
activity have been observed in Cucumis sativus L. and 
Lycopersicon esculentum Mill when exposed to excess 
Mn (Shi et al., 2005). The earlier SOD activity 
observed in roots was probably because the root is 
the first plant organ to come into contact with the 
excess Mn. Conversely, SOD activity was altered in 
leaves slightly later in response to Mn being 
translocated from the roots. 

CAT and APX are involved in the metabolism of 
H2O2 produced in the cells (Apel, & Hirt, 2004). 
CAT has a poor affinity for H2O2 because two 
molecules of H2O2 must simultaneously enter the 

same active site. Therefore, its action occurs 
predominantly under high concentrations of the 
substrate. This is exactly what happens in the leaves, 
where higher concentrations of H2O2 cause high 
CAT activity under excess Mn. In contrast, APX has 
a much higher affinity for H2O2 than CAT and 
consequently functions in sites with low 
concentrations of its substrate (Ahmad, 2014). In the 
present study, lower H2O2 generation and higher 
APX activity were observed in the roots. 

Conclusion 

Zea mays L. cv. Saracura is adapted to low 
oxygen availability in soil through the formation 
of aerenchyma (Alves et al., 2002). In addition, 
this cultivar efficiently sequesters relatively large 
amounts of Mn in the leaves, although there is a 
significant impact on metabolism. Further work is 
necessary to determine the mechanisms 
underlying the increased shoot accumulation of 
Mn in this cultivar. Although there are relatively 
large amounts of Mn in leaves, there were no 
visual symptoms and only a moderate decrease in 
biomass production. 
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