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ABSTRACT. GenomicLand is free software intended for prediction and genomic association studies based 

on the R software. This computational tool has an intuitive interface and supports large genomic 

databases, without requiring the user to use the command line. GenomicLand is available in English, can 

be downloaded from the Internet (https://licaeufv.wordpress.com/), and requires the Windows or Linux 

operating system. The software includes statistical procedures based on mixed models, Bayesian 

inference, dimensionality reduction and artificial intelligence. Examples of data files that can be 

processed by GenomicLand are available. The examples are useful to learn about the operation of the 

modules and statistical procedures. 
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Introduction 

Genome-wide selection (GWS) and genome-wide association studies (GWAS) consist of analyzing a 

large number of single nucleotide polymorphism (SNP) markers widely distributed in the genome, 

capturing quantitative trait loci (QTLs) that affect a quantitative trait. The use of GWS in breeding 

programs allows for an increase in the efficiency in predicting genetic values (Wellmann & Bennewitz, 

2012; Goddard, 2012; VanRaden, 2008, Meuwissen, Hayes, & Goddard, 2001), speed in the 

identification of genetically superior individuals (Vandenplas, Calus, & Gorjanc, 2018; Meuwissen et 

al., 2001; VanRaden, 2008), increase in the rate of genetic gain and reduction of the generation interval 

(Polejaeva et al., 2013; Resende et al., 2012a). The GWAS allows for identifying possible associations 

between genetic regions and traits. Both these analyses have had an important impact on breeding 

programs due to the study of the molecular controls of complex traits and biological processes.  

The study of statistical methodologies and computational tools applied to genomic prediction and 

association studies is considered an important line of research. Therefore, several different approaches 

are available in the literature, for example, RR-BLUP, G-BLUP, Bayesian alphabet, partial least squares 

(PLS), and kernel-based regressions, among others. These methodologies, focusing on solutions for 

multicollinearity, dimensionality and nonnormal trait distributions, are implemented in different 

software, which, in general, require knowledge of programming languages, making them difficult for 

lay users. Additionally, some of these require a license for their use and have complicated interfaces. 

In this context, developing a free and intuitive software will provide practitioners (academic or not) easy 

access to this high-level technology and methodology. For breeding programs interested in using the 

benefits of genomics, this development will lead to advances in the area of computational genomics. 

For this purpose, GenomicLand was developed as a computational tool for genomic prediction and 

association studies based on the free R software, which has an intuitive interface and supports large 

genomic databases. The software is freely available to the scientific community at 

https://licaeufv.wordpress.com/. 
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Description 

The software GenomicLand can be used in the Windows or Linux operating system. Some configuration 

settings are indispensable, such as a screen resolution of 1024 x 768 (large fonts) and the use of a decimal 

symbol expressed by points. The software is available in English. Python was the chosen language for the 

interface due to its free, easy operation and versatility. 

Integration with R software 

R is a language and an integrated development environment for statistical procedures and graphing. The 

R software has been increasingly accepted by universities and companies around the world. Currently, the 

acquisition costs of statistical software that are similar to R or even poorer in terms of analytical capacity 

are very high, especially for the predominantly small and medium businesses in our country. The 

development of GenomicLand under the R interface made it possible to use the main packages of this 

software without the use of command lines by the user. The user can use all statistical procedures necessary 

for a complete genomic approach without the need to use other software. In addition, the scheduling of 

computational routines is prepared for the dimensionality of the genomic data of the plant area and is 

optimized in order to reduce computational time and effort. 

Application of the program 

An application of the software GenomicLand usually includes the following steps. 

a. Examples of data files: examples of data files that can be processed by GenomicLand are available. 

The examples are useful to learn about the operation of the modules and statistical procedures. Each 

procedure is represented by an icon that accesses the file containing an illustrative example of a particular 

procedure, with the files having the advantage of a complete description of all the parameters for immediate 

data analysis. 

b. Supplying data for processing: statistical procedures usually have a common sequence of steps. 

Essentially, the user provides the folder path and selects the data file to be processed. The software prints 

and saves the results in the same folder. After these steps, the software requires the definition of the 

parameters (number of variables, number of fixed effects, number of random effects, order of the variable 

analyzed, etc.). It is recommended that these data files have headers. Regardless of the file format (i.e., .txt 

or .csv), the results will be saved in .csv format. 

c. Help with the parameters of statistical procedures: a file containing a summary and the description of 

the required parameters to perform the procedure.  

d. Parameter Description: for each procedure, the user must provide specific information about the data 

file that will be used for the processing. For example, to perform the genomic BLUP method, the user must 

provide the number of variables contained in the data file, the order of the variables to be analyzed, the 

number of subsamples defined to assess the accuracy and predictability of the model (      ), and the 

number of fixed and random effects that should be included in the template. In addition, the user must 

provide information about which genetic effects will be included in the model: additive, due to dominance 

and epistatic. The control buttons are common to all the available procedures. The button functions are 

described below: 

Run: after the inclusion of the values of the desired parameters for each analysis, the user can perform 

the analyses through this button. 

Stop: the user can abort the analysis if necessary. 

Clear: the user can clear the description of the parameters if necessary. 

Help: a file containing a summary of the statistical procedure used and a description of the parameters 

necessary to perform the analysis. 

Example: for each procedure, the user will have an example file available, which is preloaded as part of 

the interface.  

Print: the first six rows of the data file loaded in the software will be printed on the screen. An error in 

reading the data would definitely lead to errors in the data processing; thus, to ensure the correct reading of 

the data and analysis, the user must apply the necessary corrections, according to the specifications of each 

procedure. 
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e. Result output: the main results are printed on the software screen. However, all available results are 

saved in the .csv format in the folder chosen by the user. The results can also be exported to Excel, 

Libreoffice or other related programs. 

Modules 

The GenomicLand software system contains analysis modules that involve several procedures to perform 

genomic prediction analysis and association studies. These procedures are described below. 

Initial analysis 

This module contains initial statistical analyses. The initial procedures serve to verify the consistency 

and accuracy of the data, describing and exploring the study sample, and preparing the data for further 

analysis. It is crucial that this is done before undertaking complex analyses. The procedures are described 

below: 

a. Convert SNP genotype data: the procedure converts a file with nitrogenous base pairs into 0, 1, and 

2. The procedure consists of checking which nitrogenous base is most frequent, assigning it the weight 1, 

whereas the less frequent one receives a weight of 0. 

b. Phenotype correction: procedures for the correction of phenotypes for fixed and random 

environmental effects (factors) and for the correction of population structure by principal components or by 

eigenvectors, as reported by Azevedo et al. (2017). 

c. Quality control: the quality control of the marker files consists of the elimination of 

nonpolymorphic loci and/or loci with a low call rate and/or loci that are not frequent according to the 

Hardy-Weinberg equilibrium. 

d. Relationship matrix (G): this matrix calculates the genomic relationship matrix (G) according to 

VanRaden (2008). 

e. Heatmap of G: heatmaps are used to visualize the relationships among individuals through the 

genomic relationship matrix. 

f. Principal Components of G: plots of the first and second principal components of the genomic 

relationship matrix.  

Items e) and f) are used to study the genetic diversity among the individuals. 

Genomic prediction methods 

Based on Mixed Model 

The linear mixed model (LMM) has been widely used in genetics and is an extension of the linear 

regression model, in which the variables are divided into two groups: fixed effects and random effects. The 

equations of mixed models (EMM) proposed by Henderson (1975) are used in the estimation of the best 

linear unbiased estimator (BLUE) for fixed effects and its functions of interest, as well as in the estimation 

of the best linear unbiased prediction (BLUP) for random effects. This method is done by using the 

covariance matrices of the random effects of the model and the estimates of the variance components 

obtained through the restricted maximum likelihood (REML) method. The statistical methods available in 

this module are described below: 

a. G-BLUP: in genomic BLUP (genomic best linear unbiased predictor – VanRaden, 2008), the main 

random effects of the model are the genetic values of the individuals and their covariance matrix is given by 

the genomic relationship matrix between the individuals. This model can be considered a model with the 

inclusion of additive genetic effects, dominant and epistatic effects (additive × additive). The genomic 

relationship matrix associated with the additive effects and due to dominance are obtained as per Vitezica, 

Varona and Legarra (2013), and that associated with the additive epistatic effects is obtained as per Su, 

Christensen, Ostersen, Henryon and Lund (2012). The G-BLUP considers the homogeneous shrinkage for all 

markers’ effects. 

b. G-BLUP heterogeneous: this model is a mixed model, based on the linear model, for which the 

genomic relationship matrix considers the heterogeneous shrinkage for the markers’ effects (Resende, Silva, 

Lopes & Azevedo, 2012b). The variance of each marker is estimated via the Bayesian least absolute 

shrinkage and selection operator (BLASSO) method. 
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Based on dimensionality reduction 

Dimensionality reduction methods consist of constructing linear combinations of the explanatory 

variables, called components, with the purpose of reducing the dimensionality of the studied problem. In 

the context of genomic prediction, the explanatory variables are molecular markers. These methodologies 

guarantee the absence of multicollinearity between the components and a solution for the problems of high 

dimensionality. In this module, only the inclusion of additive effects is possible, as described by Azevedo, 

Resende, Silva, Lopes, and Guimarães (2013), Azevedo et al. (2014) and Azevedo et al. (2015a). The 

statistical methods and procedures available in this module are described below: 

a. Number of components: this procedure assists in the choice of the number of components inserted 

in the model using principal component regression (PCR) and partial least squares (PLS). Three kinds of 

information are available to assist in the choice: percentage of explanation of the variance of X (molecular 

markers), percentage of explanation of the variance of Y (phenotype) and the number of components 

associated with a greater predictive capacity in the prediction of genomic values. 

b. Principal Component Regression: in PCR, the components are actual orthogonal linear 

combinations that maximize the total variance. 

c. Partial Least Squares: in PLS, the components are real orthogonal linear combinations that 

maximize the covariance between the components and the variable Y (phenotype). 

d. Independent Component Regression: in ICR, the components are linear combinations that 

maximize the independence between them. 

The prediction of the genomic values of the individuals is made based on a specific number of 

components determined by the user. The number of components must be less than or equal to 

    
 

      
     , where: N is the number of individuals contained in the database and   is the number of 

markers. 

Based on Bayesian inference 

Bayesian inference treats the vector of unknown parameters of the model as random quantities, and any 

initial information about them can be represented by means of probabilistic models. Thus, probability 

distributions, called prior distributions, are assumed for all unknown quantities. Bayesian methods are 

associated with systems of nonlinear equations and nonlinear predictions, and consequently, they may be 

better when the effects of QTLs are not normally distributed due to the presence of large-effects genes. In 

this module, it is possible to include additive effects and those due to dominance as per Azevedo et al. 

(2015b). The difference between the Bayesian approach regression methods applied to GWS is mainly due to 

the assumed prior distribution for the effects of the markers. 

a. Bayesian Ridge Regression: as prior distribution for the effects of markers (additives and due to 

dominance), this regression assumes a normal distribution with a common variance term that leads to a 

homogeneous shrinkage through the effects of the markers. 

b. BayesA: as prior distribution for the effects of markers (additives and due to dominance), this 

regression assumes a t distribution and a specific variance for each marker (Meuwissen et al., 2001). 

c. BayesB: for a fraction  of the markers, this regression assumes the same prior distribution as 

BayesA and that the fraction 1 -  of the markers has no effect,   being adopted subjectively by the user 

(Meuwissen et al., 2001). 

d. BayesC: as prior distribution for the effects of markers (additives and due to dominance), this 

regression assumes a normal distribution with a common variance for a fraction  of the markers and that 

the fraction 1 -  of the markers has no effect. It does so more effectively than BayesB (Gianola, de Los 

Campos, Hill, Manfredi, & Fernando, 2009). The  fraction is estimated by means of a Beta probability 

distribution. 

e. BLASSO: as prior distribution for the effects of markers (additives and due to dominance), this 

method assumes a double exponential distribution and a specific variance for each marker (de los Campos et 

al., 2009). 

In these methodologies, the user must provide the number of iterations for the Markov chain Monte 

Carlo (MCMC) algorithms and the number of initial iterations that will be discarded in the Markov chain; 
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thus, the effect of the initial values on the later inference is minimized (burn-in). The user must also specify 

the thinning that corresponds to the interval at which iterations are recorded. 

Based on alternative methods 

In this module, methods that can be used for genomic prediction, which do not fit into the previous 

modules, are described. 

a. Least Absolute Shrinkage and Selection Operator: the LASSO regression proposed by Tibshirani 

(1996) combines the selection of covariates and the regularization by shrinkage of the regression 

coefficients. LASSO assumes the effects of markers as fixed effects; thus, the effects of markers that move 

away from 0 suffer a penalty. The LASSO solution allows for up to N - 1 coefficients different from zero, 

where N is the number of individuals. The shrinkage is dictated by the  penalty parameter. 

b. Lambda : this function helps the user define the best penalty parameter for the dataset. It 

calculates the k - fold cross-validated mean squared prediction error for the LASSO. 

c. Machine learning: models based on regression trees and their improvements, such as bootstrap 

aggregation (Bagging) and Random Forest. A value is assigned for each region formed in the tree, which is 

used to predict the value of the variable response of a new individual. This value is the average of all 

individuals belonging to the region used in the construction of the respective tree. For a genomic prediction 

application of these methodologies, see González-Camacho et al. (2018). 

Association studies 

Due to the study of the molecular controls of the biological processes of complex traits, the study of the 

genome-wide association studies between QTLs and the genetic values of individuals is of extreme interest 

to breeding programs. However, in practice, the study of these associations is performed between molecular 

markers and phenotypes, and this is possible by means of linkage disequilibrium (LD) between the marker 

and the QTLs that control the trait of interest. The methods available for association studies are as follows: 

a. Single-marker models: the traditional GWAS approach, by fitting one marker at a time in the 

phenotype and a hypothesis test, it is possible to detect the significance of this effect. In this function, it is 

possible to reduce the false positive rate by including the vector of polygenic effects in the model along with 

the genomic kinship matrix (Hayes et al., 2007; Macleod et al., 2010) or by principal components (Zhang et 

al., 2010; Azevedo et al., 2017). 

b. Quantile regression: a quantile regression-based GWAS; different to the traditional GWAS 

approach, it allows for the fitting of models to all portions of a probability distribution of the trait. In other 

words, QR enables measuring the impact of an SNP on specific quantiles of the trait. For an application in 

association studies of this methodology, see Barroso et al. (2017) and Nascimento et al. (2018). 

c. Manhattan: GWAS Manhattan plots, where the genomic coordinates are displayed along the X-axis, 

with the negative logarithm of the association P-value for each SNP displayed on the Y-axis, such that each 

dot on the Manhattan plot signifies an SNP. 

Conclusion 

GenomicLand is a free and intuitive tool for the analysis and processing of molecular datasets. This 

software includes some of the main models used in genome-wide association studies and genomic 

prediction. The software responds to the growing demand of users (academic or not) with different 

academic backgrounds, some of which lack knowledge of programming languages. 
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