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ABSTRACT. Strawberry is an economically and socially important crop in several regions worldwide. 

Thus, studies that provide information on topics in strawberry growth are important and must be 

constantly updated. The aims of this study were to fit a logistic growth model to describe strawberry fruit 

production and to estimate the partial derivatives of the fitted model in order to estimate and interpret 

the critical points, in addition to using multivariate analyses. To do this, data on 16 treatments 

[combinations of two cultivars (Albion and Camarosa), two origins (national and imported), and four 

mixed organic substrates (70% crushed sugar cane residue + 30% organic compost, 70% crushed sugar 

cane residue + 30% commercial substrate, 70% burnt rice husk + 30% organic compost, and 70% burnt rice 

husk + 30% commercial substrate)] conducted in a randomized complete block design (RCBD) with four 

replicates were used. A logistic model was fitted to the accumulated fruit production stratified by 

treatment and replication. Partial derivatives related to the accumulated thermal sum were estimated in 

order to quantify the critical points of the model. Subsequently, a principal component analysis was 

performed. The results show that the use of growth models substantially increases the inferences that can 

be made about crop growth, and the multivariate analysis summarizes this information, simplifying its 

interpretation. Approaches such as those carried out in this study are still rarely used, but, compared to 

simpler models, they increase the amount of inferences that can be made and provide greater elucidation 

of the results. 
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Introduction 

The strawberry is a multiple-harvest crop, and the statistical analysis of data for these crops is 

sometimes complicated. The excess of zeros when a plant has no harvestable fruit, the heteroscedasticity 

among harvests, the correlation among harvests from the same plant and/or experimental unit and the 

inability to randomize the harvest as a factor in subplots (Lúcio et al., 2016) are factors that must be 

considered when analyzing multiple-harvest crop datasets. These characteristics often violate the analysis 

of variance (ANOVA) model assumptions. 

To meet the ANOVA assumptions, the statistical analysis of strawberry trials has been carried out 

considering the total production only (Diel et al., 2017b; Mérelle et al., 2017; Morris et al., 2017). This 

approach is effective in solving the problem of the violation of ANOVA assumptions, but it reduces the 

information about production behavior over time, such as precocity and fruit production rate. These 

characteristics can be measured through the biological interpretation of the parameters and critical points 

of nonlinear growth models (Diel et al., 2019; Sari, Olivoto, Diel, Krysczun, & Lúcio, 2018). Sari et al. (2018) 

concluded that, for multiple-harvest crops, the logistic model has the best performance in describing crop 

production because the parameters estimated are close to being unbiased, meet the assumptions about the 

residuals, and present high linear approximation (e.g., low nonlinearity measures). In addition, for 

strawberry, the logistic model for the modeling of fruit production has been defined (Diel et al., 2019). 

The benefits of the models are that they can increase the inferences about productive behavior, but they also 

increase the number of variables. When the number of variables increases, a univariate analysis cannot be 

conclusive. Therefore, the multivariate analyses must be utilized with nonlinear model analysis. Multivariate 
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analyses are important for extracting the maximum amount of information from a set of variables. The use of 

multivariate techniques to establish the variability of treatments is an effective tool (Vargas et al., 2015). 

In this context, the aims of this study were: i) to fit a logistic nonlinear growth model to describe 

strawberry fruit production; ii) to estimate the partial derivatives of the fitted model in order to estimate 

and interpret the critical points of the model; and iii) to use multivariate analyses to characterize the 

treatments through the parameters and critical points of the adjusted model. 

Material and methods 

Plant material, site description, and experimental design 

The experiment was carried out at the Federal University of Santa Maria (UFSM), in Frederico 

Westphalen, Rio Grande do Sul State, Brazil, located at 27°23’ S, 53°25’ W and 493 m of altitude. The 

region’s climate, according to the Köppen classification, is Cfa, wet subtropical, presenting temperate rainy 

characteristics, with an annual mean precipitation of 1,800 mm uniformly distributed throughout the year 

and subtropical temperatures (Alvares, Stape, Sentelhas, Gonçalves, & Sparovek, 2013). 

A soilless cultivation system was installed in a galvanized steel frame greenhouse with a 

semicircular ceiling oriented in a north-south direction. The dimensions of the greenhouse are 20-m 

length by 10-m width with a 3.5-m height lateral post. Strawberry seedlings were transplanted to 150-

µm tubular white plastic bags and were kept on wood tabletops 0.8 m above the ground.  

A nutrient solution was provided by a drip system situated inside of the bags, composed of a drip 

line spaced every 0.10 m. Applying the fertigation according to the formula and frequency developed by 

(Gonçalves, Vignolo, Antunes, & Reisser Junior, 2016 ), the frequency was adjusted according to the 

stage of development of the crop. For the vegetative and reproductive phase, fertigation was provided 

every 2 and 5 minutes, totaling approximately 600 to 1,200 mL per bag, respectively. 

The substrates used in the plastic bags were a mixture of 70% crushed sugarcane residue or burnt 

rice husk and 30% commercial substrate or organic compost (Table 1). Before transplanting, the 

substrate was rinsed until an electrical conductivity level of less than 1 mS cm -1 was reached, in order to 

make the substrate chemically inactive. Seedlings of two cultivars (Albion and Camarosa) from two 

origins (national and imported) were used.  

Seedlings considered national were taken from a seedbed in Agudo, located in the basaltic slope in Rio 

Grande do Sul State, Brazil, between the central depression and the mid-uplands, whose geographic 

coordinates are 29°62’ S, 53°22’ W at 83 m of altitude. Imported seedlings grown in Argentina were 

produced at a seedbed called Patagônia Agrícola S.A., located in El Maitén, whose geographic coordinates 

are 42°3’ S, 71°10’ W at 720 m of altitude. 

The experiment was conducted in a randomized complete block design with four replicates. Each 

experimental unit was composed of eight plants. The 16 treatments tested are listed in Table 1. 

Table 1. Description of the 16 evaluated treatments in the experiment. 

Treatment 
Crushed sugar cane 

residue (%) 

Burnt rice husk 

(%) 

Commercial 

substrate - 

Carolina® (%) 

Organic compost 

(%) 
Cultivars  Seedlings origin 

1 70 0 0 30 Albion Imported 

2 70 0 0 30 Albion National 

3 70 0 0 30 Camarosa Imported 

4 70 0 0 30 Camarosa National 

5 70 0 30 0 Albion Imported 

6 70 0 30 0 Albion National 

7 70 0 30 0 Camarosa Imported 

8 70 0 30 0 Camarosa National 

9 0 70 0 30 Albion Imported 

10 0 70 0 30 Albion National 

11 0 70 0 30 Camarosa Imported 

12 0 70 0 30 Camarosa National 

13 0 70 30 0 Albion Imported 

14 0 70 30 0 Albion National 

15 0 70 30 0 Camarosa Imported 

16 0 70 30 0 Camarosa National 



Behavior of strawberry production Page 3 of 11 

Acta Scientiarum. Agronomy, v. 43, e47812, 2021 

Assessments Completed 

The air temperature inside the greenhouse was recorded with a thermohygrometer installed 1.5 m above 

the ground surface. The mean air temperature calculation was estimated by the following equation: 

                      (1) 

where: Tave is the air average temperature; Tmax is the maximum air temperature; and Tmin is the minimum air 

temperature. 

The daily thermal sum (TSd) in °C day-1 was calculated according to the following equation (Arnold, 

1960): 

              (2) 

where: TSd is the daily thermal sum (°C day-1); Tave is the air average temperature; and Tb is the base 

temperature. 

The base temperature (Tb) is set as the temperature below which the plant cannot develop, or its 

development is so slow that it can be ignored (Rosa et al., 2011). Strawberries have a base temperature of 

7°C (Mendonça et al., 2012). 

The daily thermal sum was calculated from the date of the seedling transplant to the plastic bags, and 

the accumulated thermal sum (TSa, in °C day-1) up to the ith day was calculated by: 

        
 
    (3) 

Harvests were carried out twice a week during the complete maturity stage for a total of 37 harvests, 

segregating commercial from noncommercial fruits. The commercial fruits harvested in each experimental 

unit were weighed with the aid of a scale. Afterward, the fruit mass per plant was calculated, dividing the 

total mass of reaped fruits by the number of plants in the experimental units. 

Adjustment of growth model 

The mean mass of fruits per plant (g plant-1) obtained in each harvest was consecutively accumulated for 

each experimental unit. Afterward, a logistic model was fitted to each experimental unit according to the 

following equation: 

   
  

   
         

     (4) 

where: Yi is the mean mass of fruits per plant (dependent variable); Xi is the accumulated thermal sum (TSa), in 

degree days, from the seedling transplant up to the ith harvest (independent variable); β1 is the asymptotic value, 

and its values represent the total production of treatments; β2 is a parameter that reflects the distance between 

the initial value (observation) and the asymptote; and β3 is the parameter associated with the growth rate. 

The parameter estimates were obtained using the ordinary least squares method with a Gauss-Newton 

algorithm. This procedure was performed using the nls() function in R software (R Core Team, 2018). Later, the 

coefficient of determination (R²) and the intrinsic (cI) and parametric (cθ) nonlinearity were calculated by the 

curve method suggested by Bates and Watts (1988). Afterward,                 and                 values were 

estimated, where F(α,p,n-p) = F tabulated as a quantile of the F distribution in which α is 0.05, p is the number of 

parameters in the model and n is the number of observations. When these values are under 0.3 and 1.0, 

respectively, the parameters are close to being unbiased. The normality and homogeneity of residuals were tested 

by the Shapiro-Wilk and Bartlett tests, respectively. 

Due to the violation of the model’s assumptions, the confidence intervals were obtained by a bootstrap 

approach. Using the nlsboot() function of the nlstools package in software R (Baty et al., 2015), 10,000 

estimates of each parameter were obtained for each treatment. The confidence intervals were obtained by 

the difference between the 97.5th and 2.5th percentiles of the bootstrap parameter estimates. When the 

confidence intervals did not cross, the treatments were considered different. 

Precocity and concentration of the production 

The coordinates (X and Y) of the critical points of the logistical model, known as the maximum 

acceleration point (XMAP), inflection point (XIP), maximum deceleration point (XMDP) and asymptotic 
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deceleration point (XADP), were obtained by setting the following derivatives as equal to zero, according to 

methodology described in (Mischan, Pinho, & Carvalho, 2011): inflection point (XIP): 
       

     ; point of 

maximum acceleration (XMAP) and point of maximum deceleration (XMDP): 
       

     ; and point of 

asymptotic deceleration (XADP): 
       

     . The precocity was defined when the XIP was achieved (this 

point was related to the moment at which the rate production of fruit was maximal). The concentration of 

production was defined by the difference between XMAP and XMPD, corresponding to the time during 

which the production increased exponentially (Sari et al., 2018). 

Multivariate analysis 

The variables analyzed were i) asymptote (representing the total production), ii) XIP (representing the 

precocity of production), iii) concentration of production (difference between XMAP and XMDP), and iv) 

XADP (indicates the moment of harvest at which increases in production become insignificant). These 

variables were estimated for the 16 treatments; afterwards, a principal component analysis (PCA) using the 

Pearson correlation matrix between the variables was carried out. The PCA was performed to reduce the 

dimensionality of the data into few components, allowing the interpretation of the relationships both 

among the variables and among the variables and the treatments. The PCs were obtained using the PCA() 

function, and the biplots were constructed using the fviz_pca_biplot() function, both implemented by the 

FactoMineR package (Le, Josse, & Husson, 2008) in R. 

Results 

Model adjustment 

The logistic model fit all analyzed treatments. All R² values were higher than 97%, and the cI and cθ were 

considered low (Figures 1A and 2B). The low intrinsic and parametric nonlinearity measures indicate that 

the parameter estimates were close to being unbiased. The low nonlinearity is the most important criterion 

that must be used when selecting a model. As the parameters have a biological interpretation, biased 

estimates can lead to misinterpretations of the characteristics described by the parameters and critical 

points, such as the precocity and concentration of the production (Sari et al., 2018; Sari, Lúcio, Santana, & 

Savian, 2019a; Sari et al., 2019b). These aspects (higher R² and low nonlinearity) show that the model is a 

good predictor and that the parameters can be used as explanatory variables (Bates and Watts, 1988). Thus, 

this model can be used for modeling fruit production in strawberry crops. 

 
Figure 1. Logistic model (A) and fruit production rate (B) adjusted for fruit mass of strawberry cultivars grown on organic substrates. 
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Figure 2. Logistic model (A) and acceleration rate (B) adjusted for fruit mass of strawberry cultivars on organic substrates. 

Treatments T9, T10, T11, T12, and T16 had significantly higher β1 (asymptote), as they were the 

treatments with higher production. Production in these treatments ranged from 550 to 625 g plant-1. The 

less productive treatments were T2, T3, T5, T6, and T7, which produced from 250 to 300 g plant-1. The 

treatments T1, T4, T8, T13, T14, and T15 had intermediate production, between 328 and 439 g plant-1 

(Figure 3). 

 
Figure 3. Confidence intervals were obtained by a bootstrapped- approach logistic model parameters and critical points of the 

function. β1 (represents production), β2 (represents the precocity of production), β3 (represents the rate of fruit production), XMAP 

(maximum acceleration point), XIP (inflection point), XMDP (maximum deceleration point), XADP (asymptotic deceleration point), 

and Concentration (XMDP-XMAP). 

The parameter  2 is related to the degree of maturation of the crop at the beginning of the harvest. Low 

β2 values indicate higher fruit ripeness at the beginning of the harvest (Figures 1 and 2), which is related to 
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the productive precocity. In the case of this study, the treatment values were significantly lower for 

treatments T9, T10, and T11; they tended to have more growth early in the process. In treatments T2, T4, 

T6, and T8, the values of β2 were higher, indicating later production. These results indicate that a higher 

proportion of the yield was obtained at the initial harvests in the T9, T10, and T11 treatments than at the 

initial harvests in the T2, T4, T6, and T8 treatments (Figure 3). 

The value of the parameter β3 is related to both the productive precocity and the concentration of 

production. Higher values of β3 indicate higher productive precocity and higher harvest concentration. The 

T9, T10, and T11 treatments had the lowest values of β3. The values were significantly higher for T2, T3, T4, 

T6, and T8, indicating that the crop production was concentrated in a shorter period in these treatments 

(Figure 3). 

The values of the parameters of the growth models should be analyzed jointly (Sari et al., 2019a). In our 

case, lower values of β2 are associated with higher values of β1 (total final production). This indicates that, in 

relative terms, a more of the fruits are harvested earlier in the more productive treatments than in the less 

productive treatments. The consequence of this behavior can be observed when comparing treatments T6 

(less productive and with less early production) and T10 (more productive, with an earlier production start). 

Lower production was seen in the first T6 harvests due to their lower productive precocity, and higher 

production was seen in T10 due to their higher productive precocity (Figure 4). 

 
Figure 4. Adjusted logistic model (A), rate of fruit production (B), and acceleration rate (C) for mass of fruit of treatment T6 and T10. 

Despite the lower value of the parameter β2indicating earlier production in T10, treatments T6 and T10 
reached the PI at the same time due to the lower value of β3 in T10 than in T6. The low value of β3 indicates a 
peak production delay in T10, even though this treatment produces more fruits initially, because the rate of 
fruit production is slower (Figure 4). The lower values of β3 in T10 also indicate that the period of 
exponential increase in production lasts for a longer period of time (Figure 4). 

Critical points interpretation 

The time when the plants reach the inflection point (XPI), which represents the time when the plants are 

at maximum production, differs between some treatments. For example, treatments T5, T7, T11, and T15 

reach the inflection point earlier than most treatments (Figure 3).  

XPAM indicates the moment at which the exponential increase in production begins in the treatments. A 

high value of XPAM is related to slow increases in production at the beginning of the harvest. That is, the 
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initial harvests produce few fruits and are associated with the degree of maturation of the plants when the 

harvests begin. It is important to note that the harvests started at the same time, and therefore, the XPAM 

can be used as an indication of the maturation of plants at the beginning of the harvest. The treatments T2, 

T4, T6, and T8 are characterized by a very slow start to production, determined by the later occurrence of 

the maximum acceleration point (XPAM). The maximum deceleration point (XPDM) indicates the end of the 

period of exponential growth of fruit production and does not differ much between treatments. 

The production concentration is obtained by the time difference between the occurrence of the 

acceleration point (XPAM) and the maximum deceleration (XPDM). Using this difference as a variable, it is 

possible to determine for how long the treatments have shown exponential production growth. The shorter 

this period is (the less the difference between XPAM and XPDM), the more concentrated the production is. 

On the other hand, the longer the period is (the greater the difference between XPAM and XPDM), the less 

concentrated the production. In our case, the most productive treatments (T9, T10, T11, and T12) were 

those that had the lowest production concentration in relation to the others. In these treatments, the onset 

of the exponential production period (XPAM) is early; however, due to the low increase in the rate of fruit 

production (lowβ3), the production concentration period is longer. 

The asymptotic deceleration point demonstrates for how long the product has significant growth during 

the harvests. Significant differences were observed among a few treatments. The T9 and T10 treatments are 

characterized by producing fruits for a longer time than the other treatments (although the difference is 

often not significant). 

Compared to those from a simple production variable, the inferences that can be made about the 

productive behavior of the treatments are increased substantially with the use of the parameters and critical 

points of the logistic model. Surely, this is a great advantage over a simple comparison of averages that 

could be performed between treatments (which is certainly what many researchers would do in this case). 

However, univariate analysis is often inconclusive and may be confusing. Therefore, using growth models 

and multivariate techniques together can bring many advantages to the researcher, such as i) the use of 

growth models substantially increases the amount of inferences that can be made and ii) the multivariate 

analysis summarizes this information, simplifying its interpretation. 

Principal component analysis (PCA) 

The contributions of the first two main components, PC1 and PC2, to the variation in the results were 

56.5 and 31.9%, respectively, while the contribution rate was 88.4%, which is a significant percentage of the 

variability extracted using the first two axes (Figure 5). 

 
Figure 5. Biplot for mass data of strawberry fruits on strawberry cultivars grown on organic substrates (IPCA1 x IPCA2). 

The relationship between the concentration of production and the final production, as discussed above, 

is confirmed in the PCA. The vectors of these variables in the same direction in the biplot show the direct 

relationship between the total production and the concentration of the production. That is, productive 
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treatments have a lower concentration of production. The vectors for treatments T9, T10, T11, and T12 

indicate that they are the most productive because they have a lower concentration of production. 

Treatments T4, T6, and T8 show the opposite results. These treatments are characterized by less production 

and a more concentrated production. 

In general, the response of the treatments is related to the substrate used. Therefore, the treatments 

were grouped according to the substrate in a biplot (Figure 5). The treatments on the burnt rice husk + 

organic compound (S3) substrate were the most productive at lower production concentrations of the crop, 

that is, the production increased exponentially for a longer period in comparison to that in the other 

treatments. The XPDA also shows that the production was not very concentrated in these treatments; that 

is, the treatments produced fruits for a longer period. In contrast, the treatments whose substrate was 

composed of the sugarcane bagasse mixture had the opposite behavior: they produced few fruits, and their 

production was concentrated in a short period. 

Discussion 

Growth models have been widely used to evaluate experiments with multiple-harvest crops. Sari et al., 
(2018; 2019b) report that the use of ANOVA implies the loss of information about the productive behavior 
of crops over time. This information loss occurs because researchers group the observations of the crops in 
their analyses so that the assumptions of the ANOVA are fulfilled. (Sari et al., 2018; 2019b) demonstrate 
that growth models are an alternative to ANOVA and increase the inferences that can be made about the 
productive behavior of these cultures; growth models can therefore be an alternative for statistical analysis 
in these cases. 

Due to the recent use of growth models as an alternative for statistical analysis in multiple-harvest 

crops, the productive behavior of different cultivars of strawberries cultivated on different substrates has 

never been detailed. Most of the inferences were made based on total production using ANOVA as a 

statistical analysis tool. The loss of information about productive behavior over time has not allowed 

researchers to verify, for example, that the substrates interfere with the productive precocity, the 

concentration of harvests over time and the period in which the production of strawberry fruits is 

significant. With the use of growth models, it was possible to verify that the productive behavior is related 

more to the substrate used than to the genotype or origin. 

Lower production was observed in treatments with sugar cane residue as the main component of the 

substrate. A substrate used in soilless strawberry cultivation systems should present physical characteristics 

that provide appropriate conditions for plant development, mainly regarding the ability to hold water and 

nutrients. In the case of treatments with lower production, the physical characteristics of the substrate led 

to this difference. The water saturation content in the substrate can often be up to 50%; however, it can be 

reduced quickly to less than 10% under a slight water tension increase of only 20 to 40 cm in the water 

column (Wang, Gabriel, Legard, & Sjulin, 2016). Differences in the parameters estimated by the logistic 

model can also be verified in work done with Dianthus chinensis L., in which differences between the 

evaluated substrates were observed (Milani et al., 2016). The same analogy can be used for the β2 parameter, 

in which higher values were found in the treatments with sugarcane bagasse. This indicates that substrate 

can influence the start time of fruit production, providing gains and losses in the early production period, 

when the price per kilogram of fruit can be higher. 

In the most productive treatments, that is, those with higher values of β1 (T9, T10, T11, T12, and T16), 

the substrate was a mixture of burned rice husk and organic substrate; this combination provides an 

environment that is more conducive to the growth and development of the plants, as observed by (Diel et al., 

2017a; 2018). Higher strawberry production due to the use of burnt rice husk + organic compost as a 

substrate had already been reported by (Diel et al., 2018), but the behavior of production over time had not 

been studied. The growth models showed that production in these treatments started earlier (lower XPAM), 

ended later (higher XPDA) and had exponential growth occurring over a longer period of time (i.e., lower 

production concentration). On the other hand, the substrates that contained the sugarcane bagasse in the 

mixture led to lower production (lower values of β1) concentrated in shorter periods (higher value of β3). 

The high concentrations of the production in treatments with burnt rice husk and organic compost is due 

to the physical characteristics of the substrates; the culture medium influences the yield of strawberry fruits 

(Sønsteby, Opstad, & Heide, 2013; Wang, Zhu, & Xia, 2012). It can also be observed in this case that, among 

the most productive treatments, T9 and T10 had significant increases in production for a longer period 
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(evidenced by the greater XPDA) (Figure 5). These treatments both used a day-neutral cultivar that does not 

respond to the photoperiod; therefore, the production was extended for a longer time, which was shown by 

the results of our analysis. This production dynamic is interesting for fruit producers, since they can offer the 

fruit for more days of the productive cycle, allowing greater gains and profitability from the productive system. 

Through the interpretation of the parameters and the critical points of the models, it is possible to 

increase the amount inferences that can be made regarding strawberry production. The parameters and 

critical points become variables that explain strawberry behavior. On the other hand, the increase in the 

number of variables makes it difficult for the researcher to interpret the results. The use of multivariate 

techniques allows the researcher not only to verify the relationships among variables but also to 

discriminate among treatments. Rinaldi, De Lucia, Salvati, and Rea (2014) emphasize that multivariate 

analysis is a reliable tool for selecting substrates when comparing a large number of criteria; their PCA 

diagram discriminated four groups of treatments associated with the concentration of compounds in the 

substrate based on the observed physiological response of rosemary. 

The use of PCA allowed us to verify that the production and the concentration of crops are related and 

that the variability in these aspects is more associated with the use of different substrates than with the use 

of different genotypes and origins, as observed in the biplot. The advantage of using PCA is that it considers 

the variables that are most informative in the data set, providing that the individuals are grouped by 

similarity (Hongyu, Jorge, & Junior, 2015). Approaches such as those carried out in this study are still rarely 

used, but they increase the amount of inferences that can be made and provide greater elucidation of the 

results of scientific studies that seek broader and clearer results. 

In our case, the use of two methodologies allowed us to make inferences of great interest to the 

producer. We verified, for example, that strawberry cultivated with substrates containing burned rice husks 

and organic compost, regardless of cultivar and origin, produces higher quantities of fruits at the beginning 

of the harvest. In addition, the increase in production extends over a longer period of time, which is 

evidenced by the higher value of XPDA. Thus, the producer is not held hostage to price oscillations, which is 

characteristic of this type of fruit production. In contrast, the use of other substrates, in addition to 

producing less fruit, concentrates fruit production in a shorter period. We could not have drawn these 

conclusions if we had analyzed the variable mass of fruit per plant with a simple analysis of variance; this 

shows the power of adequate statistical analysis for drawing conclusions from an experiment. 

Conclusion 

The use of growth models increases the inferences that can be made about the productive behavior of 

strawberry, and the critical points are effective for interpreting the precocity, rate and concentration of the 

harvests. Additionally, multivariate analysis made it possible to verify that crop production and 

concentration are related and that the variability among treatments occurs due to the substrate. Thus, the 

joint use of nonlinear models and multivariate analysis allowed the identification of the behavior of 

strawberry production through the crop cycle in different treatments. This approach can be extended to 

other multiple-harvest crops in order to understand both treatment effects and production behavior 

throughout the crop cycle. 
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