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ABSTRACT. Selection practices are maximized when plant breeders have the availability of consolidated 

parameters, which will guide direct and indirect selection methods. This study aimed to apply a biometric 

alternative to minimize residual variance and maximize selection parameters by parent-progeny 

regression, interim controls, and mixed linear models intrinsic to breeding. The obtained data were 

subjected to the assumptions of the statistical model, which identified the normality and homogeneity of 

the residual variances and model additivity. Subsequently, two analysis scenarios were created. The first 

preserved all information obtained in the experiment, both from segregating families and pure-line 

cultivars, and was called original scenario. The other scenario preserved progeny data, but the residual 

variability of controls was restricted using as criterion observations contained between the interval of the 

first sample standard deviation. Thereby, an acceptable residue limit could be obtained. Both scenarios were 

submitted to three consolidated frequentist methods (genitor-progeny regression; sum of squares of 

augmented block design with interim controls; and mixed linear models, wherein random genetic effects 

are taken as weighted genetic parameters by the genealogical matrix). Restricting residual variation in 

parents or controls can maximize genetic parameters and genetic gains in soybean breeding. Significant 

heritability estimate gains were obtained in the augmented blocks with interim control approach. Mixed 

linear models with random genetic effects can be considered a great tool to obtain genetic parameters in 

experiments with a high magnitude of common and regular treatments. 
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Introduction 

Soybean [Glycine max (L.) Merr.] is important for the Brazilian and world economy due to its diverse uses 

in the market, human consumption, feed manufacture, biofuels, pharmaceutical and cosmetic raw material. 

According to the Brazilian Institute of Geography and Statistics (IBGE), the world population has shown an 

upward growth in the last decades, which has also increased the demand for food. In 2050, the world 

population may reach 10 billion inhabitants, for which sustainability has been sought in the production chain, 

using highly productive and efficient areas and genotypes to maximize natural and agronomic resources 

(Conab, 2019; Chechi, Deuner, Forcelini, & Boller, 2020). 

Since it has been hard to expand agriculture to new areas, an increased productivity is essential for 

soybeans (Yang et al., 2020). Currently, cultural practices available for this crop have contributed a lot. Still, 

the search for an increase in genetic potential is fundamental. Thus, soybean breeding programs have aimed 

at genetic gain in seed production, in addition to tolerance to biotic and abiotic factors (Volpato et al., 2019). 

Breeders have sought to select superior soybean genotypes, which could maximize qualitative and 

quantitative agronomic traits, what has been an arduous and costly task (Almeida, Peluzio, and Afferri, 2010; 

Nogueira et al., 2012). 

Selection practices are maximized when plant breeders have consolidated parameters available to guide 

direct and indirect selection methods (Woyann et al., 2019). Among the essential parameters, heritability, 
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additive genetic variations, and expected genetic gain in progenies stand out (Torres, Teodoro, Sagrilo, 

Ceccon, & Correa, 2015; Troyjack et al., 2017). However, these parameters can often be inflated by variations 

or fluctuations and unconsolidated effects. This is due to a residual variation imposed by lack of control of 

disturbing and potentially disturbing characteristics in the experimental scenario, as well as low magnitude 

of plants measured in experimental units that do not capitalize on minimal effects to support estimation of 

variance components and genetic parameters (Carvalho et al., 2017). In this context, the mathematical nature 

of estimation and prediction methods may be related to the success and reliability of biometric inferences 

(Szareski et al., 2015). 

Among the models and methods available for estimates and predictions, those pertinent to frequentist 

statistics and based on Bayesian inference are evident (Resende, Silva, & Azevedo, 2014). In plant breeding, 

theoretical and practical aspects of selection are directed to frequentist methods, using linear models, among 

which the generalized linear models have fixed and mixed effects (Liu et al., 2019). For both biometric natures, 

estimates present disturbances due to residual variability expressed between experimental units composed 

by treatments known as pure lines, controls, or parents.  

Given the prevalence of determinant events for residual variance inflation, difficulties in controlling noise 

involved in statistical models, and failure to meet analysis assumptions, new alternatives that minimize such 

effects and increase selection efficiency in breeding programs should be searched, as models will present 

greater explicability regardless of its mathematical or biometric nature. Due to the lack of information about 

this new method for obtaining genetic parameters for soybeans, this study aimed to apply a biometric 

alternative to minimize residual variance and maximize selection parameters obtained by parent-progeny 

regression, interim controls, and mixed linear models intrinsic to breeding. 

Material and methods 

An experiment was developed in the 2019/2020 crop season in Campos Borges, Rio Grande do Sul State, 

Brazil. It is located at the coordinates 28°52'31'' S latitude and 53°00'55'' W longitude. The area is 

characterized as a humid subtropical climate, Cfa type according to Köppen’s classification. The local soil is 

classified as dark red Latosol (Oxisol). The experimental design used was augmented blocks, testing 292 F3 

segregating families (common treatments) and seven cultivars (Don Mario 7.0i RR, Roos Camino RR, BMX 

Potência RR, NS 6700 IPRO, DM5958 RSF IPRO, TMG 7166 RR, and Don Mario 5.8i RR), which corresponded 

to regular treatments arranged in four repetitions. The F3 segregating families (75% endogamous level with 

25% heterozygosity) were obtained through crossings carried out in 2014/2015, F1 generation (2015/2016), F2 

generation (2016/2017). Table 1 details the genealogical information. 

Table 1. Description of the genealogy for soybean F3 segregating families. 

Maternal genitor Paternal genitor F1 (2017/2018) 
F2 Population 

(2018/2019) 

F3 Family 

(2019/2020) 

G1 DM7.0 BMX Magna RR G2 Fundacep 66 RR 1 IRC 001 15 

G3 DM 5.8 BMX Apolo RR G2 Fundacep 66 RR 2 IRC 002 4 

G1 DM7.0 BMX Magna RR G4 Monasca RR 3 IRC 003 12 

G5 FPS URANO RR G6 Mar M4 4 IRC 004 1 

G7 ROOS Camino RR G8 FPS Paranapanema RR 5 IRC 005 6 

G3 DM 5.8 BMX Apolo RR G6 Mar M4 6 IRC 006 3 

G3 DM 5.8 BMX Apolo RR G6 Mar M4 7 IRC 007 2 

G3 DM 5.8 BMX Apolo RR G5 FPS Urano RR 8 IRC 008 7 

G3 DM 5.8 BMX Apolo RR G8 FPS Paranapanema RR 9 IRC 010 8 

G10 BMX Potência RR G6 Mar M4 10 IRC 011 15 

G11 FPS Netuno RR G3 DM 5.8 BMX Apolo RR 11 IRC 012 18 

G1 DM 7.0 BMX Magna RR G3 DM 5.8 BMX Apolo RR 12 IRC 013 16 

G7 ROOS Camino RR G5 FPS Urano RR 13 IRC 016 3 

G12 FPS Júpiter RR G4 Monasca RR 14 IRC 017 10 

G2 Fundacep 66 RR G13 NK 7059 Vmax RR 15 IRC 019 6 

G16 TMG 7062 RR G17 Rota 54 IPRO RR 16 IRC 021 4 

G17 6700 RR G18 6700 RR 17 IRC 022 6 

G20 Elite Line 1 G20 NS 5909 RR 18 IRC 024 8 

G21 Elite Line 2 G21 NS 5909 RR 19 IRC 025 6 

G22 Elite Line 3 G22 6700 RR 20 IRC 026 5 

G6 Elite Line 4 G6 NS 5909 RR 21 IRC 027 1 
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Maternal genitor Paternal genitor F1 (2017/2018) 
F2 Population 

(2018/2019) 

F3 Family 

(2019/2020) 

G23 Elite Line 5 G23 TMG 7166 RR 22 IRC 028 8 

G24 Elite Line 6 G24 NS 5958 RR 23 IRC 029 6 

G25 BMX Força RR G6 Mar M4 24 IRC 030 14 

G26 NS 5958 RR G21 Mar M2 25 IRC 031 4 

G1 DM 7.0 BMX Magna RR G27 NS 5909 RR 26 IRC 032 22 

G6 Mar M4 G27 NS 5909 RR 27 IRC 033 1 

G26 NS 5958 RR G17 6700 RR 28 IRC 034 6 

G25 BMX Força RR G6 Mar M4 29 IRC 035 19 

G3 DM 5.8 BMX Apolo RR G28 TMG 7166 RR 30 IRC 036 14 

G27 NS 5909 RR G6 Mar M4 31 IRC 037 11 

G17 6700 RR G22 Mar M3 32 IRC 038 15 

G28 TMG 7166 RR G27 NS 5909 RR 33 IRC 039 4 

G29 BMX Turbo RR G28 TMG 7166 RR 34 IRC 040 12 

Number of genotypes 292 

 

Experimental units comprised two 5-m-long sowing lines spaced 0.50 m apart. Sowing was performed manually 

in a no-till system in the second half of November 2019, at a population density of 14 seeds per linear meter. A 

basal dressing was performed with 250 kg ha-1 of the N-P-K in formulation 10-20-20. Preventive control measures 

against weeds, insect pests, and diseases were recommended to minimize biotic effects on results. Traits of 

agronomic interest were measured in 10 plants selected at random, within the useful area of each experimental 

unit. The traits measured comprised: 

First pod insertion height (FPI, cm): which was the distance between the ground level and the spot where the 

first pod formed was inserted. 

Plant height (PH, cm): the distance between the ground level and the spot of the last pod formed at the apex of 

the plant. 

Number of pods on the main stem (NPMS, units): the counting of viable pods located on the main stem of the 

plant. 

Number of pods on the branches (NPB, units): the counting of viable pods located on the side branches of the 

plants. 

Number of branches (NB, units): counting of branches longer than ten centimeters. 

Number of pods with one seed (NP1, units): counting of pods containing only one formed seed. 

Number of pods with two seeds (NP2, units): counting of pods containing two formed seeds. 

Number of pods with three seeds (NP3, units): counting of pods containing three formed seeds. 

Number of pods with four seeds (NP4, units): counting of pods containing four formed seeds. 

Seed mass per plant (MSP, grams): weighing viable seeds, husked and individually cleaned, at 13% humidity. 

The obtained data were subjected to the assumptions of the statistical model, which identified the normality 

and homogeneity of the residual variances and model additivity. Subsequently, two analysis scenarios were 

created. In the first, all information obtained in the experiment was preserved, both from segregating families and 

pure-line cultivars (controls), this scenario was called original (scenario I - Figure 1a). In the other scenario, 

progeny data were preserved, but the residual variability of controls was restricted using as criterion observations 

contained between the interval of the first sample standard deviation (-1s to + 1s). Thereby, an acceptable residue 

limit could be obtained (scenario II - Figure 1b). 

 
Figure 1. Illustration of scenarios (original and adjusted), standard deviations (- s and +s) 
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Both scenarios were submitted to three consolidated frequentist methods (approaches) to obtain 

components of variance and genetic parameters. The approach I is referring to genitor-progeny regression 

method, which is based on fixed effects (Lynch & Walsh, 1998) and wherein standardization through Z-score 

notations is crucial, as follows: 

𝑍 =
𝑋𝑖 − 𝜇

𝜃
 

where in: Xi corresponds to the value observed in the experimental unit, µ corresponds to the sample mean 

of trait of interest, and θ is sample standard deviation (Cruz, Carneiro, & Regazzi, 2014). Subsequently, a 

statistical model was used, as follows: 

𝑌𝑖 = 𝛽0 + 𝛽1 + 𝜀𝑖  

where in: Yi is based on the dependent character from the effects of progenies, 𝛽0 shows the coefficient 

responsible for the origin of the information (intercept), 𝛽1 represents the angular coefficient obtained 

between the explanatory information of the controls positioned on the x and x abscissa axis, 𝜀𝑖   reveals the 

residual effects between the adjustments of matrix X and Y. 

The approach II is based on the use of the sum of squares of augmented block design with interim controls, 

using the model as follows: 

𝛾𝑖𝑘𝑗 = 𝜇 + 𝑇𝑘′ + 𝑇(𝑗)𝑘 + 𝐵𝑗 + 𝑒𝑘𝑗  

where in: 𝛾𝑘𝑗  is obtained in the i-th experimental unit located in the j-th block that housed the k-th regular 

treatment (𝑘’) or common treatment (𝑘), μ represents the overall mean of the experiment for the trait of 

interest, 𝑇𝑘’ shows the fixed effect of regular treatments (𝑘’= T1, T2, T3, ... T7), 𝑇(𝑗)𝑘 is the random effect of 

common treatments (𝑘 = P1, P2, ... P292, r + c), r is the number of regular treatments considered, and c is the 

number of common treatments, 𝑇(𝑗)𝑘 ~ is the standardized normal distribution with mean centered at zero 

and variance equal to 𝑇(𝑗)𝑘 (NID ~ 0, σ2),  𝐵𝑗 represents the block effect (j = 1, 2, 3, 4), and 𝑒𝑘𝑗  represents the 

residual random effect.   

The approach III was based on the method of mixed linear models wherein random genetic effects were 

considered, with genetic parameters weighted by a genealogical matrix (additive genetic variance between ½ 

full siblings of the genetic variance), as follows: 

𝑦 = 𝑋𝛽 + 𝑍𝑣 + 𝑒 

where in: y corresponds to the vector of observations at the level of the experimental unit, β represents the 

parametric vector of the fixed effects, with incidence matrix 𝑋′, 𝑣 shows the parametric vector of the random 

effects, with incidence matrix Z, and e is the vector responsible for capitalizing the residual variance (Resende 

et al., 2014). The estimates were based on the general equation of the mixed models, as follows: 

[
𝑋′𝑅−1𝑋 𝑋′𝑅−1𝑍

𝑍′𝑅−1𝑋 𝑍′𝑅−1
𝑍 + 𝐺−1

] [
𝛽°
𝑣
] = [

𝑋′𝑅−1𝑦

𝑍′𝑅−1𝑦
] 

where in: y corresponds to the vector of observations at the experimental unit level, β represents the 

parametric vector of the fixed effects, with incidence matrix 𝑋′, 𝑣 shows the parametric vector of the random 

effects, with incidence matrix Z, R determines the variance and covariance of the errors, and G presents the 

matrix of variance and covariance of the random effects.  

By using these approaches, we could estimate the standard deviation of samples (s), the upper limit (ul) 

and lower limit (ll) of classes, the percentage of information within each class (%), arithmetic mean (𝑥), 

sample variance (s²), sample covariance (COV), inter-class correlation (r), phenotypic variance (s²P), 

environmental variance (s²E), additive genetic variance (s²AG), and narrow-sense heritability (h²). 

Results and discussion 

Genetic basis used for inferences is founded by genetic recombination of 29 parents. These were crossed 

to obtain 34 breeding F2 populations, which, in turn, allowed selection of 292 F3 soybean progenies. Just as 

in pure lines (controls), these progenies were assessed according to the following traits: first pod insertion 

height (FPI), plant height (PH), number of pods on the main stem (NPMS), number of pods on the branches 
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(NPB), number of branches (NB), number of pods with one seed (NP1), number of pods with two seeds (NP2), 

number of pods with three seeds (NP3), number of pods with four seeds (NP4), and seed weight per plant 

(SMP). All these attributes demonstrate variability at 5% probability by the F-test (approaches I and II) and 

significance by the likelihood ratio test (LRT) at 5% probability by the x² test (approach III) for both scenarios. 

This provides conditions for both scenarios and approaches to estimate fundamental and reliable components 

of variance and genetic parameters, with a large capacity of repeating trends in subsequent studies. Martins, 

Unêda-Trevisoli, Môro, and Vieira (2016) defined that high genetic variability in soybeans is essential to attest 

biometric models applied in breeding programs. The inferences made in this study are widely used in the core 

of statistics, agricultural experimentation, genetic improvement, and biometrics, as they brought together 

wide genetic variability built by genetic complementarity of elite parents. In this way, trends, estimates, and 

forecasts can be directed to other studies and scenarios. Several are the difficulties during selection and 

management of segregating progenies, which hinders extraction of genetic parameters from tiny and 

unbalanced data, or due to their complex traits. In this sense, it is essential to develop effective methods to 

maximize genetic and selection gains, minimizing financial and labor costs and reproducing reliable 

information and parameters (Rezende, Cruz, Borém, & Rosado, 2021; Carvalho et al., 2020; Matta, Tomé, 

Salgado, Cruz, & Silva, 2015). 

Approach I - genitor - progeny regression 

When using approach I in parent-progeny regression, in the scenario I (Table 2), which includes original 

information, the controls (pure lines) expressed averages greater than progenies for all measured traits but 

first pod insertion height. This was expected in segregating F3 soybean generation since no direct selection 

was made for quantitative agronomic traits. It should be defined that compliance with an agronomic soybean 

ideotype will be served by maximizing the magnitude of pods, seeds, and mass of seeds per plant. Such a result 

would occur after several selection cycles and consolidated additive genetic gains in a progeny. The 

identification of phenotypic and genotypic attributes able to maximize soybean yield has contributed to 

genetic gains in breeding programs, both for statistical and biometric inference and for genomics (Jarquín et 

al., 2014). Based on the sample variance of superior progenies, the controls showed in scenario I the possibility 

of selection using characters related to plant architecture, such as height and height of insertion of the first 

pod, in addition to the number of lateral branches. One valid alternative to prove obtaining and selection of 

genetic variability that meets the agronomic ideotype is understanding covariation and genetic correlation 

between classes of individuals. These, when significant, indicate that attributes in progenies are similar to 

their parents and/ or cultivars assigned as control. Among these attributes are plant height and first pod 

insertion height, sizes of pods with three and four seeds, which express a similar sense in selection. The 

phenotypic inferences obtained in soybean breeding programs and the achievement of these parameters 

obtained by this linear regression model fit into selection assumptions that meet the soybean agronomic 

ideotype (Hanyu, Ferreira, Cecon, & Matsuo, 2020). 

Scenario II revealed the maintenance above 64% of the original observations (scenario I) for all the 

traits measured. This was due to the smaller amplitude between the lower and upper limits defined by 

the residual variability criterion. In these conditions, the mean of the progenies was not altered and 

maintained the original trend. However, all traits revealed a reduction in the intrinsic mean of the 

controls, proving the hypothesis that the residual variability may inflate parameters extracted directly 

from the original information. The control variance was minimized by more than 60% if compared to the 

scenario I for all the traits measured. This trend maximized covariation and demonstrated an inversion 

of directions in inter-class correlations for plant height and number of pods, regardless of the number of 

seeds contained therein. Stochastic statistical models seek to quantify, control, and extract residual 

variance from the biological phenomenon under study. The focus is to allow maximization of parameters 

used as a basis for explicability and inferences about the dependent variable. In one parent regression 

models, the effects involved are based on the best fit to linear model able to maximize genetic covariation 

between classes (maternal and paternal parents, means of parents x those of  sibling or half-sibling 

progenies), thus controlling further residual variations of observations made in each experimental unit 

of parents or controls. This allows inclination (b) to be maximized and express true genetic deviation and 

heritability (Falconer & Mackay, 1996). 



Page 6 of 10 Carvalho et al. 

Acta Scientiarum. Agronomy, v. 45, e56156, 2023 

Table 2. Estimation of the variance components and genetic parameters obtained by linear regression for genitors and progenies. 

Approach I: linear regression for genitors and progenies 

Trait 

Scenario I  Scenario II 

Mean Variance Covariance Correlation  Mean Variance Covariance Correlation 

Control Progeny Control Progeny    Control Progeny Control Progeny   

FPI1 11.19 12.92 11.93 53.76 0.41 0.02  10.78 12.92 4.91 53.76 1.22 0.08 

PH 74.78 69.27 79.83 755.39 9.38 0.04  75.08 69.27 18.68 755.39 -9.61 -0.08 

NPMS 37.35 28.39 572.83 197.77 -14.90 -0.04  36.36 28.39 165.84 197.77 -17.24 -0.10 

NPB 70.95 30.69 1442.21 1054.21 -17.21 -0.01  66.37 30.69 459.19 1054.21 -4.94 -0.01 

NB 6.04 3.54 4.93 8.77 -0.01 0.00  5.93 3.54 1.56 8.77 -0.47 -0.13 

NP1 18.02 9.04 73.60 58.66 -0.34 -0.01  17.72 9.04 21.70 58.66 -3.97 -0.11 

NP2 45.24 27.55 567.45 434.79 0.72 0.00  43.48 27.55 189.89 434.79 -2.16 -0.01 

NP3 43.21 21.55 522.38 336.43 3.64 0.01  43.74 21.55 161.65 336.43 -31.93 -0.14 

NP4 0.30 0.05 0.05 0.09 0.00 0.02  0.26 0.05 0.02 0.09 0.00 -0.02 

SMP 32.36 18.00 244.74 178.69 -10.00 -0.05  32.11 18.00 68.24 178.69 -18.24 -0.17 

Criterion FPI PH NPMS LPB  NB NP1 NP2 NP3 NP4 SMP 

ANOVA (5% F) * * * *  * * * * * * 

Overall mean 11.41 75.18 37.74 70.78  5.95 17.90 45.64 42.80 0.31 32.92 

Standard deviation 3.87 9.17 23.26 38.60  2.28 8.92 24.67 23.30 0.23 16.37 

Lower limit (-1DP) 7.54 66.02 14.47 32.19  3.66 8.98 20.97 19.50 0.08 16.55 

Upper limit (+1DP) 15.28 84.35 61.00 109.38  8.23 26.82 70.31 66.11 0.54 49.29 

Observations maintained (%) 75.10 69.40 64.00 65.50  67.60 66.80 65.50 64.20 68.70 69.70 
1first pod insertion height (FPI); plant height (PH); number of pods on the main stem (NPMS); number of pods on the branches (NPB); number of branches 

(NB); number of pods with one seed (NP1); number of pods with two seeds (NP2); number of pods with three seeds (NP3); number of pods with four seeds 

(NP4) and seed mass per plant (SMP). 

Approach II - augmented blocks with interim controls 

In this approach, total variance was partitioned into variance components, which are attributed to a 

statistical model derived from augmented block design. These components are intended to improve the 

explicability of genetic inferences. These were divided into phenotypic, genetic, and environmental variations 

(Table 3). 

Table 3. Estimation of the variance components and genetic parameters obtained by the model based on analysis of variance with 

augmented blocks and interim controls. 

Approach II: model based on analysis of variance with augmented blocks and interim controls 

Trait 
Scenario I  Scenario II 

Phenotypic Environmental Genetic  Phenotypic Environmental Genetic 

FPI1 22.739 11.089 11.650  22.739 2.198 20.541 

PH 268.402 49.186 219.216  268.402 14.189 254.214 

NPMS 57.487 467.565 -410.078  57.487 151.491 -94.004 

NPB 365.865 514.472 -148.607  365.865 145.404 220.461 

NB 2.993 1.578 1.415  2.993 0.495 2.499 

NP1 23.977 38.243 -14.266  23.977 15.693 8.283 

NP2 171.866 355.895 -184.029  171.866 94.060 77.806 

NP3 105.625 71.122 34.504  105.625 49.554 56.071 

NP4 0.022 0.026 -0.004  0.022 0.008 0.014 

SMP 60.931 71.070 -10.139  60.941 25.135 35.805 

Criterion FPI PH NPMS  LPB NB NP1 NP2 NP3 NP4 SMP 

ANOVA (5% F) * * *  * * * * * * * 

Overall mean 11.05 74.07 40.01  79.93 6.36 19.22 46.71 37.91 0.27 31.33 

Standard deviation 3.68 7.22 24.05  29.06 1.58 7.76 20.57 13.27 0.23 11.74 

Lower limit (-1DP) 7.36 66.85 15.95  50.87 4.77 11.46 26.14 24.63 0.04 19.59 

Upper limit (+1DP) 14.73 81.28 64.06  108.99 7.94 26.98 67.28 51.18 0.5 43.08 

Observations maintained (%) 80 70 62.5  67.5 67.5 70 71.25 68.75 76.25 77.5 
1first pod insertion height (FPI); plant height (PH); number of pods on the main stem (NPMS); number of pods on the branches (NPB); number of branches 

(NB); number of pods with one seed (NP1); number of pods with two seeds (NP2); number of pods with three seeds (NP3); number of pods with four seeds 

(NP4) and seed mass per plant (SMP). 
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Under these conditions, a direct comparison was directed to estimates obtained in the scenarios. We 

verified that the elaboration of scenario II resulted in the maintenance of more than 62% of original 

information. Phenotypic variance changes were minimal before the elaboration of scenarios. However, high 

distortions were obtained through environmental and genetic components. This is because their nature of 

estimation requires weightings and partitions previously established through the kinship matrix, as well as 

homozygosity coefficient. The component responsible for harboring environmental variance capitalized on a 

20% reduction in variability, due to the use of scenario II, will certainly provide gains in genetic estimates for 

some traits. The use of augmented block design allows partitioning of variances assertively since they meet 

the additivity assumptions of statistical models, residue independence, as well as residual variance 

homogeneity and normality. Altogether, it allows including repeated and randomized parents and controls. 

Moreover, when segregating progenies are intercalated, major phenotypic and genetic parameters can be 

maximized, fitting large tests in smaller areas, and obtaining the best accuracy of biometric estimates and 

predictions (Peternelli, Souza, Barbosa, & Carvalho, 2009; Coimbra et al., 2006). 

Basic assumptions are expressed in components of variance, and negative estimates were not considered 

since they are expressions of variance inflation and thus should be discarded. In this sense, new studies should 

be directed so that number of plants per experimental unit is increased at the family level. This can be justified 

by number of pods in the main stem, which, regardless of the improvement in the quality of the experimental 

data, did not reflect in reliable estimates. In this context, biometric gains from the new approach are listed, 

wherein genetic effects were maximized in scenario II. This is because, by restricting residual variance of pure 

control lines, satisfactory genetic estimates to the proposed genetic-statistical model were obtained. This is 

because the traits number of pods in branches; number of pods with one, two, and four seeds; and seed mass 

per plant are of extreme importance for a soybean breeding program aiming at genetic gains in productivity. 

Approach III - mixed linear models with random genetic effects 

When considering random genetic effects for the 292 F3 segregating families, scenario-independent 

phenotypic variance was increased when compared to the approaches I and II, which maintained fixed 

genotypic effects (Table 4).  

Table 4. Estimation of the variance components and genetic parameters obtained by restricted maximum likelihood (REML). 

Approach III: mixed models with random genetic effects 

Trait 
Scenario I  Scenario II 

Phenotypic Environmental Genetic  Phenotypic Environmental Genetic 

FPI1 48.541 2.238 16.068  47.477 1.406 16.365 

PH 583.476 4.183 155.917  581.217 1.608 158.176 

NPMS 187.471 6.850 17.176  162.992 0.923 21.510 

NPB 1062.327 20.676 203.277  1020.302 17.852 212.374 

NB 7.749 0.148 1.094  7.639 0.136 1.124 

NP1 58.812 1.838 14.706  55.839 0.591 15.632 

NP2 416.725 17.225 83.289  396.618 15.394 85.389 

NP3 322.437 2.104 54.271  315.080 0.746 56.831 

NP4 0.440 0.007 0.248  0.425 0.000 0.281 

SMP 173.898 8.711 29.071  165.539 3.917 30.810 

Criterion FPI PH NPMS  LPB NB NP1 NP2 NP3 NP4 SMP 

Deviance/LRT (5% X²) 273,2* 142.89* 71.81*  192.52* 97.22* 245.47* 182.6* 102.86* 17.11* 167.12* 

Overall mean 11.05 74.07 40.01  79.93 6.36 19.22 46.71 37.91 0.27 31.33 

Standard deviation 3.68 7.22 24.05  29.06 1.58 7.76 20.57 13.27 0.23 11.74 

Lower limit (-1DP) 7.36 66.85 15.95  50.87 4.77 11.46 26.14 24.63 0.04 19.59 

Upper limit (+1DP) 14.73 81.28 64.06  108.99 7.94 26.98 67.28 51.18 0.5 43.08 

Observations maintained (%) 80 70 62.5  67.5 67.5 70 71.25 68.75 76.25 77.5 
1first pod insertion height (FPI); plant height (PH); number of pods on the main stem (NPMS); number of pods on the branches (NPB); number of branches 

(NB); number of pods with one seed (NP1); number of pods with two seeds (NP2); number of pods with three seeds (NP3); number of pods with four seeds 

(NP4) and seed mass per plant (SMP). 

In this approach, we obtained parameter estimates through maximum restricted likelihood, which 

presents greater flexibility in terms of residual variance, mainly for normality and homogeneity (Volpato et 

al., 2018). In this context, the comparison among scenarios showed that the scenario with residual variance 

restriction forced a gradual reduction in phenotypic component of estimates. This fact was not evident in 

approach II, which is based on sum of squares. 
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In approach I, variance in the environmental component was extremely minimized, especially in scenario 

II. This did not present negative estimates for the genetic component given the nature of mathematical 

estimates. On the other hand, when reconciling mixed model method, residual variability restriction in 

controls showed an abrupt maximization of genetic components, regardless of the target trait. This is seen as 

a great gain for genetic improvement, especially in early generations where the size of plants does not always 

reach an optimum number to minimize waste and maximize parameters (Del Conte, Carneiro, Resende, Silva, 

& Peternelli, 2020). 

Estimation of narrow sense heritabilities 

Regardless of crop, segregating generation, and selection place, trait heritability is by far the most 

important and indispensable parameter in breeding programs. This parameter defines the ability of an 

individual or progeny to determine phenotypic manifestation of a trait through genetic effects (Falconer 

& Mackay, 1996). Among the types of heritability, the narrow-sense is vital for breeders to succeed in 

breeding programs. The magnitude of this parameter is estimated as the ratio between additive genetic 

variance and total phenotypic variance. Here, we sought to minimize distortions intrinsic to total 

phenotypic variance and to maximize additive genetic variance, hence maximizing the extracted 

parameter. Moreover, this ratio ranges between 0 and 1 and does not assume negative behavior (Mather 

& Jinks, 1984). Therefore, many traits are difficult to estimate because breeders are often unable to cover 

adversities in selection fields, which can distort general variation, and hence phenotypic variation (Lynch 

& Walsh, 1998). 

Based on these precepts, approaches based on parent-progeny regression are robust and not quite plastic 

in their experimental nature. Therefore, regardless of the scenario, heritability estimates were not proven in 

strict sense (Table 5). For approach II, where assumptions of augmented blocks are applied with provisional 

controls, it is evident that scenario I has no basis for number of pods on the main stem; number of pods on 

branches; number of pods with one, two, and four seeds; and seed mass per plant. In this approach, the 

restriction of residual variability in controls is justified since 90% of the measured variables had reliable 

estimates. This demonstrates the specificity of restricting variability in augmented designs with interim 

controls with similar traits. 

Table 5. Narrow-sense heritability for soybean attributes of agronomic interest. 

  Approach I  Approach II  Approach III 

Trait  C.I  C.II  C.I  C.II  C.I  C.II 

FPI1  0.034  0.246  0.510  0.900  0.330  0.340 

PH  0.116  -0.510  0.810  0.980  0.260  0.270 

NPMS  -0.026  -0.103  -7.130  -1.630  0.090  0.130 

NPB  -0.012  -0.011  -0.400  0.600  0.190  0.200 

NB  -0.002  -0.297  0.470  0.830  0.140  0.140 

NP1  -0.005  -0.181  -0.590  0.340  0.250  0.270 

NP2  0.001  -0.011  -1.070  0.850  0.190  0.210 

NP3  0.007  -0.196  0.320  0.530  0.160  0.180 

NP4  0.023  -0.056  -0.200  0.620  0.560  0.650 

SMP  -0.040  -0.265  -0.160  0.580  0.160  0.180 
1first pod insertion height (FPI); plant height (PH); number of pods on the main stem (NPMS); number of pods on the branches (NPB); number of branches 

(NB); number of pods with one seed (NP1); number of pods with two seeds (NP2); number of pods with three seeds (NP3); number of pods with four seeds 

(NP4) and seed mass per plant (SMP). 

Regarding approach III, all estimates were reliable regardless of the experimental scenario used. It arises from 

the nature of the component estimation since the maximum likelihood assumes that the model is true and that 

the initial and final parameters are reliable. When comparing the use of the new residual variance restriction 

approach in pure lines, controls, or parents, all parameters assessed in this study showed an increase in the genetic 

component, and hence narrow-sense heritability. This fact demonstrates its applicability in plant breeding to 

maximize genetic gains during segregating generations and selection strategies. 

http://lattes.cnpq.br/3475038418010954
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Conclusion 

Restricting residual variation in parents or controls can maximize genetic parameters and gains in soybean 

breeding. Relevant gains in heritability estimates are obtained in the augmented blocks with interim control 

approach. Mixed linear models with random genetic effects can be considered a great tool to obtain genetic 

parameters in experiments with a high magnitude of common and regular treatments. 

References 

Almeida, R. D., Peluzio, J. M., & Afferri, F. S. (2010). Correlações fenotípicas, genotípicas e ambientais em 

soja cultivada sob condições várzea irrigada, sul do Tocantins. Bioscience Journal, 26(1), 95-99. 

Carvalho, I. R., Nardino, M., Demari, G., Pelegrin, A. J., Ferrari, M., Szareski, V. J., ... Maia, L. (2017). 

Components of variance and inter-relation of important traits for maize (Zea mays) breeding. Australian 

Journal of Crop Science, 11(8), 982-988. DOI: https://doi.org/10.21475 / ajcs.17.11.08.pne474 

Carvalho, I. R., Silva, J. A. G., Ferreira, L. L., Szareski, V. J., Demari, G., Facchinello, P. H. K., ... Souza, V. Q. (2020). 

Relative contribution of expected sum of squares values for soybean genotypes × growing environments 

interaction. Australian Journal of Crop Science, 14(3), 382-390. DOI: https://doi.org/10.21475/ajcs.20.14.03.p1515 

Chechi, A., Deuner, C. C., Forcelini, C. A., & Boller, W. (2020). Asian soybean rust control in response to 

rainfall simulation after fungicide application. Acta Scientiarum. Agronomy, 43(1), 1-9. 

DOI: https://doi.org/10.4025/actasciagron.v43i1.45689 

Cruz, C. D., Carneiro, P. C. S., & Regazzi, A. J. (2014). Modelos biométricos aplicados ao melhoramento 

genético (5. ed.). Viçosa, MG: Editora UFV. 

Companhia Nacional de Abastecimento [CONAB]. (2019). Acompanhamento da safra brasileira de grãos: 9º 

levantamento grãos safra 2016/17. Retrieved on july 10, 2020 from 

http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_06_08_09_02_48_boletim_graos_junho_2017.pdf 

Coimbra, J. L. M., Souza, V. Q. D., Kopp, M. M., Silva, J. G. C. D., Oliveira, A. C. D., & Carvalho, F. I. F. D. 

(2006). Esperanças matemáticas dos quadrados médios: uma análise essencial. Ciência Rural, 36(6), 1730-

1738. DOI: http://dx.doi.org/10.1590/S0103-84782006000600010 

Del Conte, M. V., Carneiro, P. C. S., Resende, M. D., Silva, F. L., & Peternelli, L. A. (2020). Overcoming 

collinearity in path analysis of soybean [Glycine max (L.) Merr.] grain oil content. PLoS ONE, 15(5), 1-15. 

DOI: https://doi.org/10.1371/journal.pone.0233290 

Hanyu, J., Ferreira, S. C., Cecon, P. R., & Matsuo, E. (2020). Genetic parameters estimate and characters 

analysis in phenotypic phase of soybean during two evaluation periods. Agronomy Science and 

Biotechnology, 6, 1-12. DOI: https://doi.org/10.33158 / ASB.r104.v6.2020 

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. (4. ed.). London, UK: Longman. 

Jarquín, D., Kocak, K., & Posadas, L. Hima, K., Jedlicka, J., Graef, G., & Lorenz, A. (2014). Genotyping by 

sequencing for genomic prediction in a soybean breeding population. BMC Genomics,15(740), 1-10. 

DOI: https://doi.org/10.1186/1471-2164-15-740. 

Liu, S., Xue, H., Zhang, K., Wang, P., Su, D., Li, W., & Li, X. (2019). Mapping QTL affecting the vertical 

distribution and seed set of soybean [Glycine max (L.) Merr.] pods. The Crop Journal, 7(5), 694-706. 

DOI: https://doi.org/10.1016/j.cj.2019.04.004 

Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. (1. ed.). Sunderland, UK: Sinauer. 

Martins, C. C., Unêda-Trevisoli, S. H., Môro, G. V., & Vieira, R. D. (2016). Metodologia para seleção de linhagens 

de soja visando germinação, vigor e emergência em campo. Revista Ciência Agronômica, 47(3), 455-461. 

Mather, K., & Jinks, J. L. (1984). Introdução à genética biométrica. (2. ed.). Wantage, UK: Sociedade Brasileira 

de Genética. 

Matta, L. B., Tomé, L. G. O., Salgado, C. C., Cruz, C. D., & Silva, L. F. (2015). Hierarchical genetic clusters for 

phenotypic analysis. Acta Scientiarum. Agronomy, 37(4), 447-456. 

DOI: https://doi.org/10.4025/actasciagron.v37i4.19746  

Nogueira, A. P. O., Sediyama, T., Sousa, L. B., Hamawaki, O. T., Cruz, C. D., & Pereira, D. G. (2012). Análise 

de trilha e correlações entre caracteres em soja cultivada em duas épocas de semeadura. Bioscience 

Journal, 28(6), 877-888. 

http://lattes.cnpq.br/7945266734797620
https://www.researchgate.net/journal/Australian-Journal-of-Crop-Science-1835-2693
https://www.researchgate.net/journal/Australian-Journal-of-Crop-Science-1835-2693
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.21475%2Fajcs.17.11.08.pne474
http://lattes.cnpq.br/7945266734797620
http://lattes.cnpq.br/6515305945460230
https://www.researchgate.net/journal/Australian-Journal-of-Crop-Science-1835-2693
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.21475%2Fajcs.20.14.03.p1515
https://doi.org/10.4025/actasciagron.v43i1.45689
http://lattes.cnpq.br/3475038418010954
https://doi.org/10.1371/journal.pone.0233290
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.33158%2FASB.r104.v6.2020
https://doi.org/10.1186/1471-2164-15-740
https://doi.org/10.1016/j.cj.2019.04.004
http://lattes.cnpq.br/3824742152089733
http://lattes.cnpq.br/2608560883389574
https://doi.org/10.4025/actasciagron.v37i4.19746


Page 10 of 10 Carvalho et al. 

Acta Scientiarum. Agronomy, v. 45, e56156, 2023 

Peternelli, L. A., Souza, E. F. M. D., Barbosa, M. H. P., & Carvalho, M. P. D. (2009). Delineamentos 

aumentados no melhoramento de plantas em condições de restrições de recursos. Ciência Rural, 39(9), 

2425-2430. DOI: https://doi.org/10.1590/S0103-84782009005000209 

Resende, M. D. V., Silva, F. F., & Azevedo, C. F. (2014). Estatística matemática, biométrica e computacional: 

modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão, 

aleatória, seleção genômica, QTL, GWAS, estatística espacial e temporal, competição, sobrevivência. (1. ed.). 

Visconde do Rio Branco, MG: Suprema. 

Rezende, W. S., Cruz, C. D., Borém, A., & Rosado, R. D. S. (2021). Half a century of studying adaptability and 

stability in maize and soybean in Brazil. Scientia Agricola, 78(3), 1-9. DOI: https://doi.org/10.1590/1678-

992x-2019-0197 

Szareski, V. J., Souza, V. Q., Carvalho, I. R., Nardino, M., Follmann, D. N., Demari, G. H., ... Olivoto, T. 

(2015). Growing environment and its effects on morphological characters and dietetic soy. Revista 

Brasileira de Agropecuária Sustentável, 5(2), 79-88. DOI: https://doi.org/10.21206/rbas.v5i2.247 

Torres, F. E., Teodoro, P. E., Sagrilo, E., Ceccon, G., & Correa, A. M. (2015). Interação genótipo x ambiente 

em genótipos de feijão-caupi semiprostrado via modelos mistos. Bragantia, 74(3), 255-260. 

DOI: https://doi.org/10.1590/1678-4499.0099 

Troyjack, C., Dubal, Í. T. P., Koch, F., Szareski, V. J., Pimentel, J. R., Carvalho, I. R., ... Pedó, T. (2017). 

Attributes of growth, physiological quality and isoenzymatic expression of common bean seeds produced 

under the effect of gibberellic acid. Australian Journal of Crop Science, 11(9), 1116-1122. 

DOI: https://doi.org/10.21475/ajcs.17.11.09.pne531 

Volpato, L., Alves, R. S., Teodoro, P. E., Resende, M. D. V., Nascimento, M., Nascimento, A. C. C., ... Borém, 

A. (2019). Multi-trait multi-environment models in the genetic selection of segregating soybean 

progeny. PLoS ONE, 14(4), 1-22. DOI: https://doi.org/10.1371/journal.pone.0215315 

Volpato, L., Simiqueli, G. F., Alves, R. S., Rocha, J. R. A. S. C., Del Conte, M. V., Resende, M. D. V., ... Silva, F. 

L. (2018). Selection of inbred soybean progeny (Glycine max): an approach with population effect. Plant 

Breeding, 137(6), 865-872. DOI: https://doi.org/10.1111/pbr.12648 

Yang, M. H., Mohamed, Z. Z. J., He, J., Dom, R., Hofmann, R., Siddique, K. H. M., & Li, F. M. (2020). "Effect of 

traditional soybean breeding on water use strategy in arid and semi-arid areas. European Journal of 

Agronomy, 120. DOI: https://doi.org/10.1016/j.eja.2020.126128 

Woyann, L. G., Meira, D., Zdziarski, A. D., Metei, G., Milioli, A. S., Rosa, A. C., … Benin, G. (2019). Multiple-

trait selection of soybean for biodiesel production in Brazil. Industrial Crops and Products, 140, 111721. 

DOI: https://doi.org/10.1016/j.indcrop.2019.111721 

 

http://lattes.cnpq.br/3428847301560726
http://lattes.cnpq.br/3428847301560726
http://lattes.cnpq.br/6661948983681991
http://lattes.cnpq.br/2608560883389574
http://lattes.cnpq.br/1080223166655232
https://doi.org/10.1590/1678-992x-2019-0197
https://doi.org/10.1590/1678-992x-2019-0197
https://doi.org/10.21206/rbas.v5i2.247
https://doi.org/10.1590/1678-4499.0099
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.21475%2Fajcs.17.11.09.pne531
https://doi.org/10.1371/journal.pone.0215315
https://doi.org/10.1111/pbr.12648
https://doi.org/10.1016/j.eja.2020.126128
https://doi.org/10.1016/j.indcrop.2019.111721

