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ABSTRACT. The genotype by environment interaction is the main factor that influences the response of 

evaluated genotypes in trials of value for cultivation and use. Adaptability and stability analyses are 

fundamental to understanding the performance of genotypes in a growing region. Some of these 

methodologies incorporate previous information for recommending an extra group of genotypes 

denominated as specific ideotypes under certain cultivation conditions. Based on this strategy, the centroid 

method and its modifications have been widely used due to the simplicity of classification of the evaluated 

genotypes. However, these methodologies present problems in identifying adaptability patterns of some 

genotypes. Artificial intelligence techniques, such as fuzzy C-means, can be an alternative to reduce these 

difficulties, since they use, in addition to distance information between genotypes, memberships (measures 

quantifying how much an observation belongs to a particular class) to increase discriminatory power. 

Therefore, our aim was to propose and evaluate the phenotypic adaptability method by fuzzy clustering to 

assist cultivar recommendations. The adaptation of the fuzzy C-Means method to classify the genotypes 

was implemented in BioFuzzy software. The grain yield data of black common bean genotypes were used to 

evaluate the potential of the method. The results obtained by this method were compared with those 

obtained by the centroid method. The phenotypic adaptability method by fuzzy clustering was effective in 

identifying the adaptability patterns of common bean genotypes. Moreover, the discriminatory power was 

higher than that observed with the centroid method. 
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Introduction 

The evaluation of elite genotypes in trials of value for cultivation and use (VCU) is essential to identify 

potential genotypes for recommended to growers. To verify how these genotypes respond to environmental 

variations, these trials are performed in a set of environments that represent the growing regions of each crop. 

The genotype by environment interaction (GE interaction) is the main factor that influences the responses of 

the evaluated genotypes in VCU trials (Malosetti, Ribaut, & Van Eeuwijk, 2013; Van Eeuwijk, Bustos-Korts, & 

Malosetti, 2016). In addition to studies about the nature of GE interactions (Cruz & Castoldi, 1991), adaptability 

and stability analyses are fundamental to understanding genotype performance in a growing region.  

These analyses can be based on different statistical principles, such as regression (Eberhart & Russell, 

1966; Nascimento et al., 2011), mixed model (Resende, 2004), principal component (Yan, Hunt, Sheng, & 

Szlavnics, 2000) or factor analyses (Murakami & Cruz, 2004). For cultivar recommendation purposes, these 

analyses involve classification procedures in which the genotypes are allocated into classes of adaptability 

and stability according to their performances in the evaluated environments. Although these methods are 

widely used, some present a high number of parameters to be interpreted, which makes cultivar 

recommendations even more complex (Cruz, Regazzi, & Carneiro, 2012). 

Among the statistical approaches, there are adaptability and stability methodologies (Lin & Binns, 1988; 

Rocha, Muro-Abad, Araújo, & Cruz, 2005; Vasconcelos, Reis, Cruz, Sediyama, & Scapim, 2011; Nascimento 
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et al., 2015) that incorporate in the analysis previous information for recommending an extra group of 

genotypes denominated as specific ideotypes under certain cultivation conditions. Based on this strategy, the 

centroid method (Rocha et al., 2005) and its modifications (Vasconcelos et al., 2011; Nascimento et al., 2015) 

have been widely used by breeding programs due to the simplicity of classification of the evaluated genotypes.  

This classification is based on the Cartesian distance of the evaluated genotypes to four pre-established 

ideotypes. Despite providing practical results, these methods present difficulties in identifying the 

adaptability of genotypes with similar proximity to two or more ideotypes (Vasconcelos et al., 2011). 

Artificial intelligence techniques such as artificial neural networks (ANNs) have also been used in cultivar 

recommendations (Barroso, Nascimento, Nascimento, Silva, & Ferreira, 2013; Nascimento et al., 2013; 

Teodoro et al., 2015). These methodologies present recognized potential for solving classificatory and 

predictive problems (Silva, Tomaz, Sant’Anna, Nascimento, & Bhering, 2014; Sant’Anna et al., 2015; Glória 

et al., 2016; Carneiro et al., 2017). This approach applied to classificatory problems requires prior knowledge 

of the classifications of the set of observations in the training process (Ma, Zhang, & Wang, 2014; Singh, 

Ganapathysubramanian, Singh, & Sarkar, 2016). Therefore, for using ANNs in cultivar recommendations, 

which in statistical approaches is a classificatory problem, it is necessary to know the adaptability and/or 

stability of a dataset for training the ANN. Despite their efficiency, these techniques require high processing 

time and computational demand. 

Unsupervised artificial intelligence techniques have not yet been used to assist in recommending cultivars. 

These techniques dispense previous knowledge about the classification of observations and require the 

algorithm itself to find unknown patterns in the data (Schmidhuber, 2015). This is the principle of clustering 

techniques such as k-means (Macqueen, 1967), fuzzy C-means (FCM) (Bezdek, Ehrlich, & Full, 1984) and self-

organizing maps (Kohonen, 1982) used to organize and categorize data (Jang, Sun, & Mizutani, 2012). 

FCM can be an alternative to reduce the difficulties of identifying grouping patterns regarding phenotypic 

adaptability, since it uses, in addition to distance information between genotypes, memberships (measures 

that quantify how much an observation belongs to a particular class) to increase discriminatory power. 

Therefore, our aim was to propose and evaluate the phenotypic adaptability method by fuzzy clustering to 

assist in cultivar recommendation. 

Material and methods 

The grain yield data (kg ha-1) of black common bean genotypes described in detail by Oliveira, Carneiro, 

Carneiro, and Cruz (2006) were used to evaluate the potential of the phenotypic adaptability method by fuzzy 

clustering. Succinctly, 18 lines and the two cultivars Ouro Negro and Valente (Table 1) were evaluated in 12 

experiments conducted in a randomized block design with three replications. These experiments were carried 

out in six cities of Minas Gerais State (Viçosa, Coimbra, Ponte Nova, Leopoldina, Florestal and Capinópolis) 

in the fall-winter seasons in 2002 and in the dry and fall-winter seasons in 2003. 

Table 1. Identification of black common bean genotypes. 

Identification Genotypes Identification Genotypes 

1 VP1 11 VP11 

2 VP2 12 VP12 

3 VP3 13 VP13 

4 VP4 14 Vi 5700 

5 VP5 15 Vi 5500 

6 VP6 16 Vi 7800 

7 VP7 17 CNFP 9346 

8 VP8 18 CNFP 7988 

9 VP9 19 Ouro Negro 

10 VP10 20 Valente 

 

The data were submitted to individual analysis of variance, which was performed assuming fixed effects 

for genotypes. The grouping of means was performed according to the Scott-Knott test (Scott & Knott, 1974) 

for the experiments in which a significant effect of genotypes was verified.  

After individual analysis of variance, the maximum F test was performed to verify the homogeneity of the 

residual variances of the experiments. The residual variances of the experiments were considered 
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homogeneous when the ratio between the greatest and the smallest residual variance did not exceed the value 

7 (Banzatto & Kronka, 1995). Subsequently, a joint analysis of variance was performed in which the following 

statistical model was adopted: 

yijk = μ + Gi + B/Ejk + Ek + G𝐸ik + εijk, 

in which  yijk is the observed value of ith genotype evaluated in the kth environment and in jth block; µ is the 

general mean; Gi is the fixed effect of the ith genotype (i = 1, 2, 3..., 20); B/Ejk is the random effect of the jth 

block in the kth environment; Eik is the random effect of the kth environment; GEik is the random effect of 

genotype and environment interactions between the ith genotype and the kth environment; and εijk is the 

experimental error associated with yijk. 

Detailed studies about the phenotypic adaptability of genotypes belonging to the evaluated environments 

were realized by the fuzzy clustering method, as detailed below. 

Phenotypic adaptability by fuzzy clustering 

Phenotypic adaptability by the fuzzy clustering method is based on the FCM approach (Bezdek et al., 1984), 

which is a technique that aims to group observations into a number of predetermined clusters. The allocation 

of individuals into each cluster is performed by minimizing the following objective function: 

J(U, c1, … , cc, λ1, … , λn) = ∑ (∑ uij
m‖ci −  xj‖

2n
j ) + ∑ λj(∑ uij − 1c

i=1 )n
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where U is the membership matrix of j observations in i predefined clusters. ci is the centroid of the ith cluster, 

m ∈ [1, ∞] is the fuzzy weighting exponent and λj are the Lagrange multipliers for the n constraints. 

The objective function minimization (1) is performed by an iterative process, according to the following 

steps: i) initialize the U matrix with random values between zero and one so that the restriction ∑ uij = 1c
i=1  is 

respected; ii) obtain the centroids of clusters defined a priori; iii) obtain the objective function according to 

equation 1; and iv) initialize the iterative process and define the stop criterion, which is determined between 

two consecutive iterations, and obtain the new U matrix. 

To apply the FCM algorithm to identify phenotypic adaptability patterns, 1,000 ideotypes were added to 

the original data set of the average values of the genotypes in each environment. These ideotypes were 

partitioned into four classes (wide adaptability, adaptability to favorable environments, adaptability to 

unfavorable environments and unadapted) according Rocha et al. (2005). That is, 250 ideotypes with same 

average value were denoted for each class. The ideotypes for wide adaptability (cluster I) were defined by the 

maximum values in all environments evaluated, while unadapted ideotypes presented the minimum values 

in all environments. The ideotypes for adaptability to favorable environments presented maximum values in 

favorable environments and minimum values in unfavorable environments. The ideotypes of adaptability to 

unfavorable environments presented opposite values. 

The mean values of genotypes and ideotypes in each environment, that is, a matrix of dimensions 

M(1000+20)x12, were adopted to verify the phenotypic adaptability patterns by the fuzzy clustering method. 

The influence of the fuzzy weighting exponent value (m) on the membership of each genotype in clusters of 

phenotypic adaptability was also evaluated. The values considered for this exponent were 1.5 and 2.0. 

The classification of each genotype was performed considering the greater membership observed among 

the four clusters established a priori. After identifying in which cluster each genotype presented greater 

pertinence, this result was compared with the classification of the already known ideotypes, which allowed 

the identification of the patterns of phenotypic adaptability.  

The results obtained by FCM approach were compared with those obtained by the centroid method (Rocha 

et al., 2005). This method is based on comparisons of cartesian distances between genotypes and four 
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ideotypes, which were created from experimental data. These ideotypes were partitioned into four classes: 

wide adaptability, adaptability to favorable environments, adaptability to unfavorable environments and 

unadapted. The classification of environments into favorable or unfavorable was made by the environmental 

index proposed by Finlay and Wilkinson (1963). 

Only one ideotype for each class was used in this analyse. The average values of each ideotype was equal 

those to FCM approach, respectively. The classification of each genotype was performed considering the 

greater spatial probability observed among the four classes established a priori. The spatial probability of each 

genotype to reference ideotypes was calculated by the following formula:  

𝑃𝑖𝑘 =
(

1

𝑑𝑖𝑘
)

∑
1

𝑑𝑖𝑘

4
𝑘=1

 , 

where Pik: spatial probability that genotype i is similar to ideotype k; dik: distance from genotype i to ideotype k. 

The variance analyses and the centroid method were performed in GENES software (Cruz, 2016). Phenotypic 

adaptability by the fuzzy clustering method was developed with the aid of MATLAB software's fuzzy logic toolbox 

and implemented in BioFuzzy software, available at https://github.com/VQCarneiro/BioFuzzy. 

Results 

There was a significant effect of the genotypes in all experiments (p < 0.01), except for the experiment in 

Ponte Nova during the dry season of 2003 (Table 2). The coefficients of variation were lower than 20%, 

indicating high experimental accuracy and reliability of the results. The overall mean was 2,389 kg ha-1; 

however, variation between 1,436 and 3,665 kg ha-1 was observed for the experiments in Viçosa and Coimbra 

during the fall-winter season of 2003. 

Table 2. Grain yield (kg ha-1) of the black common bean genotypes (GEN) evaluated in the fall-winter/2002, dry/2003 and fall-

winter/2003 seasons in the municipalities of Viçosa (VI), Coimbra (CB), Ponte Nova (PN), Leopoldina (LP), Florestal (FT), and 

Capinópolis (CP) in Minas Gerais State, Brazil. 

GEN 
Fall - Winter Season/2002  Dry Season/2003  Fall - Winter Season/2003 

VI CB PN LP  VI CB PN FT5  VI CB PN CP 

VP1 1863 c* 3061 a 2588 d 2171 a  3475 a 1656 f 2701 712 f  1230 d 3891 b 2850 d 2858 d 

VP2 1483 h 2250 b 2485 d 1982 b  3005 b 1774 f 3081 1551 c  1623 c 3322 c 2585 h 2508 g 

VP3 2133 b 2955 a 2878 b 2043 b  2860 b 2065 d 2704 1052 e  2215 a 4047 b 2760 e 2480 g 

VP4 1839 c 2782 a 2429 e 1995 b  2689 b 1897 e 2203 1571 c  1612 c 3367 c 2695 f 2464 g 

VP5 1741 d 2411 b 2790 b 2209 a  3326 a 2017 e 2828 2479 a  1495 c 3403 c 2902 c 3058 b 

VP6 1782 d 2548 b 2836 b 2009 b  3007 b 1364 g 2837 1632 c  1410 d 3669 c 2817 e 2436 h 

VP7 1491 h 2176 b 2111 g 1811 b  2774 b 2516 b 2886 2476 a  1565 c 3531 c 2496 i 2564 f 

VP8 1544 g 2370 b 2668 c 2285 a  3164 a 2099 d 2853 1566 c  1346 d 3516 c 2581 h 2619 e 

VP9 1416 i 2186 b 2431 e 1795 b  3364 a 2705 a 2912 1969 b  1027 e 3494 c 2065 m 2480 g 

VP10 1481 h 2243 b 2390 e 1796 b  2746 b 2251 c 2572 1412 d  1368 d 3548 c 2358 k 2181 j 

VP11 1475 h 2365 b 2375 e 1943 b  2983 b 2471 b 2577 1719 c  1343 d 3879 b 2345 k 2664 e 

VP12 1424 i 2302 b 2210 f 1928 b  3279 a 2475 b 2452 1359 d  1247 d 3596 c 2242 l 2430 h 

VP13 1635 f 2376 b 2349 e 2161 a  3098 a 1974 e 2798 1469 d  1353 d 3669 c 2436 j 2597 f 

Vi 5700 1861 c 3110 a 2563 d 2375 a  3488 a 2586 a 2753 1689 c  1626 c 3856 b 3000 b 2969 c 

Vi 5500 1687 e 3044 a 2820 b 2421 a  2977 b 2110 d 3307 1992 b  1843 b 3902 b 3050 a 2358 i 

Vi 7800 1899 c 2735 a 2403 e 1892 b  2535 b 2182 c 2724 1452 d  1679 c 3445 c 2641 g 2419 h 

CNFP 9346 1308 j 2288 b 2214 f 1456 b  3261 a 2177 c 2963 2051 b  1253 d 3478 c 2486 i 2447 g 

CNFP 7988 1087 k 2311 b 2248 f 1710 b  3307 a 1972 e 2405 639 f  1026 e 3097 c 2085 m 2541 f 

Ouro Negro 2260 a 3006 a 3230 a 2096 a  3110 a 2217 c 3094 1659 c  1937 b 4405 a 2804 e 3285 a 

Valente 1531 g 3049 a 2376 e 2009 b  3504 a 2389 b 2702 1686 c  530 f 4179 a 2785 e 2680 e 

Means 1647 2578 2520 2004  3098 2145 2768 1607  1436 3665 2599 2602 

Ej † -742 189 131 -385  709 -244 379 -782  -953 1276 210 213 

CV (%) 12 8 12 10  10 14 14 17  20 6 11 11 

p-value <0.01 <0.01 <0.01 <0.01  <0.01 <0.01 >0.05 <0.01  <0.01 <0.01 <0.01 <0.01 
†Ej – Environmental index; *Values followed by the same letter in the column belong to the same group, Scott and Knott test for significance at the 5% 

probability level. 
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The experiments carried out in the fall-winter season of 2002 in Viçosa and Leopoldina presented averages 

lower than the overall mean (2,389 kg ha-1). Therefore, these environments were considered representative of 

unfavorable environments due to their negative environmental indexes (Table 2). The experiments installed in 

Coimbra and Florestal during the dry season of 2003 and in Viçosa during the fall-winter season of 2003 were also 

classified as unfavorable environments. The others were considered representative of favorable environments 

since they presented averages higher than the overall average and positive environmental indexes (Table 2). 

The cultivars Ouro Negro and Valente were allocated by the Scott Knott test (Scott & Knott, 1974) as 

belonging to the group of the highest-yielding genotypes for 58 and 30% of the environments, respectively 

(Table 2). While Ouro Negro stood out in both favorable and unfavorable environments, the Valente cultivar 

excelled in favorable environments. Higher averages (4,405 and 4,179 kg ha-1) were observed in Coimbra for 

these cultivars during the fall-winter season of 2003, where the highest environmental average was observed. 

The lines Vi 5700 and Vi 5500 presented averages as high as the highest-yielding genotypes in 30 and 25% of 

the experiments, respectively. These lines also stood out in both classes of environments. The line CNFP 9346, 

despite having one of the highest yields in the experiment during the dry season of 2003 in Viçosa, presented 

low averages for the other regions. 

The residual variances of the experiments were considered homogeneous (Tables 1 and 3). The joint analysis 

of the experiments showed that the effects of genotypes and environments were significant (p < 0.05) (Table 3), as 

described by Oliveira et al. (2006). In addition, there was a significant interaction between genotypes and 

environments. The coefficient of variation was 11.64%, that is, a low value for this characteristic. 

Table 3. Summary of joint variance analysis of black common bean genotypes evaluated for grain yield (kg ha-1) in 12 environments in 

Minas Gerais State. 

Sources of Variation DF Mean Square 

Block/E 24 427258.22 

Environments (E) 11 25596941.77* 

Genotypes (G) 19 1019567.40* 

GE interaction 209 230746.91** 

Error 456 77373.15 

Mean 2389.49 

CV (%) 11.64 
**, *Significant according to an F-test at the 0.01 and 0.05 probability levels, respectively; DF: degrees of freedom; CV: coefficient of variation. 

Using the centroid method, it was verified that the lines VP3 (29,1%), VP5 (31,9%), Vi 5700 (36,5%), Vi 

5500 (35,3%) and the cultivar Ouro Negro (44,6%) presented wide adaptability (Table 4). Seven lines were 

classified as adapted to unfavorable environments (Table 4). Line VP7 stood out among the others in this 

cluster with a probability of 36.7%. Line VP1 and the Valente cultivar presented phenotypic adaptability to 

favorable environments with probabilities equal to 33.8 and 29.7%, respectively. 

All genotypes showed probabilities by the centroid method (Rocha et al., 2005), ranging between 15.0 and 

44.6% for all clusters of phenotypic adaptability. This variation was observed for the cultivar Ouro Negro, with 

a 44.6% probability in cluster I and 15% probability in cluster IV. However, most of the genotypes presented 

very close probabilities between the two clusters, especially VP 6 (26.2%) and CNFP 9346 (27.4%). The 

difference between the probabilities of CNFP 9346 in clusters III and IV was less than 0.1% (Table 4). A similar 

difference was also observed when considering the probabilities of line VP 6 in clusters II and IV. 

The phenotypic adaptability pattern of black common bean genotypes regardless of the m value adopted 

in the FCM methodology presented 100% similarity to that obtained with the centroid method (Table 4). The 

cultivar Ouro Negro presented better performance in cluster I, with membership equal to 91.2 and 65.7% when 

adopting m values of 1.5 and 2, respectively (Table 4). Considering these m values, line VP 1 was the most 

noteworthy in cluster II, with membership equal to 63 and 43.5%. On the other hand, line VP 7 was highlighted 

in cluster III, with membership equal to 74.4 and 50.1% considering these same m values. The lines VP 8, VP 

9, VP 11, and CNFP 9346 and cultivar Valente did not present a predominant phenotypic adaptability pattern 

when adopting m equal to 1.5 since they did not have membership of more than 50% in a cluster. For these 

lines, the second largest membership occurred in cluster IV. However, the second largest membership of 

cultivar Valente occurred in cluster I.  

The memberships of the genotypes in the predominant clusters were higher for the fuzzy clustering 

method than for the spatial probabilities in centroid method (Table 4). It was also observed that for m equal 

to 1.5, the membership values were higher than the membership values considering m equal to 2 (Table 4). 
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These facts could be verified by the response of the cultivar Ouro Negro, which presented the greatest 

discrepancy between the memberships in clusters I and IV. Adopting m values equal to 1.5 and 2, the 

membership ranged from 1.1 to 91.2% and from 7.4 to 65.7%, respectively. In addition, adopting m equal to 

1.5 provides a better discrimination of genotypes within the same group. 

Table 4. Memberships, spatial probabilities and phenotypic adaptability classification of black common bean genotypes according to 

the centroid method (C0) and FCM (C1) with m values equal to 1.5 or 2.0. 

Genotypes 

Spatial Probabilities / Memberships (%) 

Class† 
I  II  III  IV 

C0 
C1  

C0 
C1  

C0 
C1  

C0 
C1 

1.5 2.0  1.5 2.0  1.5 2.0  1.5 2.0 

VP1 22.5 12.4 19.3  33.8 63.0 43.5  19.1 6.5 13.9  24.7 18.1 23.3 II 

VP2 22.4 15.1 19.8  22.8 16.1 20.6  27.0 32.5 28.9  27.8 36.2 30.6 IV 

VP3 29.1* 43.0 33.6  23.5 18.0 21.8  25.7 26.1 26.1  21.6 12.9 18.5 I 

VP4 21.6 11.6 18.1  20.2 8.7 15.7  31.1 50.4 37.5  27.2 29.3 28.7 III 

VP5 31.9 52.8 39.1  20.9 9.5 16.7  27.7 30.2 29.5  19.6 7.4 14.7 I 

VP6 23.8 20.3 22.6  26.2 29.4 27.3  23.8 20.5 22.7  26.2 29.9 27.4 IV 

VP7 23.9 12.9 21.0  17.8 3.9 11.7  36.7 74.4 50.1  21.6 8.7 17.3 III 

VP8 24.5 22.6 23.9  23.4 18.6 21.8  26.8 32.6 28.6  25.4 26.2 25.7 III 

VP9 23.3 17.1 21.4  21.4 12.1 18.0  29.4 44.4 34.2  25.9 26.3 26.4 III 

VP10 19.2 6.6 14.0  20.1 7.9 15.4  28.7 33.7 31.5  32.0 51.8 39.1 IV 

VP11 23.8 18.8 22.3  21.5 12.4 18.2  29.3 44.2 34.0  25.4 24.5 25.5 III 

VP12 20.6 9.7 16.4  21.4 11.2 17.7  27.9 33.7 30.4  30.1 45.4 35.4 IV 

VP13 22.6 15.8 20.2  23.0 16.8 20.9  26.8 32.0 28.6  27.6 35.5 30.2 IV 

Vi 5700 36.5 73.9 49.7  21.9 9.3 17.8  23.6 12.7 20.7  17.9 4.1 11.8 I 

Vi 5500 35.3 69.3 47.0  21.7 9.5 17.6  24.7 16.3 22.8  18.3 4.9 12.6 I 

Vi 7800 22.8 14.7 20.2  20.4 9.3 16.2  31.1 52.0 37.8  25.7 24.0 25.8 III 

CNFP 9346 22.6 15.7 20.2  22.6 15.5 20.2  27.4 34.6 29.8  27.4 34.3 29.8 III 

CNFP 7988 15.1 1.2 7.5  21.5 4.8 15.2  19.1 3.0 12.0  44.4 91.0 65.4 IV 

Ouro Negro 44.6 91.2 65.7  21.6 4.8 15.3  18.8 2.8 11.7  15.0 1.1 7.4 I 

Valente 25.3 23.9 25.1  29.7 45.2 34.7  21.3 12.1 17.9  23.8 18.7 22.3 II 

†: adaptability classification of genotypes by the centroid method (C0) and FCM (C1); I – Wide adaptability; II – Adaptability to favorable environments; III 

– Adaptability to unfavorable environments; IV – Unadapted. *: Greater spatial probability and membership observed among the four clusters established 

a priori in Centroid Method (C0) and FCM (C1) with m values equal to 1.5 or 2.0. 

Adopting the centroid method, the ideotype of cluster I was characterized by having, in all environments, 

maximum values of grain yield ranging from 2,215 to 4,405 kg ha-1. On the other hand, the ideotype of cluster 

IV presented minimum values for this characteristic ranging between 530 and 3,097 kg ha-1. In the FCM 

method, the average values of cluster I ranged from 2,207 to 4,398 kg  ha-1 and from 2,211 to 4,401 kg ha-1 

when using m equal to 1.5 and 2.0, respectively (Table 5). For these values of m, in the average values of cluster 

IV, there was variation from 540 to 3,102 kg ha-1 and from 535 to 3,099 kg ha-1. 

Table 5. Ideotype average values (ID) of phenotypic adaptability clusters (I – wide adaptability; II – adaptability to favorable 

environments; III – adaptability to unfavorable environments; IV – unadapted) obtained by the centroid method and FCM. 

Average values 

ID 
 Fall-Winter/2002  Dry Season/2003  Fall-Winter/2003 

 VI¹ CB² PN3 LP4  VI CB PN FT5  VI CB PN CP6 

I  2260 3110 3230 2421  3504 2705 3307 2479  2215 4405 3050 3285 

II  1087 3110 3230 1456  3504 1364 3307 639  530 4405 3050 3285 

III  2260 2176 2111 2421  2535 2705 2203 2479  2215 3097 2065 2181 

IV  1087 2176 2111 1456  2535 1364 2203 639  530 3097 2065 2181 

FCM (m = 1,5) 

I  2254 3106 3224 2417  3499 2698 3302 2469  2207 4398 3047 3278 

II  1091 3108 3226 1460  3502 1368 3303 644  535 4401 3048 3281 

III  2251 2180 2115 2414  2541 2698 2211 2469  2204 3104 2072 2186 

IV  1092 2179 2114 1461  2542 1373 2209 648  540 3102 2069 2185 

FCM (m = 2,0) 

I  2257 3108 3227 2419  3501 2701 3304 2474  2211 4401 3048 3282 

II  1089 3109 3227 1458  3503 1366 3305 642  533 4403 3049 3283 

III  2256 2178 2113 2418  2538 2702 2207 2474  2210 3100 2068 2183 

IV  1089 2178 2113 1459  2539 1369 2206 643  535 3099 2067 2183 
1VI – Viçosa; 2CB – Coimbra; 3PN – Ponte Nova; 4LP – Leopoldina; 5FT – Florestal; 6CP – Capinópolis. 
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Discussion 

The black common bean genotypes presented a differential response to environmental variations, as 

emphasized by the response of the cultivar Valente, which presented the highest average in Viçosa during the 

dry season of 2003 and the lowest mean for the same site and year during the fall-winter season. This result 

corroborates those of Oliveira et al. (2006), which affirms that the season is the condition that contributes 

most to the genotype and environment interaction. Therefore, detailed studies using the phenotypic 

adaptability method by fuzzy clustering and the centroid method (Rocha et al., 2005) were performed to 

identify the phenotypic adaptability pattern of the genotypes evaluated. 

The phenotypic adaptability method by fuzzy clustering presented a similarity of 100% in the phenotypic 

adaptability pattern when compared to that obtained with the centroid method. However, the fuzzy approach 

provided higher discriminatory power of the genotypes, since the memberships obtained in the four clusters 

demonstrated a higher discrepancy in relation to spatial probabilities obtained by the centroid method. 

Studies have reported that the spatial probabilities obtained by the centroid method are very close to each other, 

which makes it difficult to recommend cultivars (Amorin, Souza, Silveira, Nascimento, & Ferreira, 2011; Batista, 

Hamawaki, Sousa, Nogueira, & Hamawaki, 2015). Therefore, it was verified that this proposed method allowed the 

identification of the phenotypic adaptability pattern of black common bean genotypes with high discriminatory 

power; consequently, this method aids in cultivar recommendation in breeding programs. 

The concept of adaptability based on ideotypes given by the fuzzy clustering method is similar to that 

proposed by Rocha et al. (2005). However, these methodologies differ in some particularities related to the 

processing of genotype information. While the centroid method adopts only four ideotypes that represent the 

phenotypic adaptability pattern (Rocha et al., 2005), the fuzzy clustering method adopts 250 ideotypes for 

each of these patterns. It is highlighted in this work that the use of 1,000 ideotypes was effective in identifying 

the phenotypic adaptability of the 20 genotypes. 

The FCM, despite presenting a similar classification to the centroid method, provided more discrepant 

membership values in the clusters. This high discrepancy made it possible to verify that there were genotypes 

classified as recommendable (wide or specific adaptability) that still had high membership values in the 

cluster of the unadapted genotypes. These genotypes presented a predominant membership below 50% in the 

recommended clusters (wide or specific adaptability) and the second largest membership in the unadapted 

cluster. Therefore, we recommend that lines such as VP 8, VP 9, VP 11, and CNFP 9346 be considered unadapted 

since they presented predominant membership in the cluster of genotypes adapted to unfavorable environments 

at a level below 50% and the second highest membership in the cluster of unadapted genotypes. According to 

Scott-Knott's grouping pattern, in at least 50% of the evaluated environments, these lines were allocated in groups 

with low means (Table 2). That is, the classification of these lines as unadaptable to unfavorable environments as 

suggested by the centroid method constitutes a risk for cultivar recommendation. 

The value of m equal to 1.5 provided a greater discrimination of the genotypes by their respective 

memberships. Under these conditions, the best discrimination of the Vi5700, Vi5500, and Ouro Negro 

cultivars was observed in the widely adaptable cluster, as the membership of these genotypes in this cluster 

was equal to 73.9, 69.3, and 91.2%, while when adopting m equal to 2, the membership was 49.7, 47, and 

65.7%, respectively (Table 4). The literature reports that the increase in the m value provides a greater fuzzy 

effect in the grouping by the FCM approach (Pimentel & Souza, 2013). 

Despite its great potential, fuzzy logic has not been sufficiently explored by breeding programs. This 

approach has been used as a principle in grouping techniques such as FCM (Rundo et al., 2017) and in fuzzy 

decision-making systems (Mardani, Jusoh, & Zavadskas, 2015; Carneiro et al., 2018), which have not yet been 

explored in plant breeding. The FCM method allows us to observe the groupings and better discriminates 

them through memberships (Pimentel & Souza, 2013), which is not possible in other fuzzy techniques, such 

as k-means and self-organizing maps. Thus, it was verified with this work that fuzzy logic, especially the 

phenotypic adaptability method by fuzzy clustering, presents high potential to be adopted by breeding 

programs in genotype selection studies and especially in the recommendation of cultivars. 

Conclusion 

The phenotypic adaptability method by fuzzy clustering was effective in identifying the adaptability patterns 

of black common bean genotypes. Moreover, the discriminatory power of this method obtained by membership in 

each cluster was higher than that observed in the results by spatial probability of the centroid method. 
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