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Introduction

Due to its complex anatomy and close relationship with osseous
structures, skull base lesions are often evaluated with both
computed tomography (CT) and magnetic resonance imaging
(MRI) for diagnostic and preoperative planning purposes. CT can
delineate the osseous anatomy with increased precision in
relation to MRI. Additionally, CT can provide important tips to
diagnosis by identifying different patterns of bone involvement
and periosteal reaction or by simply detecting the presence of
ossification or calcification within a lesion.

Review of Literature and Discussion

Slow-growing lesions that do not infiltrate the bone tend to
demonstrate smooth cortical expansion and bone remod-
eling with preservation the bony cortex, whereas aggres-
sive tumors or infection typically infiltrates the bone,

destroying the adjacent bony cortex in a permeative pat-
tern.1 This concept is often used to differentiate between
schwannomas and paragangliomas in the skull base
(►Fig. 1). Well-recognized exceptions to the rule are inva-
sive pituitary adenomas and meningiomas. Bone invasion
in pituitary adenomas does not typically represent a
malignant feature and can be seen in �35% of the cases
of benign adenomas.2 Clival invasion is more commonly
seen in women, large tumors, and null-cell-type tumors.
These infiltrative adenomas, however, have increased
recurrence rates and complications and therefore their
preoperative identification is important for surgical plan-
ning and prognostic purposes.3

A subset of grade Imeningiomas can also invade the bone.4

These cases tend to be clinically challenging as complete
tumor resection becomes more difficult and therefore the
risk of recurrence increases.5 It has been suggested that
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Abstract Introduction Computed tomography (CT) is a key component in the evaluation of
skull base diseases. With its ability to clearly delineate the osseous anatomy, CT can
provide not only important tips to diagnosis but also key information for surgical
planning.
Objectives The purpose of this article is to describe some of the main CT imaging
features that contribute to the diagnosis of skull base tumors, review recent knowledge
related to bonymanifestations of these conditions, and summarize recent technological
advances in CT that contribute to image quality and improved diagnosis.
Data Synthesis Recent advances in CT technology allow fine-detailed evaluation of the
bony anatomy using submillimetric sections. Dual-energy CT material decomposition
capabilities allow clear separation between contrast material, bone, and soft tissues
with many clinical applications in the skull base. Dual-energy technology has also the
ability to decrease image degradation from metallic hardwares using some techniques
that can result in similar or even decreased radiation to patients.
Conclusions CT is very useful in the evaluation of skull base diseases, and recent
technological advances can increase disease conspicuity resulting in improved diagnos-
tic capabilities and enhanced surgical planning.
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the molecular regulators of bone tropism in meningiomas
may depend on their anatomical location as meningiomas of
the anterior skull base show a distinct protein expression
pattern compared with spheno-orbital meningiomas.5 The
most typical bony finding in meningiomas, however, is bone
hyperostosis (►Fig. 2). The cause of hyperostosis in meningi-
omas is controversial. One theory favors focal vascular dis-
turbances generated by the tumor,6–8 another suggests
osteoblastic stimulation by tumor secreting factors,9,10 and
another proposes bone production by the tumor itself.6,8 It is
important to recognize, however, that a significant number of
patients with radiologic hyperostosis have been demonstrat-
ed to have tumor invasion of the bone.11,12

Hemangiopericytoma is an important diagnostic consid-
eration when bone invasion is identified in a dural-based
mass. These tumors are typically multilobulated, extra-axial
masses, with associated bone erosion. Unlike with meningio-
mas, however, hyperostosis and intratumoral calcification are
not typically present.13 Metastasis can also have a similar
appearance to hemangiopericytomas and should also be
considered in the appropriate clinical setting.

Another bony change related to meningiomas is the pres-
ence of pneumosinus dilatans, which consists of abnormal
expansion of one ormore paranasal sinus. This can be another

helpful sign to indicate the presence of a meningioma in the
anterior skull base.14

CT is also very helpful in identifying patterns of calcifica-
tion or ossification to assist in the diagnosis. It is known that
�90% of craniopharyngiomas calcify, making this an impor-
tant diagnostic feature.15 Additionally, the distinct pattern of
chondroid calcification (arc or ringlike calcifications) in
chondrosarcomas can also be useful in pointing to this entity
during diagnostic workup. Chordoma is one of the main
differential considerations once chondrosarcomas are sus-
pected, and it is important to differentiate between arc-whorl
intralesional calcifications seen in chondrosarcomas with
fragmented destroyed bone more often seen in chordomas.16

Another use of CT in the skull base is in the identification of
bony defects in the evaluation of cerebral spinal fluid (CSF)
leaks. Recent multislice CT scanners can acquire images with
slice thickness as thin as 0.5 to 0.6 mm and can perform
multiplanar reconstructions, providing greater ability to
evaluate submillimetric defects. Interactive multiplanar eval-
uation (axial, coronal, sagittal, and oblique planes) is impor-
tant to identify and correctly describe osseous defects in the
evaluation of CSF leaks (►Fig. 3).17 The identification of bony
defects in these cases is highly sensitive but not definitive
for CSF leak. Stone et al observed that all patients in their
42-patient cohort with confirmed CSF leak demonstrated
bony defects on high-resolution CT. Ten patients with bony
defects demonstrated on CT, however, were not confirmed to
have CSF leak.18

In addition to providing important characterization of
the bony structures, CT can also provide invaluable infor-
mation about the relationship of a lesion with the adjacent
vascular structures through computed tomography angiog-
raphy (CTA).

One major challenge related to vascular imaging in the
skull base has been the evaluation of the cavernous internal
carotid artery. This is particular true because the high-
density contrast material within the vessels becomes less
conspicuous when surrounded by bone. Several computer-
ized bone subtraction algorithms have been proposed in the
past in an attempt to overcome this issue. One technique
utilizes two imaging acquisitions (pre- and postcontrast) to

Fig. 2 Hyperostosis (white arrowheads) in a cavernous sinus menin-
gioma (black arrowheads).

Fig. 3 Bony defect along the left cribriform plate (arrowhead) in a
patient with suspected cerebrospinal fluid leak.

Fig. 1 Demonstration of two distinctive patterns of bone involve-
ment. Note the permeative and destructive pattern of bone involve-
ment typically seen in aggressive lesions such as paragangliomas (A) in
relation to a smoothly marginated expansile lesion such as a schwan-
noma (B) in the right jugular foramen in these two different patients.
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subtract the background bone. The major disadvantage of
this technique is the patient’s increased radiation expo-
sure.19 In addition, motion between the two acquisitions
can also impact the quality of the bone subtraction in this
technique. Another bone subtraction method uses comput-
erized imaging processing techniques to differentiate the
vessel anatomy from the adjacent bone by segmenting out
only the structure containing the contrast material. This
technique relies on the variation between the densities of
different structures as well as few anatomical landmarks to
distinguish between bone and vessel. Unfortunately, overlap
exists between the density of these structures, and the bone
subtraction obtained with this methodology is not consis-
tently reliable. Recent dual-energy technology can differen-
tiate between contrast material and bone with high
precision. This is possible because the density of the calcium
and iodine varies, which causes them to behave differently
depending on the energy applied to X-ray beams (different
peak kilovoltages). Computer algorithms are then applied to
the acquired images, allowing decomposition of few ele-
ments and subtraction of the calcium (►Fig. 4).

The evaluation of the petrous, cavernous, and supraclinoid
internal carotid artery is very important in the preoperative
planning for tumors that invade the cavernous sinus. Cavern-
ous sinus meningiomas, for instance, can cause significant
narrowing of the cavernous internal carotid artery. Although
this is not easily recognized with standard multiplanar re-
constructions, techniques such as dual-energy bone subtrac-
tion or some postprocessing tools such as curved reformats
can be of great assistance. Even with postprocessing techni-
ques, however, it may be difficult to appreciate smaller
vessels such as posterior communicating arteries that may
have been compressed by the tumor. In these situations, it is
often helpful to use thin-section T2-weighted images to
troubleshoot.

Another use of dual-energy technology in the evaluation of
skull base pathology relates to its ability to decrease artifacts
that are known to negatively impact image quality, particu-
larly in the posterior fossa. The petrosal ridge of the temporal
bone is thehardest bone in thehumanbodyand is responsible
for significant artifact in the cerebellopontine region. Based
on the two polychromatic X-ray beams available in dual-

energy CT, sophisticated reconstruction algorithms can be
applied to estimate what a scan performed with a single
monochromatic X-ray beam might have shown. With such
approach, beam-hardening and streak artifacts can be signif-
icantly reduced, although often at the expense of lower
signal-to-noise ratio.20 The same technique can be applied
to reduce artifact from external sources or metallic hardware
in the craniocervical junction (►Fig. 5).21,22

Dual-energy CT can also be used to generate a virtual
noncontrasted CT from a contrast enhanced study by sub-
tracting the iodine material from the image using its material
decomposition capabilities. Yet, there is strong evidence that
dual-energy CT acquired via dual-source technology does not
result in increased radiation to patients.23 In fact, the radia-
tion from dual-energy CTs measured by volume computed
tomography dose index (CTDIvol) have been found to be 12%
lower than single-energy CTs.24

Additionally, having the ability to generate two scans
(contrast-enhanced and virtual noncontrast) from a single
postcontrast acquisitionmay have further radiation exposure
savings when these two scans are clinically needed. By
decomposing the iodine component from the image, dual-
energy CT can also providemaps onwhich iodine distribution
is color-coded and superimposed on the virtual noncontrast
CT, which is thought to increase visual detection of lesions in
the head and neck.25,26

Final Comments
CT is an invaluable tool in the evaluation of skull base
disease. In addition to providing important tips to diagnosis,
it can also depict important landmarks for surgical plan-
ning. Recent advances in CT technology allow fine-detailed
evaluation of the bony anatomy with submillimetric imag-
ing sections with increased overall image quality and
similar or even decreased radiation exposure to patients.
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