DOI: 10.1590/1809-6891v20e-46788 ZOOTECNIA

CARACTERÍSTICAS ESTRUTURAIS E PRODUTIVAS EM HÍBRIDOS INTRAESPECÍFICOS E INTERESPECÍFICOS DE CAPIM-ELEFANTE

STRUCTURAL AND PRODUCTIVE CHARACTERISTICS IN INTRASPECIFIC AND INTERSPECIFIC HYBRIDS OF ELEPHANTGRASS

João Virgínio Emerenciano Neto^{1*} ORCID - http://orcid.org/0000-0003-3060-9696
Marcio Gleybson da Silva Bezerra² ORCID - https://orcid.org/0000-0001-9866-6617
Alan Ferreira de França³ ORCID - https://orcid.org/0000-0001-8195-4997
Emerson Moreira de Aguiar⁴ ORCID - https://orcid.org/0000-0001-6610-8952
Gelson dos Santos Difante⁵ ORCID - https://orcid.org/0000-0001-6610-8952

Resumo

Objetivou-se avaliar a estrutura e a produção de forragem em híbridos de capim-elefante manejados sob corte. Utilizaram-se como tratamentos 24 clones de capim-elefante provenientes da Embrapa Gado de Leite e o Cameroom como testemunha. Os capins foram cortados rentes ao solo, a cada 60 dias. Os parâmetros avaliados foram: produção e teor de matéria seca, número de perfilhos basais, número de folhas por perfilho, altura da planta, diâmetro do colmo. A maior altura das plantas foi observada no clone CNPGL 00-103-1. O grupo com maior número de perfilhos teve três clones e média de 39,38 perfilhos m⁻². No grupo dos clones CNPGL 00-103-1, CNPGL 93-25-3, CNPGL 00-16-1 e CNPGL 00-90-3 foram observados os maiores teores de matéria seca (22,7% de MS). As maiores massas de forragem, de lâmina foliar e de colmo foram observadas no clone CNPGL 00-214, 15852 e 6195 kg ha⁻¹ de MS respectivamente. A maior relação lâmina foliar/colmo foi do clone CNPGL 00-201-1 e apenas neste a massa de lâmina foliar foi superior à de colmo. O clone CNPGL 00-214 mostrou-se mais produtivo, com alta capacidade de perfilhamento e de acúmulo de forragem. **Palavras-chave:** Colmo; lâmina foliar; perfilho; *Pennisetum sp*.

Abstract

The objective of this study was to evaluate the structure and forage production of hybrids of elephant-grass managed under cut. Twenty-four clones of elephant-grass from Embrapa dairy cattle were used as treatments, and Cameroom as a control. The grasses were cut close to the ground, every 60 days. The parameters evaluated were yield and dry matter content, number of basal tillers, number of leaves per tiller, plant height, stem diameter. The highest height of the plants was observed in clone CNPGL 00-103-1. The group with the highest number of tillers had three clones and a mean of 39.38 tiller m⁻

¹Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil.

²Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil.

³Universidade Federal Rural de Pernambuco, Garanhuns, PE, Brasil.

⁴Universidade Federal do Rio Grande do Norte, Macaíba, RN, Brasil.

⁵Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brasil.

^{*}Autor para correspondência – <u>joao_neto@zootecnista.com.br</u>

². In the group of clones CNPGL 00-103-1, CNPGL 93-25-3, CNPGL 00-16-1 and CNPGL 00-90-3 the highest dry matter contents (22.7% DM) were observed. The highest masses of forage, leaf blade and stem were observed in clone CNPGL 00-214, 15852 and 6195 kg ha⁻¹ DM, respectively. The highest leaf blade / stem ratio was of the CNPGL 00-201-1 clone, and only in this did the leaf blade mass exceed that of the stem. Clone CNPGL 00-214 showed to be more productive, with high tillering capacity and forage accumulation.

Keywords: Leaf blade; Pennisetum sp; stem; tiller.

Recebido em: 07 de maio de 2017. Aceito em: 07 de junho de 2019

Introdução

O capim-elefante (*Pennisetum purpureum* Schum.) é uma planta forrageira perene com elevada produtividade, encontra-se distribuído pelos diferentes ecossistemas brasileiros, utilizado sob corte e pastejo⁽¹⁾. Programas de melhoramento de espécies forrageiras têm sido utilizados para aumentar a produção de forragem. A hibridação é um mecanismo bastante utilizado nesses programas, pode ser feita envolvendo cultivares ou variedades de uma mesma espécie (intraespecífica) ou envolvendo diferentes espécies (interespecífica), como a do capim-elefante com o milheto (*Pennisetum glaucum*), bastante utilizada para este propósito⁽²⁾. Esses programas visam à obtenção de cultivares que apresentem características desejáveis tanto para capineiras como pastejo, propagação por sementes, adaptação a solos de baixa fertilidade, redução da sazonalidade da produção, melhor composição química da forragem, maior teor de matéria seca (favorece a ensilagem), além de maior produtividade em relação às variedades já cultivadas⁽³⁾.

Os vários estudos com capim-elefante revelam que tanto a escolha da cultivar a ser utilizada como sua adaptação às condições edafoclimáticas e ao manejo empregado são indispensáveis ao seu desempenho⁽⁴⁾. Tendo em vista que a produção é muito heterogênea entre híbridos, Silva *et al.*⁽⁵⁾ estimaram uma produtividade em clones de capim-elefante que varia de 2,1 a 14,0 tha⁻¹ de MS a cada 60 dias, que pode ainda ter comportamento distinto dos genótipos nos diferentes ambientes. Diante disso, objetivou-se identificar características estruturais e produtivas em clones de capim-elefante intra e interespecíficos.

Materiais e métodos

O experimento foi realizado na Estação Experimental Rommel Mesquita de Farias, município de Parnamirim/RN, pertencente à Empresa de Pesquisa Agropecuária do Rio Grande do Norte – EMPARN. A Estação apresenta como coordenadas geográficas: latitude 5°54'56" S e longitude 35°15'46" O e altitude de 10 metros acima do nível do mar.

O clima da região, de acordo com a classificação climática de Thornthwaite⁽⁷⁾, é subúmido seco, com excedente hídrico de maio a agosto. A precipitação média anual é de 1048 mm e evapotranspiração potencial média acumulada anual de 1472 mm. A precipitação e a temperatura ambiental na área

foram monitoradas durante o período experimental (Figura 1).

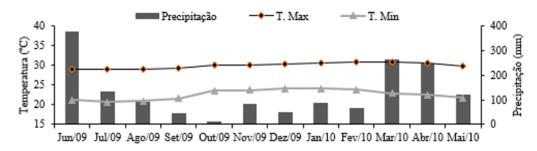


Figura 1- Precipitação pluviométrica e temperaturas: máxima (T. Máx.) e mínima (T. Mín.) do ar na área experimental entre junho de 2009 e maio de 2010

O solo da área experimental foi classificado como Neossolo Quartzarênico⁽⁶⁾ de baixa fertilidade, apresentando as seguintes características: pH 6,5; Ca⁺² = 2,4 mmol_cdm⁻³; Mg⁺² = 0,7 mmol_cdm⁻³; Al⁺³ = 0,0 mmol_cdm⁻³; P = 3,0 mmol_cdm⁻³; K⁺ = 8,0 mmol_cdm⁻³. Após o corte de uniformização e após o segundo corte foram realizadas adubação com 20 t ha⁻¹ de esterco bovino e com 50 kg ha⁻¹ de K₂O (cloreto de potássio) e 50 kg ha⁻¹ de N (sulfato de amônio), além de uma adubação fosfatada anual de 100 kg ha⁻¹ de P₂O₅ (superfosfato simples).

Os clones foram plantados em março de 2009 e o corte de uniformização realizado 90 dias após o plantio, para avaliação foram seis cortes (a cada 60 dias), finalizando em maio de 2010. A área experimental foi montada em 12 linhas de 25,0 m espaçadas por 1,5 m entre si, sendo duas linhas para bordadura e 10 para avaliação, totalizando 50 parcelas (duas por tratamento). Cada parcela tinha 5,0 m de comprimento por 1,5 m de largura (7,5 m² de área útil). Nos meses de setembro, outubro, dezembro e janeiro, foi realizada complementação hídrica por aspersão, para garantir uma quantidade mensal de água mínima de 80 mm. Não ocorreram ataques de pragas ou doenças durante a condução do ensaio.

Os tratamentos avaliados foram 24 clones de capim-elefante provenientes da Embrapa Gado de Leite e o Cameroon como testemunha (Tabela 1).

A massa de forragem (MFO, kg ha⁻¹ de MS) foi obtida pela forragem contida na área útil da parcela, cortada manualmente rente ao solo e posteriormente pesada em balança digital. Do material colhido, retirou-se uma amostra em torno de 500 g (perfilhos inteiros), cortados em pedaços de 3 a 4 cm, pesados e colocados em estufa com ventilação forçada a 55 °C até peso constante para determinação da matéria seca.

Para avaliação da massa dos componentes morfológicos da forragem e a relação lâmina foliar/colmo foram retiradas subamostras representativas das amostras colhidas para a determinação da massa de forragem, que posteriormente foram separadas manualmente nas frações de lâmina foliar e colmo (colmo + bainha). Após a separação, os componentes foram pesados e secos em estufa de circulação forçada de ar a 55 °C até peso constante para determinação da matéria seca.

Tabela 1- Classificação genética e porte dos clones avaliados

Clone	Tipo de Clone	Cromossomos	Porte
CNPGL 00-103-1	Híbrido Interespecífico	Triplóide¹	Normal
CNPGL 00-108-1	Híbrido Interespecífico	Triplóide¹	Normal
CNPGL 00-1-1	Híbrido Intraespecífico	Tetraplóide	Anão
CNPGL 00-1-5	Híbrido Intraespecífico	Tetraplóide	Anão
CNPGL 00-16-1	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 00-17-1	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 00-201-1	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 00-206	Híbrido Interespecífico	Hexaplóide ²	Normal
CNPGL 00-210	Híbrido Interespecífico	Hexaplóide ²	Normal
CNPGL 00-211	Híbrido Interespecífico	Hexaplóide ²	Normal
CNPGL 00-213	Híbrido Interespecífico	Hexaplóide ²	Normal
CNPGL 00-214	Híbrido Interespecífico	Hexaplóide ²	Normal
CNPGL 00-219	Híbrido Interespecífico	Hexaplóide ²	Normal
CNPGL 00-220	Híbrido Interespecífico	Hexaplóide ²	Normal
CNPGL 00-33-1	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 00-64-1	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 00-78-1	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 00-90-1	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 00-90-2	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 00-90-3	Híbrido Interespecífico	Triplóide1	Normal
CNPGL 91-11-2	Híbrido Intraespecífico	Tetraplóide	Normal
CNPGL 91-28-1	Híbrido Intraespecífico	Tetraplóide	Normal
CNPGL 93-25-3	Híbrido Intraespecífico	Tetraplóide	Normal
CNPGL 96-24-1	Híbrido Intraespecífico	Tetraplóide	Normal
Cameroom	Progenitor	Testemunha	Normal

¹Cruzamento de capim-elefante (*Pennisetumpurpureum*) x Milheto (*Pennisetumglaucum*); ²Cruzamento de capimelefante (*Pennisetumpurpureum*) x Milheto (*Pennisetumglaucum*) com cromossomo duplicado.

O número de folhas por perfilho (NFP) foi determinado pela contagem das folhas de cinco perfilhos escolhidos aleatoriamente, desde a primeira folha viva até a última folha expandida. O número de perfilhos basais foi obtido através da contagem de todos os perfilhos existentes na parcela, dividido pela área da parcela em m² (NP, perfilho m⁻²). O diâmetro do colmo (DC, mm) foi medido com o auxílio de um paquímetro na base de cinco plantas por parcela. A altura da planta (AP, m) foi mensurada com auxílio de uma régua graduada, medindo do nível do solo até o ponto de curvatura da última folha expandida.

O delineamento experimental foi feito em blocos ao acaso, dado a declividade da área. Os dados foram submetidos à análise de variância e, caso fossem significativos, pelo teste de Fischer. A comparação entre médias foi realizada pelo teste de Scott-Knott (análise de agrupamento), e a relação entre as variáveis foi avaliada pela correlação de Pearson, ambas a 5% de probabilidade.

Utilizou-se o seguinte modelo estatístico: Y_{ijk} : $\mu+G_i+B_j+\alpha_{ijk}$, sendo μ o efeito médio geral; G_i o efeito do genótipo i, i=25 clones; B_j o efeito do bloco j, j=1 e 2; α_{ijk} o erro aleatório associado ao genótipo i, bloco j no corte k. Utilizou-se o programa estatístico SISVAR $5.6^{(8)}$.

Resultados e discussão

A altura das plantas (AP) foi agrupada em cinco grupos (P>0,05), o clone CNPGL 00-103-1 ficou sozinho no grupo de maior altura, mesmo no segundo grupo de maiores alturas todos os clones superam dois metros (Tabela 2). Para esses clones, podemos sugerir que um menor intervalo entre cortes pode contribuir para reduzir a quantidade de componentes estruturais, tornando-os mais nutritivos para os animais. Pois, quando manejados com cortes até 45 dias de idade, Bhering *et al.* (9) não observaram diferenças acentuadas na altura, diâmetro do colmo, percentagem de folhas e número de folhas do capim-elefante. O diâmetro do colmo diferiu em quatro grupos (P<0,05) (Tabela 2), onde apenas três clones ficaram no grupo com os maiores valores (CNPGL 00-219, CNPGL 00-90-2 e CNPGL 00-1-1) 1,2 ou 1,5 m.

Tabela 2 - Altura da planta (AP, m), diâmetro do colmo (DC, mm), número de perfilhos (NP, perfilhos m⁻²), número de folhas por perfilho (NFP) e teor de matéria seca (TMS, %) em clones de capim-elefante

capilii-elefante					
Clone	AP (m)	DC (mm)	NP	NFP	TMS (%)
CNPGL 00-103-1	2,30a	11,50d	31,02b	14,58a	23,51a
CNPGL 00-108-1	2,05b	14,00b	30,17b	12,45a	19,98b
CNPGL 00-1-1	1,88c	16,59a	11,42d	12,08a	18,91c
CNPGL 00-1-5	1,90c	12,80c	33,47b	10,43b	18,91c
CNPGL 00-16-1	1,49e	11,59d	8,17d	12,70a	23,30a
CNPGL 00-17-1	2,06b	14,30b	16,63c	14,53a	18,68c
CNPGL 00-201-1	1,31e	12,70c	17,69c	6,75c	16,25c
CNPGL 00-206	1,68d	14,91b	20,14c	14,55a	17,91c
CNPGL 00-210	1,54e	14,39b	16,32c	10,70ь	16,71c
CNPGL 00-211	1,83c	12,28c	38,42a	11,78a	18,11c
CNPGL 00-213	2,06b	12,43c	31,01b	12,53a	20,44b
CNPGL 00-214	2,02b	14,35b	39,20a	10,85b	18,03c
CNPGL 00-219	1,48e	18,09a	22,07c	12,71a	16,20c
CNPGL 00-220	1,55e	15,29b	30,68b	8,856	17,14c
CNPGL 00-33-1	1,86c	10,23d	40,53a	14,60a	20,25b
CNPGL 00-64-1	1,94c	12,91c	11,78d	12,38a	20,39b
CNPGL 00-78-1	2,14b	14,25b	16,11c	14,88a	20,64b
CNPGL 00-90-1	1,58e	15,15b	10,57d	13,60a	17,58c
CNPGL 00-90-2	1,53e	17,74a	12,02d	6,51c	16,53c
CNPGL 00-90-3	1,72d	13,20c	12,54d	11,93a	22,26a
CNPGL 91-11-2	1,67d	13,65c	19,42c	11,10b	20,09b
CNPGL 91-28-1	1,65d	14,48b	33,46b	9,75b	17,88c
CNPGL 93-25-3	2,04b	11,93d	29,78b	15,00a	21,79a
CNPGL 96-24-1	1,79c	15,13b	26,87b	13,50a	16,28c
Cameroom	1,80c	14,10b	25,14b	13,35a	17,56c
CV (%)	10,78	12,85	24,39	22,99	12,35

Médias seguidas de letras distintas na coluna diferem entre si (P<0,05) pelo teste de Scott-Knott.

É comum os produtores colocarem os animais para pastejar capim-elefante com alturas maiores que 1,2 m, porém esse manejo é prejudicial à planta. Segundo Schmitt *et al.*⁽¹⁰⁾, quando o capim-elefante é manejado com menos que 90 cm, há vantagens na produção de forragem e no controle da estrutura do dossel, pois os bovinos não conseguem rebaixar mais do que metade dessa altura. Já segundo Viana *et al.*⁽¹¹⁾, a altura ideal do capim-elefante para o pastejo de ovinos é de 0,72 m, obtidos nos clones Mott e Taiwan A-164 2.114, quando manejados com 32 dias de rebrotação. As alturas observadas mostram que nenhum dos clones avaliados são adequados ao pastejo.

O número de perfilhos (NP) dividiu os clones em quatro grupos (P<0,05), grupo A com 3 clones com média de 39,38 perfilhos m⁻²; B com 9 clones e média de 30,18 perfilhos m⁻²; C com 7 clones e média de 18,34 perfilhos m⁻² e D com 6 clones e média de 11,08 perfilhos m⁻² (Tabela 2). Os grupos com as maiores quantidades de perfilhos sugerem a esses clones uma maior capacidade de rebrotação, além de maior cobertura do solo, contribuindo para uma menor invasão por plantas indesejáveis, que reduz os tratos culturais. O NP pode também ser um indicativo da produtividade do pasto, pois, segundo Hodgson⁽¹²⁾, o perfilhamento é utilizado pela planta como forma de crescimento, aumento de produtividade e sobrevivência.

Em função do número de folhas por perfilho (NFP) os clones foram distribuídos em três grupos (P<0,05), em que 17 clones ficaram no grupo com maior quantidade (13,36 folhas), seguido do grupo intermediário com 6 clones (10,28 folhas) e no grupo com a menor quantidade foram alocados apenas os clones CNPGL 00-201-1 e CNPGL 00-90-2. (6,63 folhas por perfilho). O número máximo de folhas vivas por perfilho é uma constante genotípica pouco afetada por fatores abióticos⁽¹³⁾, quando o perfilho atinge seu número máximo de folhas vivas passa a haver um equilíbrio entre a taxa de surgimento e a taxa de senescência das folhas⁽¹⁴⁾, dessa maneira pode se definir essa variável como critério para determinar o momento de corte da planta e evitar perda da forragem produzida por senescência⁽¹⁵⁾.

A seleção de clones de *Pennisetum sp.* pelo teor de MS pode ser muito útil para o processo de ensilagem⁽¹⁶⁾. Em estudo realizado por Monteiro *et al.*⁽¹⁷⁾, foi necessário utilizar 15% de farelo de arroz na massa de forragem ensilada para modificar o teor de matéria seca de 17,9 para 33,5%, quanto maior o percentual de aditivos maior será o custo da ensilagem.

Os clones foram separados em três grupos em função dos teores de matéria seca (P<0,05), nos clones CNPGL 00-103-1, CNPGL 93-25-3, CNPGL 00-16-1 e CNPGL 00-90-3 foram observados os maiores valores, com média de 22,71% de MS. Os resultados mostram que esses clones podem ser mais adequados ao processo de ensilagem, uma vez que têm teores de matéria seca mais próximos ao ideal para ensilagem (30 a 35% de MS). Nos demais clones, para esse fim, seria necessário maior tempo de desidratação, que poderia comprometer a qualidade da ensilagem ou mesmo, caso não sejam desidratados adequadamente, aumentar a quantidade de efluentes da silagem.

A massa de forragem (MFO) agrupou os clones em cinco grupos (P<0,05), no de maior produção ficou apenas com o clone CNPGL 00-214, enquanto que no grupo de menores MFO foram ficaram os clones CNPGL 00-16-1, CNPGL 00-90-1 e CNPGL 00-201-1, com média de 2373,3 kg ha⁻¹ de MS a cada corte. Lima *et al.*⁽¹⁸⁾ encontraram produção de 14500 kg ha⁻¹ de MS para o cultivar Cameroon cortado a 30 cm do solo com 56 dias de rebrota no período chuvoso, essa produção foi cerca de 76% superior à obtida para a mesma cultivar neste trabalho. Essa diferença pode ser explicada pelo fato dos autores terem realizado o estudo com apenas um corte do capim e na estação

chuvosa.

Tabela 3 - Valores médios para massa de forragem (MFO, kg ha⁻¹ de MS), de lâmina foliar (MLF, kg ha⁻¹ de MS), de colmo ((MCO, kg ha⁻¹ de MS) e relação lâmina foliar/colmo em clones de capimelefante

Clone	MFO	MLF	MCO	RLF/C
CNPGL 00-103-1	9782,50c	3758,75c	6025,00b	0,66d
CNPGL 00-108-1	11471,25b	4381,25c	7092,50b	0,64d
CNPGL 00-1-1	4580,00e	1935,00e	2645,00d	0,77c
CNPGL 00-1-5	10970,006	4788,75b	6181,25b	0,81c
CNPGL 00-16-1	1835,00f	796,25e	1037,50e	0,84c
CNPGL 00-17-1	5231,25d	2308,75d	2923,75d	0,80c
CNPGL 00-201-1	2451,25f	1258,75e	1192,50e	1,17a
CNPGL 00-206	6520,00d	2545,00d	3972,50c	0,66d
CNPGL 00-210	4598,75e	2052,50e	2546,25d	0,83c
CNPGL 00-211	11567,50b	5095,00b	6472,50b	0,79c
CNPGL 00-213	9625,00c	4151,25c	5472,50b	0,76c
CNPGL 00-214	15852,50a	6195,00a	9657,50a	0,65d
CNPGL 00-219	6708,57d	3074,29d	3634,29c	0,90b
CNPGL 00-220	8121,25c	3971,25c	4150,00c	0,99b
CNPGL 00-33-1	7072,50d	3276,25c	3803,75c	0,86c
CNPGL 00-64-1	4077,50e	1723,75e	2352,50d	0,77c
CNPGL 00-78-1	7641,25c	3365,00c	4277,50c	0,80c
CNPGL 00-90-1	2833,75f	1350,00e	1483,75e	0,90b
CNPGL 00-90-2	3731,43e	1867,14e	1864,29d	0,99b
CNPGL 00-90-3	4173,75e	1741,25e	2432,50d	0,73c
CNPGL 91-11-2	5671,25d	2570,00d	3101,25c	0,96b
CNPGL 91-28-1	9013,75c	4316,25c	4697,50c	0,95b
CNPGL 93-25-3	9058,75c	3061,25d	5997,50b	0,54d
CNPGL 96-24-1	6853,75d	3015,00d	3838,75c	0,80c
Cameroom	8241,25c	3761,25c	4481,25c	0,85c
CV (%)	30,49	31,96	31,43	14,62

Médias seguidas de letras distintas na coluna diferem entre si (P<0,05) pelo teste de Scott-Knott.

Gimenes *et al.*⁽¹⁹⁾ observaram produção de 2541 e 3623 kg ha⁻¹ de MS, para os clones CNPGL 96-24-1 e CNPGL 91-11-2 respectivamente. Os resultados obtidos no presente trabalho foram quase duas vezes maiores que o relatado pelos autores, essa superioridade pode ser atribuída à utilização de irrigação e a temperatura mínima superior aos 20 °C durante todo experimento. Pois, segundo Villa Nova *et al.*⁽²⁰⁾, as gramíneas tropicais necessitam de temperaturas dentro de faixas adequadas para alcançarem altas produções, sendo mínima de 12 a 15 °C, valores obtidos por Gimenes *et al.*⁽¹⁹⁾. Os valores de MFO mostram uma grande variação entre clones, este aspecto mostra sua importância no estudo de genótipos de capim-elefante sob mesma condição de adubação e irrigação, pois, os clones mais produtivos são mais eficientes economicamente em produção de forragem para alimentação animal.

Assim como na MFO, as maiores (P<0,05) massas de lâmina foliar (MLF) e de colmo (MCO) foram observadas no clone CNPGL 00-214. Segundo Martuscello *et al.*⁽²¹⁾, a alta e significativa correlação entre os componentes morfológicos do capim-elefante pode ser um indicativo de que o acúmulo de

lâminas tende a aumentar a taxa fotossintética.

A relação lâmina foliar/colmo (RLF/C) agrupou os clones em quatro grupos (P<0,05) (Tabela 3), em que no clone CNPGL 00-201-1 foi observado o maior valor, e apenas neste a massa de lâmina foliar foi superior à de colmo. Esse resultado corrobora os de Lima *et al.*⁽¹⁸⁾, em que os clones com maiores RLF/C foram os menos produtivos. Os autores avaliaram 10 genótipos de capim-elefante e destacaram que o fato de alguns genótipos não alcançarem melhores relações RLF/C não compromete a seleção, uma vez que a tendência é que a adaptação dos híbridos melhore com o passar do tempo.

A RLF/C é fator de predição da qualidade da forragem, pois o valor nutritivo do caule é inferior ao da folha, logo, maior massa de folhas em relação à de colmos é uma característica desejável à forrageira por estar diretamente relacionada à qualidade e ao consumo, fato ainda mais relevante em forragens com colmos mais espessos, como o capim-elefante. Vale ressaltar que os resultados observados podem ser diferentes para os mesmos híbridos em outros climas e com diferentes níveis e/ou fontes de adubação.

Embora muitos dos coeficientes das correlações avaliadas tenham sido significativos (P<0,05), poucos foram de média ou alta magnitude (Tabela 4). Isso pode ser atribuído à diversidade genética entre os clones, caso esta análise fosse realizada apenas com um clone, poderíamos obter maiores coeficientes de correlação. A MFO foi a variável com os maiores coeficientes de correlação com as demais, destacando-se sua alta e positiva correlação com o NP, a MLF e a MCO. Essas associações já eram esperadas, uma vez que o NP é a forma de crescimento da planta e que as MLF e MCO são derivadas da MFO.

Tabela 4 - Coeficientes	de	correlação	de	Pearson	entre	variáveis	morfológicas	e	produtivas	em
clones de capim-elefante										

	NFP	AP	DC	TMS	MFO	NP	RLF/C	MLF	MCO
NFP	-	0,24*	-0,27*	0,41*	-0,06ns	-0,02ns	-0,24*	-0,10 ^{ns}	-0,04 ^{ns}
AP	-	-	$0,04^{ns}$	$0,00^{ns}$	0,55*	0,34*	-0,49*	0,47*	0,58*
DC	-	-	-	-0,42*	$0,12^{ns}$	-0,17*	$0,04^{ns}$	0,14*	0,10 ^{ns}
TMS	-	-	-	-	-0,10 ^{ns}	-0,19*	$-0,14^{ns}$	$-0,14^{ns}$	-0.07^{ns}
MFO	-	-	-	-	-	0,73*	-0,40*	0,97*	0,99*
NP	-	-	-	-	-	-	-0,22*	0,72*	0,70*
RLF/C	-	-	-	-	-	-	-	-0,22*	-0,50*
MLF	-	-	-	-	-	-	-	-	0,92*
MCO	-	-	-	-	-	-	-	-	-

não significativo; *, P<0,05. NFP, número de folhas por perfilho; AP, altura da planta; DC, diâmetro do colmo; TMS, teor de matéria seca; MFO, massa de forragem; NP, número de perfilhos; RLF/C, relação lâmina foliar/colmo; MLF, massa de lâmina foliar; MCO, massa de colmo.</p>

A AP correlacionou-se positivamente com a MFO, MLF e MCO. Assim, com o aumento da AP ocorre também aumento dessas variáveis, porém, podemos observar que a correlação entre a AP e a MCO é superior à da MLF, confirmado pela correlação negativa da AP com a RLF/C. A correlação positiva entre AP e MFO também foram observadas por Cunha *et al.*⁽¹⁶⁾, o que ratifica a associação mesmo em diferentes ambientes. Essa associação acontece porque o colmo é o componente estrutural responsável pela sustentação e pelo aumento da altura, em função do alongamento do mesmo. A facilidade na medição de altura das plantas e sua correlação com parâmetros de produção fazem com

que esta seja uma ferramenta potencial para o manejo de gramíneas tropicais⁽²²⁾. Segundo Emerenciano Neto *et al.*⁽²³⁾, o aumento da altura da planta promove aumento na massa de forragem, porém, aumenta significativamente a participação de colmo e material morto nessa massa.

Conclusões

O clone CNPGL 00-214 mostrou-se mais produtivo, com alta capacidade de perfilhamento e de acúmulo de forragem, porém, a baixa relação lâmina foliar/colmo deste clone sugere que sejam avaliados manejos com menores intervalos de corte para melhoria qualitativa da forragem produzida.

Agradecimentos

A Universidade Federal do Rio Grande do Norte – UFRN, pela execução do experimento, Empresa de Pesquisa Agropecuária do Rio Grande do Norte – EMPARN, pelo local cedido e condução do experimento e a Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, através do Programa RENACE (Rede Nacional de Avaliação do Capim-elefante) pelos materiais de estudo.

Referências

- 1. Cunha MV, Lira MA, Santos MVF, Dubeux Júnior JCB, Mello ACL, Freitas EV. Adaptabilidade e estabilidade da produção de forragem por meio de diferentes metodologias na seleção de clones de *Pennisetum spp*. Revista Brasileira de Ciências Agrárias. 2013, 8(4): 681-686. http://dx.doi.org/10.5039/agraria.v8i4a3280
- 2. Leão FF, Cancellier LL, Pereira AV, Ledo FJS, Afférri FS. Produção forrageira e composição bromatológica de combinações genômicas de capim-elefante e milheto. Revista Ciência Agronômica. 2012, 43(2):368-375. http://dx.doi.org/10.1590/S180666902012000200021
- 3. Silva MC, Santos MVF, Lira MA, Mello ACL, Freitas EV, Santos RJM, Ferreira RLC. Ensaios preliminares sobre autofecundação e cruzamentos no melhoramento do capim-elefante. Revista Brasileira de Zootecnia. 2008, 37(3):401-410. http://dx.doi.org/10.1590/S1516-35982008000300004
- 4. Santos AE, Silva DS, Queiroz Filho JL. Aspectos produtivos do capim-elefante (*Pennisetumpurpureum*, Schum.) cv. Roxo no brejo paraibano. Revista Brasileira de Zootecnia. 2001, 30(1): 31-36. http://dx.doi.org/10.1590/S1516-35982001000100006
- 5. Silva ALC, Santos MVF, Dubeux Junior, J.C.B. Lira, M.A., Ferreira, R.L.C., Freitas, E.V., Cunha, M.V., Silva, M.C. Variabilidade e herdabilidade de caracteres morfológicos em clones de capim-elefante na Zona da Mata de Pernambuco. Revista Brasileira de Zootecnia, v.39, n.10, p.2132-2140, 2010. http://dx.doi.org/10.1590/S1516-35982010001000005.
- 6. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). (2006). Sistema brasileiro de classificação de solos (2nd ed., p. 306). Rio de Janeiro.
- 7. Thornthwaite CW. An approach toward a rational classification of climate. Geographical Review. 1948, 38:55-94. https://doi.org/10.2307/210739
- 8. Ferreira DF. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 2011, 35(6):1039-1042. https://doi.org/10.1590/S1413-70542011000600001

- 9. Bhering M, Cabral LS, Abreu JG, Souza AL, Zervoudakis JT, Rodrigues RC, Pereira GAC,Reverdito R, Oliveira IS. Características agronômicas do capim-elefante roxo em diferentes idades de corte na Depressão Cuiabana. Revista Brasileira de Saúde e Produção Animal. 2008, 9(3):384-396. http://revistas.ufba.br/index.php/rbspa/article/viewArticle/1234
- 10. Schmitt D, Padilha DA, Dias KM, Santos GT, Rodolfo GR, Zanini GD, Sbrissia AF. Chemical composition of two warm-season perennial grasses subjected to proportions of defoliation. Grassland Science. 2019, 0:1-8. https://doi.org/10.1111/grs.122366
- 11. Viana BL, Mello AC Leão, Guim A, Lira MA, Dubeux Júnior JCB, Santos MVF, Cunha MV. Morphological characteristics and proportion of leaf blade tissues of elephant grass clones under sheep grazing. PesquisaAgropecuária Brasileira. 2018, 53(11):1268-1275. http://dx.doi.org/10.1590/s0100-204x2018001100009
- 12. Hodgson J. Grazing Management: Science into practice. New York: John Wiley & Sons. p. 203, 1990.
- 13. Edvan RL, Santos EMA, Silva DSB, Andrade AP, Costa RG, Vasconcelos WA. Características de produção do capim-buffel submetido a intensidades e frequências de corte. Archivos de Zootecnia.2011, 60(232):1281-1289. http://dx.doi.org/10.4321/S0004-05922011000400043
- 14. Fulkerson WJ, Slack K, Havilah E. The effect of defoliation interval and height on growth and herbage quality of kikuyu grass (*Pennisetumclandestinum*). Tropical Grassland, 1999, 33(3):138-145.
- 15. Luna AA, Difante GS, Montagner DB, Emerenciano Neto JV, Araújo IMM, Oliveira LEC. Características morfogênicas e acúmulo de forragem de gramíneas forrageiras sob corte. BioscienseJournal.2014, 30(6):1803-1810.
- 16. Cunha MV, Lira MA, Santos MVF, Freitas EV, Dubeux Junior JCB, Mello ACL, Martins KGR. Association between the morphological and productive characteristics in the selection of elephant grass clones. Revista Brasileira de Zootecnia. 2011, 40(3):482-488. http://dx.doi.org/10.1590/S1516-35982011000300004
- 17. Monteiro IJG, Abreu JG, Cabral LS, Almeida RG, Reis RHP, Behling Neto A, Cabral CEA, Barros LV, Avelino ACD, Penso S. Ensiling of elephant grass with soybean hulls or rice bran. Semina: Ciências Agrárias.2016, 37(6):4203-4212. http://dx.doi.org/10.5433/1679-0359.2016v37n6p4203
- 18. Lima ES, Silva JFC, Vásquez HM, Araújo SAC, Lista FN, Costa DPB. Produção de matéria seca e proteína bruta e relação folha/colmo de genótipos de capim-elefante aos 56 dias de rebrota. Revista Brasileira de Zootecnia.2007, 36(5):1518-1523. http://dx.doi.org/10.1590/S1516-35982007000700009
- 19. Gimenes FMA, Berndt A, Mateus GP, Ledo FJS, Demarchi JJAA, Giacomini AA, Gerdes L, Batista K. Forage mass and agronomic traits of Elephant grass genotypes under free-growth and conventional cutting systems. Semina: Ciências Agrárias. 2016, 37(4):2577-2588. http://dx.doi.org/10.5433/1679-0359.2016v37n4Supl1p2577
- 20. Villa Nova NA, Tonato F, Pedreira CGS, Medeiros HR. Método alternativo para cálculo da temperatura base de gramíneas forrageiras. Ciência Rural. 2007, 37(2):545-549. http://dx.doi.org/10.1590/S0103-84782007000200039
- 21. Martuscello JA, Majerowicz N, Cunha DNFV, Amorim PL, Braz TGS. Características produtivas e fisiológicas de capim-elefante submetido à adubação nitrogenada. Archivos de Zootecnia. 2016, 65(252):565-570.
- 22. Difante GS, Euclides VPB, Nascimento Júnior D, Silva SC, Barbosa RA, Torres Júnior RAA. Desempenho e conversão alimentar de novilhos de corte em capim-tanzânia submetido a duas intensidades de pastejo sob lotação rotativa. Revista Brasileira de Zootecnia. 2010, 39:33-41. http://dx.doi.org/10.1590/S1516-35982010000100005

23. Emerenciano Neto JV, Difante GS, Lana AMQ, Campos NRF, Veras ELL, Moraes JD. Sward structure and herbage accumulation of massaiguineagrass pastures managed according to pre-grazing heights, in the northeast of Brazil. Journal of Agricultural Science, 2017, 9:155-163. http://dx.doi.org/10.5539/jas.v9n4p155