Acessibilidade / Reportar erro

Remoção dos corantes Reactive Blue 21 e Direct Red 80 utilizando resíduos de sementes de Mabea fistulifera Mart. como biossorvente

Removal of the Reactive Blue 21 and Direct Red 80 dyes using seed residue of Mabea fistulifera Mart. as biosorbent

Resumos

Neste estudo empregou-se resíduos de Mabea fistulifera Mart. como bioadsorvente para a remoção dos corantes Reactive Blue 21 (RB 21) e Direct Red 80 (DR 80) em soluções aquosas e em amostras de efluentes reais fortificados com estes corantes. Foram investigados os ensaios da influência do pH, cinéticos e adsortivos para a remoção dos corantes por meio de uma série de experimentos de batelada. O bioadsorvente exibiu máxima adsorção em pH = 2,0 para ambos os corantes. O tempo de equilíbrio da adsorção foi estabelecido em 300 minutos para o DR 80 e 120 minutos para o RB 21. O modelo de Langmuir descreveu com maior fidelidade o comportamento do sistema sortivo, apresentando coeficiente de determinação (R²) superior a 0,98. Por meio da Isoterma de Langmuir, foi possível obter a capacidade máxima de adsorção dos corantes Direct Red 80 e Reactive Blue 21 pelo bioadsorvente sendo encontrados os valores de 4,92 mg g-1 e 11,13 mg g-1, respectivamente. O modelo cinético de pseudo-segunda ordem melhor descreveu o processo de adsorção do corante RB 21 sob o bioadsorvente, embora a difusão intra-partícula também esteja envolvida no mecanismo de adsorção. Já para o corante DR 80 o modelo de difusão de Morris e Weber sugeriu que a difusão intra-partícula é predominante em todo o processo de adsorção. Depois de otimizadas as condições adsortivas, o bioadsorvente foi empregado a amostras de efluentes têxteis reais fortificadas com soluções aquosas dos corantes, obtendo-se 85 % de remoção do RB 21 e 94 % de remoção do DR 80 na matriz do efluente.

adsorção; Mabea fistulifera Mart.; bioadsorvente; corante


Residues of Mabea fistulifera Mart. were used in this study as a bioadsorbent for the removal of the Reactive Blue 21 (RB 21) and Direct Red 80 (DR 80) dyes from aqueous solutions and samples of real effluents enriched with these dyes. The influence of pH, kinetic, and adsorptive parameters for the removal these dyes were investigated by conducting a series of batch experiments. The maximum adsorption using this bioadsorbent was observed at pH = 2.0 for both dyes. The time of adsorption equilibrium was established at 300 minutes for DR 80 and 120 minutes for RB 21. The Langmuir model stood out because it described the behavior of the sorptive system with higher fidelity than the Freundlich model showing the coefficient of determination (R²) above 0.98. It was possible to obtain the maximum adsorption capacity of the bioadsorbent, for the Direct Red 80 and Reactive Blue 21 dyes, using the Langmuir Isotherm; these values were determined as 4.92 mg g-1 and 11.13 mg g-1, respectively. The pseudo-second order kinetic model best described the adsorption process of the RB 21 dye by the bioadsorbent, however, the intra-particle diffusion is also involved in the mechanism of adsorption. The Morris and Weber diffusion model suggested that the intra-particle diffusion is prevalent throughout the process of adsorption for the DR 80 dye. The bioadsorbent was employed on real textile effluent samples enriched with aqueous solutions of these dyes after the adsorptive conditions were optimized; 85 % RB 21 and 94 % DR 80 removal rates were obtained from the effluent's matrix.

adsorption; Mabea fistulifera Mart.; biosorbent; dye


  • ACHAK, M.; HAFIDI, A.; OUAZZANI, N.; SAYADI, S.; MANDI, L. Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies. Journal of Hazardous Materials, v. 166, n. 1, p. 117-125, 2009. http://dx.doi.org/10.1016/j.jhazmat.2008.11.036
  • AKTAŞ, O.; ÇEÇEN, F. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon. Journal of Hazardous Materials, v. 141, n. 3, p. 769-777, 2007 . http://dx.doi.org/10.1016/j.jhazmat.2006.07.050
  • BAEK, M.; IJAGBEMI, C. O.; SE-JIN, O.; KIM, D. Removal of Malachite Green from aqueous solution using degreased coffee bean. Journal of Hazardous Materials, v. 176, n. 1-3, p. 820-828, 2010. http://dx.doi.org/10.1016/j.jhazmat.2009.11.110
  • BALDEZ, E. E.; ROBAINA, N. F.; CASSELLA, R. J. Employment of polyurethane foam for the adsorption of Methylene Blue in aqueous.Journal of Hazardous Materials, v. 159, n. 2-3, p. 580-586, 2008. http://dx.doi.org/10.1016/j.jhazmat.2008.02.055
  • BHATTACHARYYA, K. G.; SARMA, A. Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes Pigments, v. 57, n. 3, p. 211-222, 2003. http://dx.doi.org/10.1016/S0143-7208(03)00009-3
  • BRITO, S. M. O.; ANDRADE, H. M. C.; SOARESA, L. F.; AZEVEDO, R. P. Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials, v. 174, n. 1-3, p. 84-92, 2010. http://dx.doi.org/10.1016/j.jhazmat.2009.09.020
  • CHEN, G. Q.; ZHANG, W. J.; ZENG, G. M.; HUANG, J. H.; WANG, L.; SHEN, G. L. Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr (VI)-contaminated wastewater. Journal of Hazardous Materials, v. 186, n. 2-3, p. 2138-2143, 2011. http://dx.doi.org/10.1016/j.jhazmat.2010.12.123
  • COULSON, J. M.; RICHARDSON, J. F. Tecnologia química, Lisboa: Fundação Calouste Gulbenkian, 1982. 746 p.
  • EGREJA FILHO, F. B; TEÓFILO, R. F.; REIS, E. L.; REIS, C.; FONTES, M. P. F. Determinação do ponto de carga zero por efeito salino (PCZES) em amostras de solos, por titulação contínua. Revista Tecno-Lógica, UNISC, v. 8, n. 2, p. 51-59, 2004.
  • FRITZ, W.; SCHLÜNDER, E. U. Competitive adsorption of two dissolved organics onto activated carbon - I Adsorption Equilibria. Chemical Engineering Science, v. 36, n. 4, p. 721-730, 1981. http://dx.doi.org/10.1016/0009-2509(81)85088-9
  • FROEHNER, S.; MARTINS, R. F.; FURUKAWA, W.; ERRERA, M. R. Water remediation by adsorption of phenol onto hydrophobic modified clay. Water, Air & Soil Pollution, v. 199, n. 1-4, p. 107-113, 2009 . http://dx.doi.org/10.1007/s11270-008-9863-0
  • GHORBANI, F.; YOUNESI, H.; GHASEMPOURI, S. M.; ZINATIZADEH, A. A.; AMINI, M.; DANESHI, A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chemical Engineering Journal, v. 145, n. 2, p. 267-275, 2008. http://dx.doi.org/10.1016/j.cej.2008.04.028
  • HO, Y. S.; HUANG, C. T.; HUANG, H. W. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, v. 37, n. 12, p. 1421-/1430, 2002. http://dx.doi.org/10.1016/S0032-9592(02)00036-5
  • HO, Y. S; WASE, D. A. J.; FORSTER, C. F. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environmental Technology, v. 17, n. 1, p. 71-77, 1996. http://dx.doi.org/10.1080/09593331708616362
  • HO, Y. S.; MCKAY, G. Pseudo-second order model for sorption processes. Process Biochemistry, v. 34, n. 5, p. 451-465, 1999a. http://dx.doi.org/10.1016/S0032-9592(98)00112-5
  • HO, Y. S.; MCKAY, G. The kinetics of sorption of divalent metal ions ontos phagnum moss peat.Water Research, v. 34, n. 3, p. 735-742, 2000. http://dx.doi.org/10.1016/S0043-1354(99)00232-8
  • HO. Y. S.; MCKAY, G. The Sorption of Lead (II) Ions on Peat. Water Research, v. 33, n. 2, p. 578-584, 1999b. http://dx.doi.org/10.1016/S0043-1354(98)00207-3
  • IMMICH, A. P. S.; SOUZA, A. A. U; SOUZA, S. M. A. G. U. Removal of Remazol Blue RR dye from aqueous solutions with Neem leaves and evaluation of their acute toxicity with Daphnia magna. Journal of Hazardous Materials, v. 164, n. 2-3, p. 1580-1585, 2009. http://dx.doi.org/10.1016/j.jhazmat.2008.09.019
  • KESKINKAN, O.; GOKSU, M. Z. L.; BASIBUYUK, M.; FORSTER, C. F. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, v. 92, n. 2, p. 197-200, 2004. http://dx.doi.org/10.1016/j.biortech.2003.07.011
  • KUMAR, K. V.; PORKODI, K. Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using paspalum notatum. Journal of Hazardous Materials, v. 146, n. 1-2, p. 214-226, 2007. http://dx.doi.org/10.1016/j.jhazmat.2006.12.010
  • LEAL, P. V. B.; DOS ANJOS, J. P.; MAGRIOTIS, Z. M. Estudo da adsorção do corante azul de metileno em caulinita rosa. Journal of Biotechnology and Biodiversity, v. 2, n. 3, p. 38-42, 2011.
  • LOHANI, M. B.; SINGH, A.; RUPAINWAR, D. C.; DHAR, D. N. Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg(II) from aqueous solutions. Journal of Hazardous Materials, v. 159, n. 2-3, p. 626-629, 2008. http://dx.doi.org/10.1016/j.jhazmat.2008.02.072
  • LORENZI, H. As árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Plantarum, 2000. 322 p.
  • MORENO-CASTILLA, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, v. 42, n. 1, p. 83-94, 2004. http://dx.doi.org/10.1016/j.carbon.2003.09.022
  • SILVEIRA NETA, J. de J.; MOREIRA, G. C.; DA SILVA, C. J.; REIS, C.; REIS, E. L. Use of polyurethane foams for the removal of the Direct Red 80 and Reactive Blue 21 dyes in aqueous medium. Desalination, v. 281, p. 55-60, 2011. http://dx.doi.org/10.1016/j.desal.2011.07.041
  • ÖZCAN, A. SAFA; ÖZCAN, ADNAN. Adsorption of Acid Dyes from Aqueous Solutions Onto Acid-Activated Bentonite. Journal of Colloid and Interface Science, v. 276, n. 1, p. 39-46, 2004. http://dx.doi.org/10.1016/j.jcis.2004.03.043
  • OZKAYA, B. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of Hazardous Materials, v. B 129, n. 1-3, p. 158-163, 2006. http://dx.doi.org/10.1016/j.jhazmat.2005.08.025
  • PARK, C.; LEE, M.; LEE, B.; KIM, SW.; CHASE, H.A.; LEE, J.; KIM, S. Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochemical Engineering Journal,v. 36, n. 1, p. 59-65, 2007. http://dx.doi.org/10.1016/j.bej.2006.06.007
  • PARSHETTI, G. K.; TELKE, A. A.; KALYANI, D. C.; GOVINDWAR, S. P. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. Journal of Hazardous Materials, v. 176, n. 1-3, p. 503-509, 2010. http://dx.doi.org/10.1016/j.jhazmat.2009.11.058
  • PEREIRA, F. E. A. Biodiesel produzido a partir do óleo de sementes de Mabea fistulifera Mart. 2007. 87f. Dissertação (Mestrado em Agroquímica) - Universidade Federal de Viçosa, Viçosa, MG, 2007.
  • ROBINSON, T.; CHANDRAN, B.; NAIDU, S. G.; NIGAM, P. Studies on the removal of dyes from a synthetic textile effluent using barley husk in static-batch mode and in a continuous flow, packed-bed, reactor. Bioresource Technology, v. 85, n. 1, p. 43-49, 2002. http://dx.doi.org/10.1016/j.jhazmat.2009.11.058
  • SAHA, P. Assessment on the removal of methylene blue dye using tamarind fruit shell as biosorbent. Water, Air & Soil Pollution, v. 213, n. 1-4, p. 287-299, 2010. http://dx.doi.org/10.1007/s11270-010-0384-2
  • SANTOS, V. C. G.; SOUZA, J. V. T. M.; TARLEY, C. R. T.; CAETANO, J.; DRAGUNSKI, D. C. Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water, Air & Soil Pollution, v. 216, n. 1-4, p. 351-359, 2011. http://dx.doi.org/10.1007/s11270-010-0537-3
  • VIEIRA, A. M. S.; VIEIRA, M. F.; SILVA, G. F.; ARAÚJO, A. A.; FAGUNDES-KLEN, M. R.; VEIT M. T. et al. Use of moringa oleifera seed as a natural adsorbent for wastewater treatment. Water, Air & Soil Pollution, v. 206, n. 1, p. 273-281, 2009. http://dx.doi.org/10.1007/s11270-009-0104-y
  • WEBER, W. J.; MORRIS, J.C. Kinetics of adsorption carbon from solutions. Journal of the Sanitary Engineering Division, v. 89, n. 2, p. 31-60, 1963.
  • WENG, C. H.; LIN, Y. T.; TZENG, T. W. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. Journal of Hazardous Materials, v. 170, n. 1, p. 417-424, 2009. http://dx.doi.org/10.1016/j.jhazmat.2009.04.080
  • YANG, X; AL-DURI, B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. Journal of Colloid and Interface Science, v. 287, n. 1, p. 25-34, 2005. http://dx.doi.org/10.1016/j.jcis.2005.01.093
  • YANG, Y.; WANG, G.; WANG, B.; LI, Z.; JI, X.; ZHOU, Q.; ZHAO, Y. Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresource Technology, v. 102, n. 2, p. 828-834, 2011. http://dx.doi.org/10.1016/j.biortech.2010.08.125
  • ZANONI, M. V. B.; CARNEIRO, P. A. O descarte dos corantes têxteis. Revista Ciência Hoje, v. 29, n. 174, p. 61-64, 2001.

Datas de Publicação

  • Publicação nesta coleção
    16 Set 2014
  • Data do Fascículo
    Mar 2012
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com