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ABSTRACT  
Water erosion is the principal degradation process of tropical soils, and its effects can be 

measured by modeling techniques. Erosion models provide a diagnosis of the soil loss intensity 

and can support the planning of soil conservation practices. Models with low data requirements, 

such as the Revised Universal Soil Loss Equation (RUSLE) and, more recently, the Erosion 

Potential Method (EPM), are mainly applied in Brazil. Thus, the objective of this work was to 

estimate water erosion soil-loss rates using the EPM and RUSLE models on a tropical subbasin, 

followed by a comparison of their outcomes. The models’ application considered soil physical 

parameters, edaphoclimatic conditions of the area, land use, and subbasin management 

practices. The accuracy of the methods was verified using total transported sediment and water 

discharge data. We compared the models using Pearson's correlation analyses, considering a 

5% of significance. We found a predominance of moderate-intensity erosion with average soil 

loss of 1.17 and 1.46 Mg ha-1 year-1, measured by EPM and RUSLE, respectively. The EPM 

model underestimated soil losses by 15.27%, and RUSLE overestimated by 19.08%, indicating 

a higher percentage of areas with high erosion rates (4.60%). The models presented results with 

a different order of magnitude, but with significant correlations, indicating that both methods 

pointed out similar zones of intense and light-erosion rates. 

Keywords: RUSLE, Soil Conservation, Soil Losses. 

Modelagem da erosão hídrica pelo Método de Erosão Potencial e pela 

Equação Universal de Perda de Solo Revisada: uma análise 

comparativa 

RESUMO 
A erosão hídrica é o principal processo de degradação dos solos tropicais e seus efeitos 

podem ser mensurados por técnicas de modelagem.  A modelagem fornece um diagnóstico 

sobre as taxas erosivas e é capaz de auxiliar no planejamento de práticas de conservação do 

solo. No Brasil, são aplicados principalmente modelos com baixa exigência de dados, como a 
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Equação Universal de Perda de Solo Revisada (RUSLE) e, mais recentemente, o Método de 

Erosão Potencial (EPM). Desta forma, o objetivo do trabalho foi estimar as perdas de solo por 

erosão hídrica em uma sub-bacia hidrográfica tropical, localizada no sudeste brasileiro, 

utilizando o EPM e a RUSLE e comparar os seus resultados. A aplicação dos modelos 

considerou as características físicas, edafloclimáticas, o uso de solo e as práticas de manejo da 

sub-bacia. A precisão dos métodos foi verificada usando dados de sedimentos totais 

transportados e de descarga de água e realizou-se a análise de correlação entre os resultados, 

utilizando o coeficiente de correlação de Pearson, com 5% de significância. Na sub-bacia 

ocorreu predomínio de erosão em intensidade moderada com perda de solo média de 1,17 e 

1,46 Mg ha-1 ano-1, mensuradas pelo EPM e RUSLE, respectivamente. O modelo EPM 

subestimou as perdas de solo em 15,27% e a RUSLE superestimou em 19,08%, apontando 

maior porcentagem de áreas com elevadas taxas erosivas (4,60%). Os modelos apresentaram 

resultados com ordem de grandeza distintas, porém com correlação significativa indicando que 

ambos os métodos apontam maiores e menores taxas erosivas, nas mesmas áreas da sub-bacia. 

Palavras-chave: Conservação do Solo, Perdas de Solo, RUSLE. 

1. INTRODUCTION 

Water erosion is the major degradation process on tropical soils that can cause several 

negative impacts and compromise the sustainability of agricultural production. The total of soil 

losses by water erosion in Brazil is currently estimated in about 850 million Mg year-1 (Merten 

and Minella, 2013), generating local impacts by the damages in plantations that cause soil-

nutrient removal, as well as external effects like siltation and water-body pollution (Posthumus 

et al., 2015). 

Conventional methods that involve field experiments to determine erosion rates and 

identify susceptible zones are expensive and require a high demand for time. Also, it can be 

impracticable to implement these procedures on a hydrographic basin-scale (Ganasri and 

Ramesh, 2016; Efthimiou et al., 2017). Therefore, the use of modeling techniques can help to 

overcome these limitations and to obtain precise and effective results.  

Erosion models are easy to interpret, require minimal resources, and can be executed with 

available information. These models, when combined with Geographic Information Systems 

(GIS), allow the spatialization of results and identify high erosion risks, contributing to the 

planning of mitigation measures (Ganasri and Ramesh, 2016). 

Brazil lacks data availability, especially regarding soil maps that are scarce or unavailable, 

and climate due to the non-spatialized information and several blanks on the 

hydrometeorological station's database. There are other problems concerning the data 

acquisition, once the information is scattered between different agencies, which lead to the 

selection of models that comply with low data demand criteria and can provide a satisfactory 

diagnosis. 

The Revised Universal Soil Loss Equation (RUSLE), developed by Renard et al. (1997), 

is the most widespread method to evaluate erosion processes (Ganasri and Ramesh, 2016), and 

the Erosion Potential Method (EPM), created by Gavrilovic (1962), stands out for its ease of 

application, which led it to be used in studies involving tropical Brazilian soils (Tavares et al., 

2019; Sakuno et al., 2020). However, few studies have compared the efficiency of the two 

models or the precision of their results (Amorim et al., 2010). 

Since the precise assessment of erosion is an essential element to design and implement 

targeted and effective soil conservation measures, our goal was to estimate soil loss rates by 

water erosion using the EPM and RUSLE models on a tropical subbasin, followed by a 

comparison of their outcomes. We tested the hypothesis that both models present a similar 



 

 

3 Water erosion modeling by the Erosion Potential … 

Rev. Ambient. Água vol. 15 n. 4, e2501 - Taubaté 2020 

 

spatial distribution of soil loss, pointing to similar zones of intense and light-erosion rates. 

2. MATERIAL AND METHODS 

2.1. Experimental Site 

The study was performed in the José Lúcio Creek Subbasin (Figure 1), which belongs to 

the Rio Grande Basin, located in Conceição do Rio Verde, Minas Gerais, Brazil (from 479251 

to 483469 meters W, and from 7574201 to 7570015 meters S, Zone 23K, Datum SIRGAS 2000 

UTM). 

The climate in this area, according to the Köppen classification, is subtropical highland 

(Cwb), characterized by humid hot summers, and dry, tempered winters, with an average annual 

temperature of 20ºC and precipitation of 1,500 mm (Alvares et al., 2013). The study field is in 

the Mantiqueira Mountains, the altitude ranges between 893 and 1,339 m (Figure 1A) and the 

relief is predominantly undulating, with an average inclination of 19.6% (Figure 1B).  

We extracted the Digital Elevation Model (DEM) from the level curves of Minas Gerais, 

obtained in the Infraestrutura de Dados Espaciais do Sistema Estadual de Meio Ambiente e 

Recursos Hídricos (SISEMA, 2019) and with this model we elaborated a Declivity Map using 

the Slope tool from ArcMap 10.3 (ESRI, 2015). Using the digital Soil Map of Minas Gerais 

(UFV et al., 2010) and field observations, we elaborated the digital map of soils of the area 

(Figure 1C), which showed that dystrophic Red Latosol and dystrophic Tb Haplic Cambisol are 

predominant, with 89.5% and 10.5%, respectively.  

 

Figure 1. Location map, digital elevation model (A), slope map (B), digital soil map with soil 

collection sites (C) and land use map (D) of José Lucio Creek Subbasin, Conceição do Rio Verde, 

south of Minas Gerais, Brazil. Notes: dystrophic Red Latosol (LVd) and dystrophic Tb Haplic 

Cambisol (CXbd). 



 

 

Rev. Ambient. Água vol. 15 n. 4, e2501 - Taubaté 2020 

 

4 Guilherme Henrique Expedito Lense et al. 

The subbasin is occupied with coffee cultivation (46.2%), native and regenerating forest 

(48.7%), facilities (0.6%) and drainage net (4.5%) (Figure 1D). The Land Use Map was 

elaborated using a history of occupation of the Rio Verde Farm (Ipanema Agricultural SA) and 

satellite images from Landsat 8 Operational Land Imager (OLI), on bands 2, 3 and 4, orbit/point 

219/75, obtained from Divisão de Geração de Imagens (INPE, 2019), which processing was 

also done using ArcMap 10.3 (ESRI, 2015). 

2.2. Erosion Potential Method (EPM) 

Erosion Potential Method (EPM) is an empirical model to estimate water erosion in 

hydrographic basins, taking into account parameters related to the climate, topography, soil 

type, and land use. The model has been widely applied worldwide and has recently been adapted 

to Brazilian edaphoclimatic conditions (Efthimiou et al., 2017; Sakuno et al., 2020).  

The intensity of the erosion process (Z) (Gavrilovic, 1962) can be calculated by               

Equation 1: 

𝑍 = 𝑌 ⋅ 𝑋𝑎 ⋅ (𝜑 + √𝐼𝑠𝑟
2 )             (1) 

Where, Y = soil resistance to water erosion, range from 2 to 0.25; Xa = land use and 

management coefficient, range from 1.0 to 0.05; φ = coefficient of visible erosion features, 

range from 1.0 to 0.1; and Isr = average inclination of the area in percentage (%).  

The Y value from the LVd and CXbd was 0.8 e 0.9, respectively. Latosols are the main 

soil in the area, which indicates that the subbasin presents high resistance to erosion. The Xa 

coefficient of 0.33 demonstrated that the subbasin presents high vegetal density and good soil 

cover. The φ value of 0.28 indicates the predominance of surface erosion. The parameters Y, 

Xa, and φ were determined based on tabulated values, established by Gavrilovic (1962) and 

adapted to the Brazilian edaphoclimatic conditions by Sakuno et al. (2020). The relief of the 

area is mostly undulating, with an average slope (Isr) of 19.60%. The Isr was determined using 

the Declivity Map (Figure 1B). 

Zones with Z values higher than 1.0 are the ones with severe erosion, while areas with Z 

values lower than 0.19 represent those with less intense degradation (Gavrilovic, 1962). Using 

the Z coefficient, the real soil loss (Wyr) can be estimated in Mg ha-1 year-1, as shown in 

Equation 2: 

𝑊𝑦𝑟 = (√
𝑡0

10

2
+ 0.1) ⋅ 𝐻𝑦𝑟 ⋅ 𝜋 ⋅ √𝑍3

2
∙ 𝐷𝑠           (2) 

Where, t0 = average temperature in ºC year-1; Hyr = average annual precipitation, in mm; 

Ds = soil average density in kg dm-3.   

The area presents a mean temperature of 20°C (t0) and a mean annual rainfall of 1,500 mm 

(Hyr). We obtained climate factors (Hyr and t0) using data from a rainfall station, operated by 

the Instituto Nacional de Meteorologia (INMET, 2019), and located near the study area. The 

Ds of the area was determined through analysis of undisturbed soil samples (Blake and Hartge 

1986), collected all over the subbasin, and presented a mean value of 1.24 kg dm-3 (Figure 1C). 

Next, its values were incorporated into the equation to convert the unit m3 year-1 to Mg year-1 

so the results could be expressed in the same unit as RUSLE, making the comparison doable. 

Most predictive water erosion models do not consider the delivery, deposition, or 

transportation of sediments into the water bodies, and EPM innovates in this issue, because it 

has in its structure the retention coefficient (Ru) which is a way to determine the fraction of 

sediments retained in the subbasin, thus how much sediment is carried into the watercourses, 

representing the real soil loss. Therefore, the Ru coefficient was calculated according to Zemljic 

(1971), using Equation 3. 
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𝑅𝑢 =
(𝑂⋅𝐷)0,5∙(𝐿+𝐿𝑖)

𝐹⋅(𝐿+10)
              (3) 

Where, F = sub basin total area (8.60 km2); O = perimeter (13.50 km); D = average 

difference of elevation (0.17 km), obtained by the difference between the average altitude 

(1,066 m) and the minimum altitude (900 m); L = main watercourse length (5.20 km); and Li 

= secondary length (3.48 km). 

2.3. Revised Universal Soil Loss Equation (RUSLE)  

RUSLE (Equation 4) is an empirical equation to estimate water erosion that considers six 

individual and linearly related parameters (Equation 4). RUSLE is used worldwide due to its 

high degree of flexibility, allowing the model to be adapted to different regions with different 

edaphoclimatic conditions. In addition, there is extensive scientific literature that allows 

comparability of model results (Alewell et al., 2019). 

𝐴 = 𝑅 ∙ 𝐾 ∙ 𝐿𝑆 ∙ 𝐶 ∙ 𝑃              (4) 

Where, A = average annual soil loss, in Mg ha-1 year-1; R = rainfall erosivity factor, in MJ 

mm ha-1 h-1 year-1; K = soil erodibility factor, in Mg ha-1 MJ-1 mm-1; LS = topographic factor, 

given by the relationship between length (L) and inclination of the relief (S), dimensionless; C 

= cover and management factor, dimensionless; and P = conservation practices factor, 

dimensionless. 

Using the erosivity map of Minas Gerais from Aquino et al. (2012), we determined the R-

factor of the subbasin as 6,800 MJ mm ha -1 h-1 year-1, while for the K-factor, that represents 

different susceptibility of soils to erosion, we adopted values that ranged from 0.026 to 0.035 

Mg ha-1 MJ-1 mm-1 for dystrophic Red Latosol (LVd) and dystrophic Tb Haplic Cambisol 

(CXbd), respectively (Silva et al., 2009; Tavares et al., 2019). 

To determine the LS-factor, we used the Digital Elevation Model (DEM) and the Raster 

Calculator tool from ArcGIS 10.3, following Equation 5, established by Moore and Burch 

(1986). The final values ranged from 0 to 188, according to the topography, with an average of 

5.6. 

𝐿𝑆 = (
𝐹𝐴∙10

22.13
)
0.4

∙ (
𝑠𝑖𝑛⁡(𝑆)

0.0896
)
1.3

             (5) 

Where, LS = topographic factor, dimensionless; FA = flow accumulation that is expressed 

as the cell numbers of the DEM grid; S = subbasin declivity (degrees); and 10 = DEM spatial 

resolution (m). 

The C-factor varies, according to the vegetation cover, from 0 to 1, where higher values 

represent a higher soil degradation due to the impact of rainfall and to the surface runoff 

(Beskow et al., 2009). This factor was established based on the literature, being 0.0866 for 

coffee cultivation zones (Prochnow et al., 2005) and 0.015 for forests (Silva et al., 2016). 

The P-factor also varies between 0 and 1 and expresses the potential that management 

practices have to reduce soil erosion, where lower values indicate efficient conservation 

practices (Beskow et al., 2009). Coffee cultivation zones in the study area obtained 0.5, and 

forests, 0.01. 

The RUSLE estimates total sediments eroded from the subbasin and, to calculate the 

delivery rate, its outcome was multiplied by Ru coefficient. Lastly, the spatial distribution of 

the soil loss estimates obtained with both RUSLE and EPM were done using the Raster 

Calculator Tool, from ArcGIS 10.3 (ESRI, 2016), generating the soil-loss maps. 

We performed a Pearson correlation test between the results of both methods, with a 

significance of 5%, relating five thousand points representing image pixels. These points were 
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randomly extracted from the soil losses maps of RUSLE and EPM with a 10 meters minimum 

distance of each other. Thereunto, we used the Create Random Points and Extract Value to 

Point tools from ArcGIS 10.3 (ESRI, 2016). 

2.4. Models Validation 

The validation of the models was done using the observed sediment calculation, which can 

be executed with data of the total of sediments transported in the water discharge (observed 

sediment), as proposed by Beskow et al. (2009). 

Initially, we developed a discharge curve relating precisely the total of transported 

sediments with the water discharge (Figure 2), with data (total solids in water, and flow) from 

1997 to 2010 (there was no data collected since then), obtained through an Measurement Station 

located near the estuary of the José Lúcio Creek (477209 m W and 7592560 m S), operated by 

the Instituto Mineiro de Gerenciamento de Recursos Hídricos (IGAM). 

Then, after calculating the annual Observed SD using the discharge curve and information 

about the daily runoff obtained from the Agência Nacional de Águas (ANA, 2019), the outcome 

of transported sediment was compared to the soil loss estimates provided by RUSLE and EPM 

modeling. 

 
Figure 2. Water discharge curve (total solids in water x 

flow) on the José Lúcio Creek Subbasin, Conceição do Rio 

Verde, southern Minas Gerais, Brazil. 

3. RESULTS AND DISCUSSION 

Ribeirão José Lucio Sub-basin is predominantly covered by high-density coffee cultivation 

and woodland. The good vegetative coverage is reflected in the low value of the Z coefficient, 

which was 0.23, indicating that in the subbasin areas with low susceptibility to erosion 

predominate. Both RUSLE and EPM soil loss estimates are highly influenced by vegetative 

cover, and this is the main factor of anthropic interference in the erosion process (Renard et al., 

1997). 

The EPM estimated total soil losses in the subbasin at 10,125.56 Mg year-1, while the 

RUSLE result was 30% higher (13,449.01 Mg year-1). The result is similar to that of Efthimiou 

et al. (2016), who compared the application of the RUSLE and EPM models in Greece, 

observed an estimate of the soil loss carried out by RUSLE about 10% higher than the results 

of the EPM. 

The retention coefficient (Ru) of the sub-basin was calculated at 0.995, indicating that 

9.95% of the sediments generated in the area reach watercourses (real soil loss), contributing to 

the silting up and the depreciation of water quality (Bispo et al., 2017). 

Based on Ru, EPM and RUSLE estimated the real soil loss at 1,007.49 and 1,343.15 Mg 

year-1, with average losses of 1.17 and 1.56 Mg ha-1 year-1, respectively. Comparing the results 
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of soil losses with the observed sediment value of 1.31 Mg ha-1 year-1, we found that EPM 

underestimated the results by 15.27%, while RUSLE overestimated by 19.08%. Soil loss 

measured by EPM was closer to observed sediment. However, both methods exhibited 

satisfactory accuracy, and Pandey et al. (2007) supports the premise that errors below 20% 

allow the validation of soil-erosion model results. Thus, the results of the models are efficient 

for assessing the current state of soil degradation in the subbasin, as well as for planning 

measures to reduce water erosion. 

The maps of soil losses generated by EPM and RUSLE are shown in Figure 3, pointing to 

lower erosion rates in the forest areas. 

 
Figure 3. Spatial distribution of the soil loss estimates of Potential Erosion 

Method (EPM) and Revised Universal Soil Loss Equation (RUSLE) in the José Lúcio 

Creek Subbasin, Conceição do Rio Verde, southern of Minas Gerais, Brazil.  

The range of the variation in soil losses for the subbasin was higher for RUSLE (ranging 

from 0 and 101 Mg ha-1 year-1), while EPM estimated the losses between 0 and 5.6 Mg ha-1 

year-1. Despite this disparity, the results of both models presented a significant correlation (p < 

0.001) (Figure 4), indicating that even with different orders of magnitude, the two models 

pointed to similar zones of intense- and light-erosion, which is notable on Figure 3. 

 
Figure 4. Linear correlation between estimates of soil losses 

generated by the Potential Erosion Method (EPM) and the 

Revised Soil Loss Equation (RUSLE) in the José Lúcio Creek 

Subbasin, Conceição do Rio Verde, southern Minas Gerais, 

Brazil.  
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Following the proposal of Avanzi et al. (2013) and Beskow et al. (2009), we classified the 

erosion rates qualitatively to determine the intensity of the process. Both models showed a 

predominance of very weak erosion, which can be explained by the adoption of conservation 

practices on the coffee crops, and also by the presence of areas with dense vegetative cover. 

RUSLE found a higher percentage of areas with severe degradation process (4.6%), while EPM 

detected only 0.07% of the subbasin with moderate erosion, with no occurrence of severe soil 

losses (Table 1). 

Table 1. Soil loss classes estimated by Erosion Potential Method and by 

Revised Universal Soil Loss Equation for the José Lúcio Creek 

hydrographic subbasin, Conceição do Rio Verde, southern Minas Gerais, 

Brazil. 

Soil Loss (Mg ha-1 year-1) 
EPM RUSLE 

Soil Loss Classes* 
Area (%) 

0 – 1 53.86 66.54 Very weak 

1 - 2.5 15.70 10.58 Weak 

2.5 – 5 30.41 12.80 Weak to Moderate 

5 - 7.5 0.07 5.48 Moderate 

> 7.5 0.00 4.60 Severe 

*Soil loss classes adapted from Beskow et al. (2009) and Avanzi et al. 

(2013). Notes: EPM = Erosion Potential Method; RUSLE = Revised 

Universal Soil Loss Equation. 

The most alarming results generated by RUSLE can be explained by the LS factor, which 

showed great variation (0 to 188), due to the relief characteristics in the subbasin, with higher 

values of the LS factor concentrating in the places of greater slope. The relief has a high 

influence on the variation in RUSLE results (Beskow et al., 2009). On the other hand, for the 

EPM model, the impact of the relief (Isr) on the estimates is high, but has less weight in the 

variation of the results than the coefficients Xa, Y, and Hyr (Dragičević et al., 2017). In addition, 

the high vegetative cover of the sub basin provides a lower value of Xa, which minimizes the 

results of the EPM model. 

According to Ebrahimzadeh et al. (2018), the RUSLE classifies regions based on the risk 

of soil erosion in a reliable way, and making field observations, the author found out that sites 

with high soil loss estimated by the model were highly susceptible to the erosive process. Based 

on this statement, and considering that both models presented acceptable errors (< 20%), it can 

be considered that RUSLE was more efficient in pointing out the areas most susceptible to 

erosion than the model EPM. 

It is worth mentioning that both RUSLE and EPM estimate subbasin soil losses, but cannot 

measure the actual rate of water erosion or determine the type of soil erosion (Ebrahimzadeh et 

al., 2018). Therefore, the models are diagnostic tools that should be interpreted critically and 

combined with other techniques, such as field experiments, when possible. 

Finally, even in areas where low soil loss was estimated by the models, soil conservation 

practices must be introduced to minimize water erosion as much as possible and ensure the 

future conservation of agricultural systems. 

4. CONCLUSION 

The models EPM and RUSLE estimated water erosion in the José Lúcio Creek Subbasin 

with satisfactory precision, with low cost and ease of application. 
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EPM underestimated soil losses by 15.27%, while RUSLE overestimated them by 19.08%, 

with alarming results pointing to 4.6% of the study area presenting high erosion rates. 

 Both models present a similar spatial distribution of soil losses, pointing to the same areas 

with high erosion rates, supporting the tested hypothesis. The models can be used as tools for 

planning erosion mitigation practices in the subbasin. 
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