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ABSTRACT  
Chloroquine and hydroxychloroquine are aminoquinolines used in the treatment of 

endemic diseases in Latin America such as malaria and non-endemic with wide prevalence such 

as rheumatoid arthritis and lupus erythematosus. Described as persistent, bioaccumulative, and 

dangerous for aquatic biota, chloroquine and hydroxychloroquine are considered emerging 

pollutants intensified by the COVID-19 pandemic, occurring in low concentrations that are not 

totally removed in wastewater treatment plants and are not covered by legislation. This article 

presents a theoretical approach based on literature review following a semi-systematic 

methodology covering detection strategies of the chloroquine and hydroxychloroquine drugs in 

effluent and receiving water bodies; estimates of environmental concentrations during the 

pandemic; methods that use degradation and removal of compounds from water; and toxic 

effects on aquatic biota. Concentrations previously detected and estimated in the aquatic 

environment can lead to significant changes in animal physiology analyzed from biomarker 

changes, behavior and mortality in studies with native and non-native species. Studies are 

necessary to reproduce and understand possible environmental scenarios adopting the 

indiscriminate use of drugs to serve as standards for environmentally safe concentrations when 

there is no specific legislation. 

Keywords: COVID-19, emerging pollutants, toxicity. 

Cloroquina e hidroxicloroquina no ambiente e organismos 

aquáticos: uma revisão 

RESUMO 
A cloroquina e a hidroxicloroquina são aminoquinolinas utilizadas no tratamento de 

doenças endêmicas da América Latina como a malária e não endêmicas com ampla prevalência 

como a artrite reumatoide e o lúpus eritematoso. Descritas como persistentes, bioacumulativas 

e perigosas para a biota aquática são consideradas poluentes emergentes intensificados pela 

pandemia de COVID-19, ocorrendo em baixas concentrações que não são totalmente removidas 

em estações de tratamento de efluentes e não são contempladas pela legislação. Este artigo tem 
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como objetivo apresentar uma abordagem teórica baseada em revisão de literatura semi-

sistemática abrangendo estratégias de detecção dos fármacos cloroquina e hidroxicloroquina 

em efluentes e corpos d'água receptores; estimativas de concentrações ambientais durante a 

pandemia; métodos que utilizam a degradação e remoção dos compostos na água; e os efeitos 

tóxicos sobre a biota aquática. Concentrações previamente detectadas e estimadas para o 

ambiente aquático podem levar a alterações significativas na fisiologia animal, analisadas a 

partir de alterações de biomarcadores, comportamento e mortalidade em estudos com espécies 

nativas e não nativas. Se faz necessário pesquisas que busquem reproduzir e compreender 

possíveis cenários ambientais com o uso indiscriminado dos medicamentos para servir como 

padrões de concentrações ambientalmente seguras na ausência de uma legislação específica. 

Palavras-chave: COVID-19, poluentes emergentes, toxicidade. 

1. INTRODUCTION  

Chloroquine (CQ) belongs to the quinoline group, known for its bactericidal, antiseptic, 

and antipyretic actions (Ramesh et al., 2018). The drug has been used to treat malaria endemic 

in eighteen countries in Latin America and the Caribbean and has seen an increase in estimated 

case incidence since 2015, where Brazil represents 20% of cases (WHO, 2020). Chloroquine 

has also been used for rheumatoid arthritis and lupus erythematosus (Rainsford et al., 2015), 

non-endemic diseases that have also registered an increase in this region (Hernández-Negrín 

and Padilla-Cueto, 2020; Papadimitropoulos et al., 2022). In recent decades its action has been 

explored as a broad-spectrum antiviral agent in inhibiting the replication of other respiratory 

viruses, such as influenza A/H5N1, SARS-CoV, and human coronavirus 229E (Savarino et al., 

2003; Vincent et al., 2005; Kono et al., 2008; Murray et al., 2010; Yan et al., 2013).   

A derivative of chloroquine, hydroxychloroquine (HCQ), with similar action, was first 

synthesized in 1946 when a hydroxyl group was introduced to reduce toxicity to organisms 

(McChesney, 1983). However, at high concentrations or prolonged use, both can cause acute 

intoxication and death (Weniger, 1979; Wichmann et al., 2007). This is due to the fact that both 

are water soluble and have good oral bioavailability, reaching high plasma levels in patients, 

which, added to the extremely long elimination half-life (weeks to months) and large volumes 

of distribution, indicates significant partitioning into tissues and organs (Davis et al., 2020; 

Drugbank, 2022a; 2022b).  

At the beginning of the COVID-19 pandemic, published in vitro studies demonstrated the 

effectiveness of chloroquine (Wang et al., 2020) and hydroxychloroquine (Liu et al., 2020; 

Gautret et al., 2020) as drugs to be administered to combat the SARS-CoV-2 virus. Motivated 

by these data, the use of these drugs increased considerably, and the drugs were adopted as a 

treatment protocol, becoming one of the drugs for which there was the highest sales growth rate 

in 2020, in contrast to the same period in 2019 (Yazdany and Kim, 2020; Malik et al., 2020; 

Nasir et al., 2020; Agarwal et al., 2021; Romano et al., 2021), although its efficacy against 

SARs-CoV-2 and high toxicity to patients was questioned by several studies (Shukla et al., 

2020; Ghazy et al., 2020; Jameleddine et al., 2020; Sanders et al., 2020; Rosenberg et al., 2020; 

Geleris et al., 2020; Luz et al., 2021). Thus, places with a high incidence of COVID-19, together 

with a high rate of eliminating aminoquinolines in patients´ excretion, incorrect disposal and 

low removal in Wastewater Treatment Plants (WWTPs), or even in the absence of these, 

resulted in residual concentrations of pharmaceuticals in water bodies, causing ecotoxicological 

risks (Kuroda et al., 2021).  

Described as persistent, bioaccumulative and dangerous to aquatic biota, this can lead to 

adverse effects on aquatic and human life (Bila and Dezotti, 2003; Ramesh et al., 2018; Luz et 

al., 2021; Mendonça-Gomes et al., 2021; Kumari and Kumar, 2021). These drugs and their 

metabolites are included in emerging pollutants because they are not covered by regulations 



 

 

3 Chloroquine and hydroxychloroquine in the environment and … 

Rev. Ambient. Água vol. 18, e2880 - Taubaté 2023 

 

and their concentration and effects on the environment are still poorly understood due to long 

exposure to residual levels (Corcoll et al., 2014; Daughton, 2014), as they are designed to be 

biologically active, even at trace levels, and may exhibit unwanted effects on target and non-

target organisms (Zhou et al., 2016). 

In this context, Brazilian legislation is not very restrictive for effluents contaminated with 

drugs and their limits for disposal in water bodies, without criteria with maximum values 

allowed for the concentration of these pollutants in water. The potability of drinking water for 

human consumption, stipulated by Consolidation Ordinance No. 5, of September 28, 2017 

(Brasil, 2017), does not refer to the permitted limits for the presence of pharmaceuticals in 

supply water. Resolution 357/2005 related to the quality of water resources, defined by the 

Ministry of the Environment through the National Council for the Environment (CONAMA) 

and in CONAMA Resolution 430/2011 (CONAMA, 2011) responsible for establishing 

conditions and standards for the release of effluents for organic substances and inorganic 

substances, also do not address threshold standards for these pollutants. 

There may be diverse consequences of this type of pollution on aquatic organisms ranging 

from small biochemical changes, damage at the cellular level, or even death, according to the 

mechanism of action and severity of the toxicological effect (Bernet et al., 1999; Ramesh et al., 

2018; Mendonça-Gomes et al., 2021). Indirectly, it can also increase the susceptibility of 

organisms to pathogens, promote the prevalence of diseases in the aquatic ecosystem and cause 

changes at the population level (Ellis et al., 2011; Silvestre, 2020; Ali et al., 2021). 

Thus, considering that the presence and increase of chloroquine and hydroxychloroquine 

in aquatic environment can affect these animals’ health, this article presents a theoretical 

approach based on a literature review discussing detection and removal strategies, estimates of 

Predicted Environmental Concentrations (PECs) and the ecotoxicological effects for aquatic 

biota attributed to drugs. 

2. MATERIALS AND METHODS 

A literature review was conducted following a semi-systematic methodology, where the 

search strategy may or may not be systematic, with qualitative analysis and evaluation, 

contributing to the state-of-the-art knowledge and related subjects in the literature (Snyder, 

2019). The review process was carried out using the Web of Science® 

(www.webofknowledge.com) and Scopus® (https://www-

scopus.ez31.periodicos.capes.gov.br/) databases. While for extracting the pharmacokinetic and 

physicochemical values of the drugs, the PUBCHEM® and DRUGBANK® databases were used 

(https://pubchem.ncbi.nlm.nih.gov/; https://www.drugbank.ca/). Our investigation included a 

combination of the following terms: “chloroquine” or “hydroxychloroquine” and “water”, 

“sewage”, “determination”, “toxicology” “COVID-19”. Eligibility criteria were applied to each 

publication, which consisted of the scope and availability of data without any date. 

Then, studies were selected and grouped into key themes, as follows: (a) water 

contamination by aminoquinolines (detection and environmental concentrations); (b) estimates 

of predicted environmental concentrations during the pandemic; (c) removal methods and (d) 

ecotoxicity to aquatic organisms. 

3. RESULTS AND DISCUSSION 

3.1. Contamination of water by aminoquinolines and detection 

Aminoquinolines and their metabolites can reach surface water bodies through different 

sources, such as inadequate disposal, effluents from hospitals and pharmaceutical industries, 

and mainly through human excretion (Araújo et al., 2021). Having a high oral dose absorption, 

these drugs are metabolized by Cytochrome P450 and eliminated in patients’ feces and urine 
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corresponding to 50% of the ingested dose in the original form or metabolites such as desethyl 

chloroquine (chloroquine N-dealkylated by CYP2C8 and CYP3A4) or desethyl 

hydroxychloroquine (hydroxychloroquine N-dealkylated by CYP3A4), and can be detected in 

biological fluids months after a single dose (Ducharme and Farinotti, 1996; DRUGBANK, 

2022a; 2022b). 

Depending on the hydrology of the system and the physicochemical characteristics of the 

drugs, their residues can accumulate in sediments, infiltrate into groundwater, or become 

persistent available in the surface water of lakes, rivers and reservoirs, used as drinking water 

and for agricultural irrigation (Quadra et al., 2017). The aquatic bioavailability of these 

compounds can be explained by the molecular size, water solubility, n-octanol-water partition 

coefficient (Kow) which favors passage of drugs through membranes and bioaccumulation, 

ionization constant (pKa) favoring absorption at alkaline pH, non-volatile under normal 

temperature conditions and chemically stable, although this information is poorly standardized 

in the literature, values such as 0.0175 mg mL-1 to 100 mg mL-1 are cited for solubility of 

chloroquine compounds and 0.0261 mg mL-1 to 100 mg mL-1 for hydroxychloroquine 

compounds (Table 1).  

Its environmental detection can be a problem due to low concentrations identifying it as 

non-existent when methods are not refined to identify them. Among the detection and 

quantitative determinations, methods for drugs and their metabolites are liquid 

chromatography, capillary electrophoresis, electroanalytical, spectrophotometric, and ELISA-

based methods (Saka, 2020).  

Chromatography was the method most used by the articles in the detection of CQ and HCQ 

due to the lower detection limit contemplating environmental concentrations in the range of ng 

L-1 to µg L-1 levels (Roberts and Bersuder, 2006; Tegegne et al., 2021). The High-Performance 

Liquid Chromatography (HPLC) and Ultra High-Performance Liquid Chromatography (UPLC) 

techniques can be mentioned with the selection of detectors such as Ultraviolet, Fluorescence, 

Diode-Array and Mass Spectrometry which, when integrated, presented a high degree of 

sensitivity, selectivity and specificity for the compounds. In the papers, these methods were 

used primarily for the diagnosis of drugs in biological fluids (e.g., blood, plasma, and urine) 

(Tett et al., 1985; Sanghi et al., 1990; Chaulet et al., 1994; Walker and Ademowo, 1996; Füzéry 

et al., 2013; Singh et al., 2015; Wang et al., 2012; Harahap et al., 2021), biomarkers (Ducharme 

and Farinotti, 1997), pharmaceutical samples (Dongre et al., 2009) and in water (Roberts and 

Bersuder, 2006; Olaitan et al., 2014; Nason et al., 2021). 

The capillary electrophoresis method was more used for quantification (ng mL-1) in 

biological fluids (Müller and Blaschke, 2000; Oliveira and Bonato, 2007) while 

spectrophotometric methods were more used for pharmaceutical samples (μg mL-1) (Reddy et 

al., 2004; Nelson et al., 2010). The Elisa method has been considered both for the determination 

and quantification (ng mL-1) of drugs in biological systems (using antibodies) and also in 

pharmaceutical formulations (Khalil, et al., 2011; Shenton et al., 1988). These methods were 

more limited for drug molecule analysis and their metabolites in water. 

Electrochemical methods are another promising alternative because they are modern, low 

cost, accurate, selective, fast and have a wide range of linear concentration (μM and nM) (Saka, 

2020). Cork-graphite sensors (Araújo et al., 2021; 2022) for hydroxychloroquine and glassy 

carbon modified with graphene oxide (Srivastava et al., 2019), carbon pulp modified with 

nanowire Cu(OH)2 (Mashhadizadeh et al., 2009) for chloroquine were some examples applied 

in the voltammetry technique, which refers to the examination of the density potential curves 

of an electrochemical system, detecting concentrations of standard aqueous solutions of CQ 

and HCQ, which can be tools for monitoring of drug in effluents with higher concentration. 
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Table 1. Chemical formulas and predicted properties of compounds and their major metabolites. 

Compounds and metabolites Molecular Formula 
Molecular Weight 

(g mol-1) 
pKa Kow 

Solubility 

(mg mL-1) 
Reference 

Chloroquine C18H26ClN3 319.9 10.1 4.6 0.0175 DRUGBANK (2022a) 

Chloroquine phosphate C18H32ClN3O8P2 515.9 10.3 3.9 
0.0175 

100 

DRUGBANK (2022c); 

British Pharmacopoeia 

(2013) 

Desethyl chloroquine C16H22ClN3 291.82 - 3.8 - PUBCHEM (2022c) 

Hydroxychloroquine C18H26ClN3O 335.9 9.6 3.6 0.0261 DRUGBANK (2022b); 

Hydroxychloroquine sulfate C18H28ClN3O5S 434.0 9.7 2.8 
0.0261 

100 

DRUGBANK (2022d); 

British Pharmacopoeia, 

(2013) 

Desethyl hydroxychloroquine C16H22ClN3O 307.82 - 2.7 - PUBCHEM (2022d) 

3.2. Concentrations in the aquatic environment 

Published studies on the concentrations of chloroquine and hydroxychloroquine in the environment are extremely limited but reveal the 

presence of aminoquinolines in surface and wastewater, having increased in recent years and especially during the pandemic. Chen et al. (2013) 

detected, through high performance liquid chromatography/mass spectrometry, the compounds in surface sediments near rivers in southeastern 

China. Although this study did not confirm the structural identities, each was reported in the sediments of at least one of the analyzed rivers at 

levels sufficient to provide signal-to-noise relationships. 

Olaitan et al. (2014) detected residual concentrations of chloroquine in Nigeria through high performance liquid chromatography, which was 

5.014 μg L-1in groundwater and 0.11 μg L-1 in surface water. Also in Nigeria, studies were carried out by Hu et al. (2021) with data collected in 

2017, chloroquine appeared among the pharmaceutical compounds identified with the highest relative abundance (1×105) in effluents, surface 

waters, wastewater and in tap water identified through high-resolution mass spectrometry. This may be related to being one of the countries with 

the highest incidence of malaria (WHO, 2020) and suggests that this compound was mainly from inefficient treatment processes in Wastewater 

Treatment Plants (WWTP).  

Nason et al. (2021) monitored during the first wave of COVID, through liquid chromatography - high resolution mass spectrometry, elevated 

concentrations of hydroxychloroquine close to 50 μg L-1 in the primary sludge of a WWTP in the third week after implementing the United States 

Emergency Use Authorization, demonstrating its intense occurrence during the pandemic. That could be explained by 483,425 excess fills of 

hydroxychloroquine/chloroquine during the ten-week period in 2020 compared with 2019 (+848.4% increase) (Vaduganathan et al., 2020). 
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In Europe, studies have reported a notable increase in hydroxychloroquine consumption in 

Athens, Greece, from 12 g day−1 to 57 g day−1 according to data published in the first months 

of the pandemic revealed by wastewater-based epidemiology (Galani et al., 2021). In the same 

way, the region of Lombardy, Italy, reached levels of up to 1.7 μg L-1 (Cappelli et al., 2022) 

while in Vitória-Gasteiz, Spain, reached 0.071 μg L-1 in wastewater (Domingo-Echaburu et al., 

2022). 

These data demonstrate that some regions where the use of aminoquinolines was not 

frequent before the pandemic as an anti-inflammatory or antimalarial, had a rapid and 

significant growth during 2020, which given their chemical characteristics may be concentrated 

in water bodies. Similar to Nigeria, the chronic concentration of aminoquinolines in Brazilian 

waters may have increased dramatically during the pandemic since sales of hydroxychloroquine 

grew by 113%, from 963,000 in 2019 to 2 million units in 2020, according to the Federal 

Pharmacy Council (CFF, 2001) (Ruiz et al., 2021), but no data were found to compare the 

concentration in water before and during the pandemic. In this context, the estimates of 

predicted environmental concentrations (PECs) come as a practical approach to estimate the 

level of drug concentration in an aquatic environment (Franquet-Griell et al., 2015; Kumari and 

Kumar, 2021) when data on concentrations detected in water are unfeasible. 

3.3. Estimates of Predicted Environmental Concentrations (PECs)  

The aminoquinolines have a long half-life, the environmental emission is spread over 

several days, and, consequently, the PEC calculation depends on the use regime (dose, interval 

and duration of treatment) and removal rate in the wastewater treatment units to obtain a 

predicted concentration in the receiving water body (Tarazona et al., 2021). 

Thus, estimates of PECs during the pandemic were revised (Table 2) for the worst realistic 

scenario with the whole population of a metropolitan area of Spain, assuming that 25% of the 

excreted drug was retained in the WWTP (Tarazona et al., 2021). There was an estimate 

assuming 100% of the population treated and considering an effective drug removal rate in the 

WWTP of 63% (Kuroda et al., 2021). There was also an estimate with the elderly population 

(over 65 years old) in the United States affected by COVID-19, considering the removal rate at 

the WWTP as a standard value of 50% due to lack of data in the literature (Kumari and Kumar, 

2021). 

Table 2. Predicted Environmental Concentrations (PECs) during the COVID-19 pandemic in 

wastewater and environmental waters. 

Drug 

PEC Raw 

Wastewater  

(mg L−1) 

PEC Secondary 

Effluent  

(mg L−1) 

PEC Surface 

water 

(mg L−1) 

Reference 

Chloroquine 

1.20 0.64 0.06 
Tarazona et al. 

(2021) 

857 × 10-6 32 × 10-6 3.2 × 10-5 Kuroda et al. (2021) 

- - 3.78 × 10-6 
Kumari and Kumar 

(2021) 

Hydroxychloroquine 
1.50 1.12 0.12 

Tarazona et al. 

(2021) 

833 × 10-6 783 × 10-6 78.3 × 10-5 Kuroda et al. (2021) 

Even though the consumption level of hydroxychloroquine observed in surface water by 

Nason et al. (2021), Galani et al. (2021) Cappelli et al. (2022) and Domingo-Echaburu et al. 

(2022) was increased during 2020, it remained lower than the PECS in raw wastewater. 

However, it is not yet known whether these PECs concentrations can be obtained considering 
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areas without sanitation coverage as a realistic worst-case, while the drug removal value after 

passing through the WWTP may vary depending on the system adopted by it.  

Data from 2018 indicate that almost half of the Brazilian population does not have access 

to sewage collection, only 46% of collected sewage is treated (Farias et al., 2020), and in many 

municipalities, it is common to see raw sewage discharges directly into water resources 

(Montagner and Jardim, 2011). Moreover, the conventional processes used in WWTPs were 

not designed to eliminate drug residues, which has already been corroborated by occurrence 

data obtained in Brazilian research (Sodré et al., 2010; Reis et al., 2019; Santos et al., 2020) 

explained by both the higher consumption and the intense release of sewage into water bodies. 

Furthermore, the metabolite desethyl chloroquine generated by the degradation of 

chloroquine can reach an environmental concentration of 13×10-6 mg L−1 (Kuroda et al., 2021) 

and desethyl hydroxychloroquine, the main metabolite of hydroxychloroquine, does not appear 

in any studies. Both also do not have known aquatic toxicology, showing a gap regarding drugs. 

3.4. Removal of aqueous matrices 

As chloroquine and hydroxychloroquine have a very stable structure and occur at 

extremely low concentrations, their removal is challenging (Archer et al., 2017). Thus, several 

promising proposals for the degradation of these drugs with concentrations similar to those in 

the environment were tested, mainly taking into account the pandemic. Treatment of different 

aqueous matrices (synthetic or real) containing CQ and HCQ has been carried out by 

adsorption, photolysis, photocatalysis and oxidation. Many of these studies pointed out that the 

molecule of drugs can be affected by pH, with the rate of degradation by the tested methodology 

and is directly proportional to the increase in pH. 

Batch adsorption of CQ by combining babassu coconut-activated carbon and graphene 

oxide (GAC-GO) through the effect of ionic strength, simulating a real effluent, demonstrated 

that the synthesized adsorbent has potential application for the treatment of effluents (Januário 

et al., 2022). The adsorption of HCQ on Cystoseira barbata activated by H3PO4, the Agardh 

biochar derived from algae biodiesel industry residues (Gümüş and Gümüş, 2021) and by 

Algerian kaolin (Bendjeffal et al., 2021) proved to be stable, spontaneous sources and efficient.  

Oxidation of CQ has been investigated by the reaction with Fe (VI) ferrate, it has been 

shown to be rapidly responsive especially in the basic pH range and with increasing temperature 

(Dong et al., 2022). Electro-Fenton oxidation from electrolyte oxidation on boron-doped 

diamond (BDD) anode surface (Midassi et al., 2020) and photo-Fenton process on micro-sized 

Fe-MOF sheet (Wang et al., 2022) were efficient approaches to promote the generation of 

hydroxyl radicals from the catalytic decomposition of H2O2 by Fe 3+ /Fe 2+ in solution resulting 

in a high efficiency of degradation and CQ removal. Electrochemical oxidation also efficiently 

removed HCQ from the actual river water sample using BDD electrodes in studies carried out 

by Araújo et al. (2022), and Bensalah et al. (2020) with the potential to be an excellent 

alternative method to treat effluents contaminated with HCQ and its derivatives. 

A peroxymonosulfate (PMS) activation system was also demonstrated using single cobalt 

atoms (SA Co-NC(30)) as high-efficiency catalysts, which can efficiently degrade chloroquine 

phosphate through a nonradical electron transfer pathway (Peng et al., 2022). The 

photocatalytic activity of zinc oxide catalysts supported natural zeolite clinoptilolite, and the 

synthesis heterogeneous structure of beta bismuth oxide by titanium oxide for HCQ degradation 

also promoted the degradation of the drug (Silva et al., 2021; Kargar et al., 2021). The 

photolysis of HCQ at high pH can be increased with the presence of humic acids, nitrate and 

iron (III) due to the formation of hydroxyl radicals and their attack on the HCQ molecule, but 

in the presence of chloride, sulfate and bromide the photodegradation is inhibited (Dabić et al., 

2019).  

Biological systems were also analyzed in degradation. Examples were the use of melanin-

encapsulated Escherichia coli for continuous removal of the pharmaceutical model chloroquine 
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in a membrane bioreactor-based process (Lindroos et al., 2019) and microbial degradation by 

Actinobacteria, Bacteroidetes, Chloroflexi, and Proteobacteria p, along with functional genes 

related to pathways such as degradation and denitrification of phenylethylamine in salt water 

(Hu et al., 2022). 

Thus, the revised techniques promise to be more efficient to contain these micropollutants 

than the systems adopted by Waste Water Treatment Plants (WWTP), such as activated sludge 

and biological sewage purification, the most used processes in Brazil. The revised techniques 

are more cost-effective and promote total destruction (mineralization) or produce less toxic 

molecules, unlike methods such as activated carbon and ozonation (Margot et al., 2013; 

Lindroos et al., 2019). 

3.5. Chloroquine ecotoxicity in aquatic organisms 

Thus, the aquatic ecotoxicological information available to date on chloroquine is limited 

to a few studies on acute oral toxicity in fish, cladocerans, plants, algae and bacteria, and 

sublethal effects on fish and mussels (Zurita et al., 2005; Moore et al., 2007; Rendal et al., 

2011; Ramesh et al., 2018; Davis et al., 2020). While for hydroxychloroquine there are reports 

of ecotoxicological effects on nematodes, fish, and amphibians (Table 3). Chloroquine and 

hydroxychloroquine are persistent at maintaining their active properties until the desired effects 

are achieved (Mezzelani et al., 2016). Thus, they can assume high concentrations in organs 

such as kidneys and liver, as well as having an impact on neurological symptoms (PIM, 1994; 

PUBCHEM, 2022b) as demonstrated by biomarker changes. 

The bioassay review using biomarkers demonstrated how these can be considered early 

warning signs in the field of environmental risk assessment revealing the health status of an 

organism, population and ecosystem (Gavrilescu, 2015). This can help to reproduce and 

understand possible environmental scenarios related to the indiscriminate use of drugs in 2020. 

A reflection of that was the concentration observed in surface water by Nason et al. (2021), 

Cappelli et al. (2022) and Domingo-Echaburu et al. (2022), which promotes changes in 

biomarkers of oxidative stress, neurotoxicity (acetylcholinesterase and neuromasts), decreased 

levels of total proteins and death in vertebrates (MacPhee and Ruelle, 1969; Luz et al., 2021; 

Mendonça-Gomes et al., 2021).  

Considering the revised effective concentrations, the sensitivity of the test systems 

decreased as follows for chloroquine molluscs > plants > cladocerans > algae > fish > bacteria. 

This relationship was similar to other drug sensitivity tests with the highest sensitivity for 

freshwater arthropods and lowest sensitivity for proteobacteria (Calleja et al., 1994; Lilius et 

al., 1994). However, conflicting results on toxicity in different fish species have been published, 

with mortality at 0.0063 mg L-1 CQ for salmon (MacPhee and Ruelle, 1969) and only behavioral 

changes in rainbow trout with 0.12 mg L-1 CQ in 24-h (Tojo et al., 1993). 

When compared to hydroxychloroquine, this was more toxic to fish at the same 

concentration as chloroquine in the morphological modification of lateral ciliate cells (Davis et 

al., 2020). A Brazilian study with an environmentally relevant concentration of 

hydroxychloroquine and, especially, when combined with azithromycin (administered together 

in COVID-19 treatment), demonstrating that the combination of these drug classes may also 

lead to a greater expression of toxicity in fish and amphibians (Mendonça-Gomes et al., 2021; 

Luz et al., 2021). Studies with native species, such as the Physalaemus cuvieri (Brazil) is an 

example emphasize the importance of knowing the sensitivity of species with wide occurrence 

in the national territory and that may have suffered from the still unknown environmental 

exposures of the drugs that was used indiscriminately during the pandemic. 
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Table 3. Chloroquine and hydroxychloroquine concentrations in studies that had significant marker changes compared to drug-free controls. 

Drug Organism Duration Concentration Toxic effect Reference 

Chloroquine 

Chlorella vulgaris 48-h 27 mg L-1 Growth inhibition Zurita et al. (2005) 

Cyprinus carpio 96-h 31.32 mg mL-1 

Increased alanine and aspartate aminotransferase; 

decreased lactate dehydrogenase; histopathological 

changes; death 

Ramesh et al. 

(2018) 

Danio rerio 24-h 31.9 mg L-1 Cell loss lateral line ciliates Davis et al. (2020) 

Daphnia. magna 48-h 
4 - 30 mg L-1 

(pH 7 - 9) 
Immobilization Rendal et al. (2011) 

Daphnia. magna 48-h 9 mg L-1 Immobilization Zurita et al. (2005) 

Mytilus edulis 120-h 2 mg L-1 Decreased lysosomal function Moore et al. (2007) 

Oncorhynchus 

mykiss 
24-h 0.12 mg L-1 Behavioral changes Tojo et al (1993) 

Oncorhynchus 

kzsutch 
24-h 0.0063 mg L-1 Loss of balance and death 

MacPhee and Ruelle 

(1969) 

Poeciliopsis lucida 48-h 43 mg L-1 Decreased lysosomal function Zurita et al. (2005) 

Salix viminalis 67-h 
3 - 34 mg L-1 

(pH 6 - 9) 
Transpiration inhibition Rendal et al. (2011) 

Vibrio fischeri 48-h 126 mg L-1 Luminescence inhibition Zurita et al. (2005) 

Hydroxychloroquine 

Danio rerio 72-h 0.0125 mg L-1 

Decreased levels of total proteins and neuromasts of 

the head; oxidative stress; increased 

acetylcholinesterase (AChE) 

Mendonça-Gomes et 

al. (2021) 

Danio rerio 24-h 35.5 mg L-1 
Cell loss 

lateral line ciliates 
Davis et al. (2020) 

Marine nematodes  3.162 mg L-1 
Decline in the diversity of abundance and richness 

of sensitive species and favoring of tolerant species 
Ali et al. (2021) 

Physalaemus 

cuvieri 
72-h 0.0125 mg L-1 

Oxidative stress; decreased acetylcholinesterase 

(AChE) 
Luz et al. (2021) 
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Another important factor that increases the toxicity of chloroquine highlighted in the 

studies by Rendal et al. (2011) is the influence of pH in alkaline medium (pH 9) compared to 

acidic (pH 6) or neutral (pH 7) medium. Due to the pKa (10), pH can have a great influence on 

the absorption and expression of its toxicity in alkaline aquatic environments, which must be 

between 6.5 to 8.5 (USEPA, 1996), or 6 to 9 in Brazil, to protect aquatic life (CONAMA, 2005). 

According to Esteves (2011), the pH in Brazilian rivers is quite wide, tending to be slightly 

alkaline due to the presence of carbonates and bicarbonates, representing an environmental risk 

by the toxicity of chloroquine. 

Sublethal effects were demonstrated after thirty-five days of exposure with changes in 

aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase enzymes that 

are usually present in the heart, liver, kidney, aminoquinoline accumulation sites (Ramesh et 

al., 2018) in which there are effective markers to analyze chemical toxicity for their rapid 

response and for being involved in the metabolism of proteins and carbohydrates, in addition 

to serving as stress indicators (Abhijith et al., 2016; Gora et al., 2018). In the study by Ramesh 

et al. (2018), the increase in changes in gill, liver and kidney tissue of carp by chloroquine was 

correlated over time. The reduction in lysosomal function was also a biomarker responsive to 

acute exposure at higher concentrations and, mainly, to chronic exposure, directly affecting the 

health of the organism due to the characteristic lysosomotropic agent of chloroquine (Meshnick, 

1990). 

The most responsive biomarkers in acute exposure were changes in acetylcholinesterase 

(AChE) activity in the mediation of the neurotransmitter acetylcholine and the reduction in fish 

head neuromasts, impacting the neurotoxic effect together with other metabolic dysfunctions 

such as the reduction of total protein levels and oxidative stress after three days of exposure to 

hydroxychloroquine at concentrations from 0.0125 mg L-1 (Mendonça-Gomes et al., 2021). 

Other metabolic dysfunctions were reduced total protein levels and oxidative stress seen in 

hydrogen peroxide (H2O2) production, reactive oxygen species (ROS), nitrite (NO2-), 

thiobarbituric acid reactive substances (TBARs), superoxide dismutase (SOD) and catalase 

(CAT). Thus, hepatic Cytochrome P450 activity (CYP450), responsible for the 

biotransformation of aminoquinolines, is a crucial marker of susceptibility to be evaluated as it 

determines the abilities of antioxidants for the detoxification of organisms (Burkina et al., 2015; 

Mendonça-Gomes et al., 2021) and should be tested after exposure of the animals over time to 

understand under which conditions it becomes unresponsive, leaving the organisms susceptible 

to diseases. 

Concerning the environmental assessment for water pollution monitoring, the Predicted 

No-Effect Concentration (PNEC) is estimated using the limit concentration in surface waters in 

which adverse health effects are not expected over time divided by a factor of assessment for 

intraspecific or interspecific extrapolation (Schwab et al., 2005). For chloroquine, studies show 

that even at low residual concentrations it can result in toxic effects on biota health. Tarazona 

et al. (2021) estimated a PNEC value of 0.12 mg L-1 for aquatic organisms, considering data 

from the taxonomic groups of algae, cladocerans, mussels and fish, while Kuroda et al. (2021) 

estimated an even lower value of 3.7×10-4 mg L-1. For hydroxychloroquine, the concentration 

was estimated to 7×10-5 mg L-1 from 8.5 ×10-2 mg L-1 (Cappelli et al., 2022; Domingo-Echaburu 

et al., 2022). This difference in the assessments can be explained by the variation in the input 

parameters used in the PNECs for risk estimates; however, they do not change the 

ecotoxicological risks (Kumari and Kumar, 2021). 

Although there is no specific study on the xenobiotic incorporated in the trophic chain, it 

is interesting to note that the repercussion of toxicity extends from primary producers, 

consumers, and decomposers, affecting the entire aquatic ecosystem and eventually the animals 

that feed on it. Fish and other seafood sources can be easily contaminated by aminoquinolines 

due to their bioaccumulative potential, as can be seen by Ali et al. (2021) for the nematode 
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community, which may be a route to human exposure to residues, concomitant with the 

consumption of contaminated water (Kumari and Kumar, 2021). Other concern is water stress 

caused by aminoquinoline residues present in untreated wastewater or without adequate 

treatment to remove the drugs, which are commonly used by developing countries in irrigation 

for crop cultivation (Yasmeen et al., 2014), despite being a practice that poses risks to health 

and the environment, as seen for Vigna Radiata, which can lead to the production of oxidative 

factors, impacting productivity (Al-Mentafji, 2021).  

It is also highlighted that pharmaceutical pollution in water during the pandemic can 

generate resistance to a number of diseases (Horn et al., 2020). In the case of chloroquine, some 

strains of Plasmodium, the etiological agent of malaria, already show chloroquine resistance in 

the treatment of the disease in which the drug has a proven therapeutic potential (Benelli and 

Mehlhorn, 2016) and its availability in water can further aggravate this situation. It also presents 

toxicity to predators of its Anopheles stephensi vector, in the aquatic phase of its life cycle, 

disfavoring biological control (Murugan et al., 2016). 

Considering that aquatic organisms are often exposed to contaminants in their natural 

environment, this can lead to changes in their physiology and homeostasis by a complex set of 

adaptive responses that involve biochemical, metabolic and tissue changes. The main scientific 

or technological contributions that can be made in question are the possibility of knowing better 

the response of these organisms by interacting with the emerging contaminant with a 

bioaccumulative tendency in the aquatic environment, aiming to establish proposals for 

conservation and animal protection considering safe levels regarding contamination 

environment and aquatic biota preservation, mainly in South America where its use has been 

increasing in recent years. 

3.6. Perspectives 

There are still gaps to be understood regarding acute ecotoxicity with lethal (LC50) and 

effective (EC50) concentrations for different taxa and species and, regarding sublethal 

ecotoxicity, pathological changes that can be visualized through biomarkers. The desethyl 

chloroquine and desethylhydroxychloroquine metabolites, together with the chloroquine 

diphosphate and hydroxychloroquine sulfate (best selling formulation) with a molar mass 

higher than original compounds, have little or unexplored ecotoxicity.  It is often unclear in the 

article which formulation of chloroquine the authors used so that they do not yet support 

discussions comparing chloroquine compounds, although phosphate salt is categorized as more 

toxic due to the phosphoric acid groups in its molecule (PUBCHEM, 2022a). In addition, 

morphological and behavioral changes of the animals can also be observed during the 

experiment as they can be one of the first signs of change that can be identified in an 

environment, which demonstrated a pathological condition in the individuals (OECD, 2019; 

Ramesh et al., 2018; Tojo, 1993).  

The results can be extrapolated to the environment as vertebrates used in toxicological 

tests, such as some fish species already standardized for these studies, can have up to 70% 

homology with the human genome and including genes associated with human diseases (Howe 

et al., 2013). Therefore, it is essential to understand how the characteristics, including 

morphology, physiology, behavior and life habits of an organism, mediate susceptibility to 

wide-ranging environmental change. 

Despite limited data on toxicity to aquatic wildlife, Zurita et al. (2005) were able to classify 

chloroquine as “R52/53 Harmful to aquatic organisms and may cause long-term adverse effects 

in the aquatic environment”. Thus, chloroquine currently belongs to the hazardous substances 

database (N° 3029), as it has toxicity to human and animal health proven in studies 

(PUBCHEM, 2022b). As alternatives, it is important for the use of effluent treatment 

technologies that are economical and with less risk of generating long-term repercussions 

(Pacheco et al., 2021), such models should receive more attention and planning for 
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implementation considering the urgency of mitigating pharmaceutical residues in water, 

especially in epidemiological scenarios and without effluent treatment. 

4. CONCLUSION 

Chloroquine and hydroxychloroquine may be available in water bodies to aquatic biota 

and their concentration may have increased during the pandemic period due to extensive use 

and low removal in WWTPs. Once the aquatic biota is available, even at low residual 

concentrations, it can reach non-target organisms, generating an ecotoxicological risk that can 

have toxic effects such as morphological, physiological, behavioral and population changes 

leading to the death of individuals. Factors such as the more alkaline pH of the rivers and the 

association with other drugs such as indiscriminate use of azithromycin were attributed to the 

greater expression of drug toxicity. 

More studies are needed to detect drugs and metabolites in water and refine quantification 

on an environmental scale, as well as to investigate biota hazards based on environmentally 

relevant concentrations, taking into account locations without access to wastewater treatment 

as worst-case scenarios. Ecotoxicity tests with native species and with high sensitivity to the 

pollutant can help to understand and extrapolate the toxic effects to the local aquatic ecosystem. 

Long-term toxicity effects, exploring effect biomarkers, exposure and susceptibility, 

morphological and behavioral changes, including drug derivatives, will provide important data 

for the discussion and these are the proposals raised by this study. 

Thus, it is urgent to adopt efficient methods to contain pharmaceutical micropollutants in 

wastewater and surface water, as these will not only be available to aquatic biota, but to the 

human population, which may cause public health problems that are still uncertain. 
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