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ABSTRACT 
Voronoi and Delaunay structures are presented as discretization tools to be used in 
numerical surface integration aiming the computation of geodetic problems 
solutions, when under the integral there is a non-analytical function (e. g., gravity 
anomaly and height). In the Voronoi approach, the target area is partitioned into 
polygons which contain the observed point and no interpolation is necessary, only 
the original data is used. In the Delaunay approach, the observed points are vertices 
of triangular cells and the value for a cell is interpolated for its barycenter. If the 
amount and distribution of the observed points are adequate, gridding operation is 
not required and the numerical surface integration is carried out by point-wise. Even 
when the amount and distribution of the observed points are not enough, the 
structures of Voronoi and Delaunay can combine grid with observed points in order 
to preserve the integrity of the original information. Both schemes are applied to the 
computation of the Stokes’ integral, the terrain correction, the indirect effect and the 
gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.  
Keywords: 2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; 
Stokes’ Integral. 
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RESUMO 
Este trabalho apresenta as estruturas de Voronoi e Delaunay como ferramentas de 
discretização a serem usadas na integração numérica de superfícies com o objetivo 
de resolver problemas computacionais geodésicos, quando no integrando a função 
não é analítica. No enfoque de Voronoi, a região de trabalho é particionada em 
polígonos, os quais contêm um ponto por polígono o que faz desnecessária a 
interpolação. No enfoque de Delaunay, os pontos observados são os vértices de um 
triangulo, e o valor da célula é o resultado da interpolação sobre o triangulo pelo seu 
baricentro. Se a quantidade de pontos observados e a sua distribuição são 
adequadas, a interpolação em grade não é necessária, e a integração é levada a cabo 
ponto a ponto.  Mesmo quando a quantidade e distribuição dos pontos 
observados não são suficientes, as estruturas de Voronoi e Delaunay podem 
combinar grade com pontos observados a fim de preservar a integridade 
da informação original. Ambos os enfoques são aplicados ao cálculo da integral de 
Stokes, da correção de terreno, do efeito indireto, e do gradiente da  anomalia da 
gravidade na região do estado de Rio de Janeiro, no Brasil. 
Palavras-chave: Tesselação 2-D; Triangulação de Delaunay; Celulas de Voronoi; 
Geodésia; Integral de Stokes. 
 
 
1. INTRODUCTION 

In spite of the known techniques for geodetic parameters computing, either in 
the space-domain (SANTOS and ESCOBAR, 2000) or in frequency-domain 
(HAAGMANS et al., 1993; SCHWARZ et al., 1990), usually the target area is 
required to be partitioned into geographical grid elements. Geoid undulations, 
terrain corrections, indirect effects, for instance, are computed at these cells, based 
on gravity anomalies and heights, which are not evenly distributed. These are 
interpolated in order to produce a regular grid (HIRVONEN, 1956). Similarly, 
either integral methods (LEHMANN, 1997) or the combined ones (e.g., space-
frequency domains), also require evenly distributed data (LI and SIDERIS, 1992). 
Gridding is usually (see Sideris 1995) required for fast Fourier transform (FFT) 
geoid determination techniques (e.g., STRANG VAN HEES, 1986; SIDERIS and 
TZIAVOS, 1988; HAAGMANS et al., 1993; FORSBERG and SIDERIS, 1993; 
KUROISHI, 2001), as well as for the fast Hartley transform (FHT) and fast T 
transform (FTT) techniques (AYHAN, 1997; LI and SIDERIS, 1992).  Similarly, 
some traditional space-domain techniques, such as discrete summation (e.g., 
HIRVONEN, 1956; GEMAEL, 1999) and integral methods (e.g., JIANG and 
DUQUENNE, 1997; LEHMANN, 1997; NOVÁK et al., 2001), require the 
observed data to be gridded. Although this is not just a problem, nevertheless 
modified data are used instead of the original ones. Also, gridding usually expends 
excessive manual/computational effort, as well as it is liable to produce spurious 
data with the loss of genuine information (GOLDEN SOFTWARE, 1999). Besides, 
the interpolated value depends on the chosen gridding technique and on the grid 
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‘nodes’ separation, which are inherent to the spatial data distribution (e.g., 
GOLDEN SOFTWARE, 1999).  In the worst case, it may produce spurious data 
that may lead to an inaccurate geoid.  Also, different gridding methods provide 
different interpretations of the data because the grid node values are computed by 
different algorithms.  

In this work, the discretization by means of Voronoi and Delaunay structures 
(AURENHAMMER, 1991; WATSON, 1981) is used to the computation of the 
Stokes’ integral, terrain correction, indirect effect and gradient of the Helmert 
anomaly. Both approaches are reported in Santos and Escobar (2006, 2010). 
Genuine data are used and preserved if they have such a spatial distribution that 
does not require filling blank areas with interpolated data. In spite of a natural 
“smoothing” due to the data distribution, Voronoi and Delaunay schemes avoid the 
“synthetic” smoothing due to an interpolation step. Alternatively, if the original 
data are not sufficient, they can still be preserved in combination with a grid used to 
fill the blank areas. In Voronoi scheme, the target area is subdivided into a unique 
set of convex and adjacent polygonal cells, in which each one holds an original data 
point. In Delaunay scheme, the area is tessellated into contiguous triangular cells 
(triangulated irregular network - TIN). Mean values are locally interpolated for the 
barycenter (centroid) from respective triangles’ vertices and remains enclosed to 
each cell (GOLDEN SOFTWARE, 1999).  
 
2. THE TESSELLATION METHOD 

Several authors have investigated Voronoi and Delaunay structures, their 
properties and applications in many different scientific fields.  Those structures are 
used in the analysis of elements that have to be partitioned into contiguous domains 
called “natural neighbors”.  This term was coined by mathematicians, when noticing 
the frequent instances of those relationships found in the nature.  Many geometric 
natural shapes tend to be organized into Voronoi-like figures, such as the formed 
surface layer of mud that has dried and contracted, or the tessellated bony shell of 
some turtles and tortoises.  

In gravimetry, Delaunay triangulation has been used to model the topography 
for terrain corrections computation, in which the relief is represented by triangular 
prisms (RUPERT, 1988).  Lehmann (1997) used a triangulation structure to model 
equilateral spherical triangles for the evaluation of geodetic surface integrals.   

A Voronoi diagram is also referred to as the Dirichlet tessellation, and might 
be viewed as a geometric complement (a duality) to Delaunay triangulation 
(AURENHAMMER, 1991; TSAI, 1993).  The polygon vertices are associated with 
Delaunay triangles by the same construction rule – the circumcircle criterion or the 
Delaunay criterion (TSAI, 1993).  

 
2.1. Construction of Delaunay Triangulation and Voronoi Diagram 

A Delaunay triangulation (also called a Delaunay simplicial complex) is a 
partition of an m-dimensional space, S, into adjacent triangular elements (Figure 
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1b).  Given a set of n distinct points in S, so that mn > , every circumcircle 
associated with the triangles must contain no other points inside it. Whereas k points 
belonging to the perimeter of the area (peripheral points), the number of triangles 
generated is equal to 2(n - 1)- k. The interesting property of this structure (the 
approximated equiangular form) indicates that minimum angles are maximized and 
maximum angles are not minimized, which is an advantage over any triangulation 
of the same set of points. By Delaunay criteria, any triangulation with no obtuse 
angles has to be a Delaunay triangulation. According to Aurenhammer (1991), a 
triangulation without extreme angles (or "compact") is desirable, especially in 
methods of data interpolation. Additionally, in graphical computation the 
equiangular property is a need that provides the best visualization for displaying 
figures. 

The vertices in Delaunay triangulation are all and only the n points of S, and 
its circumcenters are the actual Voronoi polygon vertices, or Voronoi polytopes 
(Figure 1a).  The remaining circumcenters not satisfying the ‘empty circumcircle 
criterion’ are discarded from the construction.  

The automatic contouring of the points is according to the triangulation 
algorithm by D.F. Watson (RUPERT, 1988), which was modified to include the 
Voronoi polygons’ computation, in which the topological data structures set up the 
relations between data points, edges and Delaunay triangles. The algorithm 
implicitly ensures a closed bounding area perimeter (the convex hull), but it does 
not preserve its outer limits because this information is not required for the 
triangulation. 
 

Figure 1 – Voronoi (a) and Delaunay (b) diagram construction. 

 
 

A Voronoi diagram is a partition iπ  of space S into n polygons, so that each 
one contains just one point i of the set.  As a rule, given a polygon, a subset X of its 
vertices is closer to the inside point than any other point in S.  Formally, we have 
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where igΔ  is the Helmert anomaly, the free-air anomaly corrected for the 

topographic and atmospheric attraction effects (e.g., MORITZ, 1984), and ia  is an 
individual area corresponding to the i-th cell. 

In Scheme Voronoi the actual values observed in the data points are assigned 
to polygons, and  the  calculation point coincides with a point of integration (i.e., 
ψ = 0), leading the indetermination of S(ψ). To avoid the indetermination, in this 
case, the Eq. (4) is replaced by (HEISKANEN & MORITZ, 1967), 

 

        
 00

0 γ
ψgN Δ

= , (6)

 
where Δ g0 is the gravity anomaly at the point, and ψ0 is the mean 
spherical distance between the point and the respective edges of 
the Voronoi polygon. 

In Delaunay scheme, as the computation is performed for the triangles’ 
vertices (data points), and the value for the cell is computed for its barycenter, 
Stokes’ function singularity has gone (SANTOS and ESCOBAR, 2010). 

The geoidal height computation at point ),( λφP  is split into three 
components (e.g., STRANG VAN HEES, 1986; DENKER and WENZEL, 1987; 
RAPP and BASÍC, 1992) 

     
),(),(),(),( λφλφλφλφ STOKESEFFECTMODEL NNNN ++= . (7)

 
 The ),( λφMODELN  represents the contribution of long-wavelength 
components computed using geopotential model coefficients (e.g., RAPP et al., 
1991). The primary indirect effect term, ),( λφEFFECTN , is computed by means of 
Helmert’s second condensation method (Lambert 1930) from the elevation data file 
(Fig. 2). Finally, the ),( λφSTOKESN  component is computed from Eq. (4) with the 
residual free-air anomalies (free-air anomalies minus anomalies derived from 
model), corrected for the topographic relief and atmospheric attraction effects. 

Both Delaunay and Voronoi schemes were used to compute ),( λφSTOKESN  
component. Figures 7 and 8 depict the results for the area of the Rio de Janeiro 
State.  
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Figure 7 - Stokes’ component from Delaunay triangles. 

 
 
 

Figure 8 – Stokes’ component from Voronoi polygons. 

 
 

Involving almost the double of discretization cells, the Delaunay scheme 

provides a more smoothed aspect in ),( λφSTOKESN  component than the Voronoi 
scheme, what leads to a residual difference (Voronoi minus Delaunay) as is 
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indicated in figure 9. The discrepancies range from -35 cm to 14 cm, with mean 
value of -2 cm and standard deviation of 4 cm. 

 
Figure 9 – Differences between geoidal heights computed with Delaunay and 

Voronoi schemes (Voronoi minus Delaunay). 

 
 

A comparison between the application of Delaunay and Voronoi schemes and 
the classical technic in geoidal heights computation was done. As the first two terms 
in Eq. (6) are independent of the used method to compute Stokes’ integral, because 
they do not depend on the way as the discretization is carried out, to examine the 
differences it is sufficient to consider only the term ),( λφSTOKESN .  

Table 1 presents the statistics of those differences for the Rio de Janeiro 
dataset.  The RMS differences indicate an almost perfect agreement (99%) between 
the Voronoi and Delaunay schemes.  Only one point in the Voronoi scheme is 
outside the 99% confidence interval for the RMS difference, which the maximum 
difference is less than 10 cm.  With the exception of the area of Corcovado peak, 
results are statistically the same for the two methods. 

 
Table 1 - Differences (metres) between the classical numerical integration technique 

and Voronoi Delaunay. 
Statistics Voronoi Delaunay 

RMS difference 0.022 0.024 
Minimum -0.028 -0.013 
Maximum 0.080 0.085 
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3.2 The Terrain Correction Computation 
The terrain correction takes into account the attraction effect of the 

irregularities of the topography in the vicinity of the gravity station and is always 
added to the observed value. Since the terrain correction can take values larger than 
other corrections to gravity (Earth's tide, free-air, Bouguer) it is very important, 
mainly in regions of rugged topography. The gravitational attraction of a vertical 
triangular prism is the mathematical model used here for the terrain 
correction computation (WOODWARD, 1975, RUPERT, 1988). The terrain is 
geometrically represented by vertical prisms of triangular base (B1, B2, B3) in 
horizontal plane at the altitude of the gravity point (P) and tilted top (A1, A2, A3) 
modeling the topography (Figure 10). Vertices of the triangular base are determined 
according to the Delaunay structures and the density is assumed to be constant. 
Within a given radial distance from each gravity point, the calculation of the vertical 
component of attraction of the prisms is computed.  

 
Figure 10 – Geometry of a triangular prism with tilted top. 

  
 

Terrain corrections were computed for State of Rio de Janeiro area in a 1.5-
arcmin grid, using Delaunay triangulation (Figure 4) and the dataset presented in 
Figure 3. A DTE dataset available online by the National Institute for Space 
Research, INPE, Brazil, was used to fill in the blank areas. This topographical 
database was unified and structured for the whole Brazil area - the TOPODATA 
Project (VALERIANO and ALBUQUERQUE, 2008). It was produced by a refined 
combination of local terrain elevation data and topographical information derived 
from Shuttle Radar Topography Mission - SRTM data (USGS, 2007), for a 1-arcsec 
horizontal resolution grid. A subset DTE grid of a 3-arcsec horizontal resolution 
was used to the radial distance of 3 km and a 15-arcsec resolution subset grid for 
radial distances between 3 km and 24 km. Distances and azimuths were calculated 
using Vincenty formulas for solving the inverse problem of Geodesy (VINCENTY, 
1975). The values range between 0 and 37.22 mGal, with mean value of 1.66 mGal 
and standard deviation of 2.60 mGal. The Figure 11 presents a graphic with the 
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contribution, in mGal, per distance range, in km, up to 24 km from the point of 
maximum value of terrain correction (37.22 mGal), it is possible observe that, for 
distances larger than 24 km, the contribution to terrain correction tends to zero. The 
Figure 12 shows the map of the terrain correction in Rio de Janeiro State area, 
computed using Delaunay triangulation (Figure 4) and the dataset presented in 
Figure 3. 

 
Figure 11 – Contribution per distance range in the terrain correction at the point of 

maximum value, up to 24 km from the point. 

 
 

Figure 12 – Terrain correction on State of Rio de Janeiro area, with the curve of 
2 mGal in highlight, as it was computed using Delaunay triangulation. 
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3.3 The Indirect Effect Correction 
As gravity reductions deal with topographic mass displacement, the resulting 

indirect effect on the geoidal height must be computed (HEISKANEN & MORITZ, 
1967). The Helmert's second method of condensation involves generally small 
indirect effects, given by (SIDERIS and SHE, 1995): 
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  (8)

 
where si is the Euclidean distance from computation point P, with elevation HP, to 
generic integration cells i, with elevation Hi and area ai.  

Using the same process applied to the terrain correction, with the same 
Delaunay scheme, dataset and scanned distance, the indirect effect for Helmert’s 
second method of condensation was computed. The values range between -0.424 m 
and 0 m. The mean value and standard deviation are, respectively, of -0.025 m and 
0.032 m.  

 
Figure 13 – Contribution per distance range in the indirect effect correction at the 

point of minumum value, up to 24 km from the point. 

 
 

The Figure 13 presents a graphic with the contribution, in mm, per distance 
range, in km, up to 24 km from the point of minimum value of indirect effect 
correction (-0.424 m), it is possible observe that, for distances larger than 21 km, the 
contribution tends to zero. A map for the indirect effect is shown in the Figure 14. 
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Figure 14 – Indirect effect for the Helmert’s second condensation method, with the 
curve of -0.05 meter in highlight, as it was computed using Delaunay triangulation.

 
 
3.4 THE GRADIENT OF THE HELMERT GRAVITY ANOMALY  

For the solution of some geodetic problems, involving downward or upward 
continuation of the gravity, it is useful to know the gradient of the gravity anomaly, 
∂Δg/∂H, which can be derived, assuming H and the radius vector, r, in the same 
direction (HEISKANEN and MORITZ, 1967, page 115, Eq. 2-217): 
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where ΔgP is referred to a fixed point P on which ∂Δg/∂r is to be computed; R is the 
mean radius of the earth; l is the spatial distance between the fixed point P and the 
variable surface element R2 dσ, expressed in terms of the angular distance ψ  by 

2
ψ2Rsinl = . (10)

The Eq. (24) can be written as 
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without error larger than 0.0006 %. 
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Since the gravity anomaly is not known as a continuous function, a numerical 
integration, based on Eq. (10), may be used for computing its vertical gradient, by 
discretizing the earth surface in cells, that is: 
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where n is the number of cells over the integrating area around the point P, i is the 
order of a generic cell with area ai and mean gravity anomaly value Δgi. As the 
summation decreases very rapidly with increasing distance, it is sufficient to extend 
the numerical integration over the immediate neighborhood of the point P.  

Vertical gradients of the Helmert gravity anomaly were computed for State of 
Rio de Janeiro area in a 1.5-arcmin grid, using Delaunay triangulation (Figure 4) 
and the dataset presented in Figure 3. A grid of 1.5-arcmin horizontal resolution was 
used to fill in the blank areas. The neighboring area was scanned up to a radial 
distance of 24 km. The values of the gradient vary from -68.6 mGal/km to 27.2 
mGal/km. 

  
Figure 15 – Contribution per distance range in the vertical gradient of Helmert 
gravity anomaly at the point of minumum value, up to 24 km from the point. 

 

 
 

The Figure 15 presents a graphic with the contribution, in mGal/km, per 
distance range, in km, up to 24 km from the point of minimum value of vertical 
gradient (-68.6 mGal/km), it is possible observe that, for distances larger than 22 
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km, the contribution tends to zero. A map for the vertical gradient of the Helmert 
gravity anomaly is shown in the Figure 16. 

 
Figure 16 – Vertical gradient of Helmert gravity anomaly with the curve of zero 

mGal/km in highlight, as it was computed using Delaunay triangulation. 

 
 
4. CONCLUSIONS 

Voronoi and Delaunay structures have been applied as alternative 
discretization tools to compute numerical surface integration in geodetic problems 
solutions, when under the integral there is a non-analytical function. Both schemes 
were used to computing the Stokes’ integral, while terrain correction, indirect effect 
and vertical gradient of the Helmert gravity anomaly were computed using 
Delaunay triangulation. 

The main advantage of those schemes is to perform the computation without 
an interpolation grid, when the amount and distribution of data points are enough. 
Even when this condition is not satisfied, it is possible to merge data points with a 
grid of interpolated data, used to fill in the blank areas. In both cases, the original 
data are preserved. However, when merged data are used, it is important to check 
the consistency between the interpolated data grid and the original data. Any bias or 
conflict should be eliminated a priori, to avoid artificial effects on results. 

Both structures, of simple and efficient geometrical constructions, are useful 
for the tessellation of a site in order to evaluate the geoidal undulations by means of 
the Stokes’ technique. The Voronoi approach uses less discretization cells than the 
Delaunay triangulation, nevertheless, both schemes leads to the same results, which 
are somewhat more efficient than the classical method. 
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Although a test with Voronoi scheme could have been done to the computation 
of terrain corrections, indirect effects and vertical gradients of the Helmert gravity 
anomaly, it was the Delaunay triangulation used here, having in sight the best fit of 
the triangles to rugged surfaces. For the sake of comparison, a test with Voronoi 
scheme could have been done. 
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