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ABSTRACT

Voronoi and Delaunay structures are presented as discretization tools to be used in
numerical surface integration aiming the computation of geodetic problems
solutions, when under the integral there is a non-analytical function (e. g., gravity
anomaly and height). In the Voronoi approach, the target area is partitioned into
polygons which contain the observed point and no interpolation is necessary, only
the original data is used. In the Delaunay approach, the observed points are vertices
of triangular cells and the value for a cell is interpolated for its barycenter. If the
amount and distribution of the observed points are adequate, gridding operation is
not required and the numerical surface integration is carried out by point-wise. Even
when the amount and distribution of the observed points are not enough, the
structures of Voronoi and Delaunay can combine grid with observed points in order
to preserve the integrity of the original information. Both schemes are applied to the
computation of the Stokes’ integral, the terrain correction, the indirect effect and the
gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.
Keywords: 2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy;
Stokes’ Integral.
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RESUMO

Este trabalho apresenta as estruturas de Voronoi e Delaunay como ferramentas de
discretizacdo a serem usadas na integra¢do numérica de superficies com o objetivo
de resolver problemas computacionais geodésicos, quando no integrando a fung&o
ndo ¢ analitica. No enfoque de Voronoi, a regido de trabalho é particionada em
poligonos, os quais contém um ponto por poligono o que faz desnecessaria a
interpolacdo. No enfoque de Delaunay, os pontos observados sdo os vértices de um
triangulo, e o valor da célula ¢ o resultado da interpolagdo sobre o triangulo pelo seu
baricentro. Se a quantidade de pontos observados e a sua distribuicdo sdo
adequadas, a interpolacdo em grade ndo ¢ necessaria, e a integragdo ¢ levada a cabo
ponto a ponto. Mesmo quandoa quantidade e distribuicdo dos pontos
observados ndo sdo suficientes, as estruturas de Voronoi e Delaunay podem
combinar grade com pontos observadosa fim de preservara integridade
da informagdo original. Ambos os enfoques sdo aplicados ao calculo da integral de
Stokes, da corregdo de terreno, do efeito indireto, e do gradiente da anomalia da
gravidade na regido do estado de Rio de Janeiro, no Brasil.

Palavras-chave: Tesselagdo 2-D; Triangulagdo de Delaunay; Celulas de Voronoi;
Geodésia; Integral de Stokes.

1. INTRODUCTION

In spite of the known techniques for geodetic parameters computing, either in
the space-domain (SANTOS and ESCOBAR, 2000) or in frequency-domain
(HAAGMANS et al., 1993; SCHWARZ et al., 1990), usually the target area is
required to be partitioned into geographical grid elements. Geoid undulations,
terrain corrections, indirect effects, for instance, are computed at these cells, based
on gravity anomalies and heights, which are not evenly distributed. These are
interpolated in order to produce a regular grid (HIRVONEN, 1956). Similarly,
either integral methods (LEHMANN, 1997) or the combined ones (e.g., space-
frequency domains), also require evenly distributed data (LI and SIDERIS, 1992).
Gridding is usually (see Sideris 1995) required for fast Fourier transform (FFT)
geoid determination techniques (e.g., STRANG VAN HEES, 1986; SIDERIS and
TZIAVOS, 1988; HAAGMANS et al., 1993; FORSBERG and SIDERIS, 1993;
KUROISHI, 2001), as well as for the fast Hartley transform (FHT) and fast T
transform (FTT) techniques (AYHAN, 1997; LI and SIDERIS, 1992). Similarly,
some traditional space-domain techniques, such as discrete summation (e.g.,
HIRVONEN, 1956; GEMAEL, 1999) and integral methods (e.g., JIANG and
DUQUENNE, 1997; LEHMANN, 1997; NOVAK et al, 2001), require the
observed data to be gridded. Although this is not just a problem, nevertheless
modified data are used instead of the original ones. Also, gridding usually expends
excessive manual/computational effort, as well as it is liable to produce spurious
data with the loss of genuine information (GOLDEN SOFTWARE, 1999). Besides,
the interpolated value depends on the chosen gridding technique and on the grid
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‘nodes’ separation, which are inherent to the spatial data distribution (e.g.,
GOLDEN SOFTWARE, 1999). In the worst case, it may produce spurious data
that may lead to an inaccurate geoid. Also, different gridding methods provide
different interpretations of the data because the grid node values are computed by
different algorithms.

In this work, the discretization by means of Voronoi and Delaunay structures
(AURENHAMMER, 1991; WATSON, 1981) is used to the computation of the
Stokes’ integral, terrain correction, indirect effect and gradient of the Helmert
anomaly. Both approaches are reported in Santos and Escobar (2006, 2010).
Genuine data are used and preserved if they have such a spatial distribution that
does not require filling blank areas with interpolated data. In spite of a natural
“smoothing” due to the data distribution, Voronoi and Delaunay schemes avoid the
“synthetic” smoothing due to an interpolation step. Alternatively, if the original
data are not sufficient, they can still be preserved in combination with a grid used to
fill the blank areas. In Voronoi scheme, the target area is subdivided into a unique
set of convex and adjacent polygonal cells, in which each one holds an original data
point. In Delaunay scheme, the area is tessellated into contiguous triangular cells
(triangulated irregular network - TIN). Mean values are locally interpolated for the
barycenter (centroid) from respective triangles’ vertices and remains enclosed to
each cell (GOLDEN SOFTWARE, 1999).

2. THE TESSELLATION METHOD

Several authors have investigated Voronoi and Delaunay structures, their
properties and applications in many different scientific fields. Those structures are
used in the analysis of elements that have to be partitioned into contiguous domains
called “natural neighbors”. This term was coined by mathematicians, when noticing
the frequent instances of those relationships found in the nature. Many geometric
natural shapes tend to be organized into Voronoi-like figures, such as the formed
surface layer of mud that has dried and contracted, or the tessellated bony shell of
some turtles and tortoises.

In gravimetry, Delaunay triangulation has been used to model the topography
for terrain corrections computation, in which the relief is represented by triangular
prisms (RUPERT, 1988). Lehmann (1997) used a triangulation structure to model
equilateral spherical triangles for the evaluation of geodetic surface integrals.

A Voronoi diagram is also referred to as the Dirichlet tessellation, and might
be viewed as a geometric complement (a duality) to Delaunay triangulation
(AURENHAMMER, 1991; TSAI, 1993). The polygon vertices are associated with
Delaunay triangles by the same construction rule — the circumcircle criterion or the
Delaunay criterion (TSAI, 1993).

2.1. Construction of Delaunay Triangulation and VVoronoi Diagram
A Delaunay triangulation (also called a Delaunay simplicial complex) is a
partition of an m-dimensional space, S, into adjacent triangular elements (Figure
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1b). Given a set of n distinct points in S, so that N > M, every circumcircle
associated with the triangles must contain no other points inside it. Whereas k points
belonging to the perimeter of the area (peripheral points), the number of triangles
generated is equal to 2(n - 1)- k. The interesting property of this structure (the
approximated equiangular form) indicates that minimum angles are maximized and
maximum angles are not minimized, which is an advantage over any triangulation
of the same set of points. By Delaunay criteria, any triangulation with no obtuse
angles has to be a Delaunay triangulation. According to Aurenhammer (1991), a
triangulation without extreme angles (or "compact") is desirable, especially in
methods of data interpolation. Additionally, in graphical computation the
equiangular property is a need that provides the best visualization for displaying
figures.

The vertices in Delaunay triangulation are all and only the n points of S, and
its circumcenters are the actual Voronoi polygon vertices, or Voronoi polytopes
(Figure la). The remaining circumcenters not satisfying the ‘empty circumcircle
criterion’ are discarded from the construction.

The automatic contouring of the points is according to the triangulation
algorithm by D.F. Watson (RUPERT, 1988), which was modified to include the
Voronoi polygons’ computation, in which the topological data structures set up the
relations between data points, edges and Delaunay triangles. The algorithm
implicitly ensures a closed bounding area perimeter (the convex hull), but it does
not preserve its outer limits because this information is not required for the
triangulation.

Figure 1 — Voronoi (a) and Delaunay (b) diagram construction.

A Voronoi diagram is a partition 7Zi of space S into n polygons, so that each
one contains just one point i of the set. As a rule, given a polygon, a subset X of its
vertices is closer to the inside point than any other point in S. Formally, we have
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7 ={xeS, i=1..,n[d(xi)<d(x, j) VjeS—il, (1)

where d is the point-to-vertex Euclidean distance function.
The Voronoi structure is unique in a sense that each polygon edge is exactly

halfway between each pair of sites in S. For this reason, the 1 —1 half planes give

rise to convex polygons, each of which have at most I—1 edges
(AURENHAMMER, 1991). Also, any point on an edge is equidistant to two sites,
and any vertex is equidistant to each three sites, thus forming a polygonal partition
of the region. By construction, no polygon can be empty, and as a consequence,
space is partitioned into exactly i polygons.

The topological data structures for Voronoi diagram construction are almost
the same as in Delaunay triangulation, but in Voronoi diagram the sequence of
vertices and polygons edges is necessary to ensure the same area of computation as
in the Delaunay triangulation. Additionally, a check for both Voronoi and Delaunay
constructions is performed to verify if the sum of plane areas of the figures is the
same.

3. APPLICATION OF VORONOI AND DELAUNAY TECHNIQUES

A comprehensive approach of Stokes' and Molodensky's formulations as well
as the main Boundary Value Problem of Geodesy (BVPQG) alternatives can be found
in Guimardes and Blitzkow (2011). Voronoi and Delaunay diagrams were applied to
compute the Stokes’ integral for the local gravimetric geoid determination in the Rio
de Janeiro State (and nearby regions), Brazil. The relief is very rugged, and varies
between 0 — 2,600 m (Figure 2). In the same area Delaunay triangulation was
applied to the computation of terrain correction, indirect effect and the gradient of
Helmert gravity anomaly.

Latitude

_430°
Longltude
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The dataset includes 1940 terrestrial gravity stations filled out with 491 Geosat
5-arcmin resolution gravity anomalies (Figure 3). The data on land are along some
roads and a kriging interpolation was used to fill in most of the blank areas between
the roads to a S-arcmin resolution grid, amounting to 3973 data points.

Figures 4 and 5 depict the goal area tessellated according to the Delaunay and
Voronoi schemes, respectively. The process removes clustered data inside a circle
of radius 2000 m, in order to avoid rather irregular cells. These clusters accounted to
744 points for both the schemes, remaining 3229 data points, and the same amount
of Voronoi cells were produced. Delaunay tessellation gave rise to 6278 triangular
cells, whose vertices are the data points.

Figure 3 — Distribution of data points (in blue), with known gravity anomaly,
longitude, latitude and height, on State of Rio de Janeiro area. Red points represent
interpolated grid p
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Figure 5 - State of Rio de Janeiro area partitioned according to the Voronoi
diagrams. Points represent data points.
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3.1 The Stokes’ Integral Computation

In general, the geodesists deal with two distinct surfaces to represent the figure
of the Earth. The determination of the distance between them is the main goal of the
geodetic sciences. One is a theoretical surface - the reference ellipsoid - adopted as
the planimetric referential for geodetic and geophysical applications. The other one
is the geoid, which is the most important equipotential surface of the Earth’s gravity
field, the closest of the Earth's physical surface. It is a real surface, might be
materialized, and may be approximately viewed as the mean sea surface, supposedly
extended through the continents. The geoid is used as the altimetric referential for
engineering applications.

Stokes’ established the theoretical basis for the gravimetric determination of
the geoid, considering the variation of gravity at different points on the Earth’s
surface. Stokes’ formula solves the problem assuming a global and continuous data
distribution over the Earth, and is given by (STOKES, 1849)

N—Lf”j” Ag S(p)siny dy d 2
e w)siny dy dy, @)

where AQ is the gravity anomaly, R is the radius of a spherical Earth, and y is
normal gravity value on the ellipsoid surface. The spherical distance (¥ ) and
azimuth ( ) ) are polar co-ordinates of a specific point referring to the gravity
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station, and S() is the spherical Stokes’ function. Figure 6 outlines the
geometrical relationship between polar co-ordinates (i, ¥) and an elemental area

dA on the spherical surface.

Figure 6 - A spherical Earth model.

Gravity
station

From Figure 1, we get the relationship

dA=R*sinydw dy. 3)

Substitution of Eq. (2) in Eq. (1) yields the geoidal undulation N as a function of the
elemental area dA .

1

=——|AgS dA.
4”R7{ gS(w) @)

In practice, Stokes’ integral is replaced by a discrete summation, due to the
impossibility of an ideal data distribution. A method proposed by Hirvonen (1956)
solves the discretization problem in order to determine the geoid undulations. It
subdivides the studied area into a regular geographical grid, and each grid cell
contains an interpolated mean gravity anomaly that represents that cell for the
discrete evaluation. The geoidal undulation might be written as

l n
R, A0 Swa 5)
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where Agi is the Helmert anomaly, the free-air anomaly corrected for the

topographic and atmospheric attraction effects (e.g., MORITZ, 1984), and @, is an

individual area corresponding to the i-th cell.

In Scheme Voronoi the actual values observed in the data points are assigned
to polygons, and the calculation point coincides with a point of integration (i.e.,
v = 0), leading the indetermination of S(y). To avoid the indetermination, in this
case, the Eq. (4) is replaced by (HEISKANEN & MORITZ, 1967),

NozAgO l/IO ,
v

(6)

where Ag, is the gravity anomaly at the point,and 1y is the mean
spherical distance between the point and the respective edges of
the Voronoi polygon.

In Delaunay scheme, as the computation is performed for the triangles’
vertices (data points), and the value for the cell is computed for its barycenter,
Stokes’ function singularity has gone (SANTOS and ESCOBAR, 2010).

The geoidal height computation at point P(. 1) s split into three
components (e.g., STRANG VAN HEES, 1986; DENKER and WENZEL, 1987;
RAPP and BASIC, 1992)

N (¢’ 2’) =N MODEL (¢’ 2’) +N EFFECT (¢9 ﬂ‘) + NSTOKES (¢7 2’) : (7)

The N MODEL(¢, A) represents the contribution of long-wavelength
components computed using geopotential model coefficients (e.g., RAPP et al,,
1991). The primary indirect effect term, Ngrreer(@, 4), is computed by means of
Helmert’s second condensation method (Lambert 1930) from the elevation data file
(Fig. 2). Finally, the N STOKES (4, A) component is computed from Eq. (4) with the

residual free-air anomalies (free-air anomalies minus anomalies derived from
model), corrected for the topographic relief and atmospheric attraction effects.

Both Delaunay and Voronoi schemes were used to compute Nsrokes (4, 4)
component. Figures 7 and 8 depict the results for the area of the Rio de Janeiro
State.
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Figure 7 - Stokes’ component from Delaunay triangles.
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provides a more smoothed aspect in ~ STOKES (4. 4) component than the Voronoi
scheme, what leads to a residual difference (Voronoi minus Delaunay) as is
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indicated in figure 9. The discrepancies range from -35 cm to 14 cm, with mean
value of -2 cm and standard deviation of 4 cm.

Figure 9 — Differences between geoidal heights computed with Delaunay and
Voronoi schemes (Voronoi minus Delaunay).
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A comparison between the application of Delaunay and Voronoi schemes and
the classical technic in geoidal heights computation was done. As the first two terms
in Eq. (6) are independent of the used method to compute Stokes’ integral, because
they do not depend on the way as the discretization is carried out, to examine the

differences it is sufficient to consider only the term NSTOKES (9, 1).

Table 1 presents the statistics of those differences for the Rio de Janeiro
dataset. The RMS differences indicate an almost perfect agreement (99%) between
the Voronoi and Delaunay schemes. Only one point in the Voronoi scheme is
outside the 99% confidence interval for the RMS difference, which the maximum
difference is less than 10 cm. With the exception of the area of Corcovado peak,
results are statistically the same for the two methods.

Table 1 - Differences (metres) between the classical numerical integration technique
and Voronoi Delaunay.

Statistics Voronoi Delaunay
RMS difference 0.022 0.024
Minimum -0.028 -0.013
Maximum 0.080 0.085
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3.2 The Terrain Correction Computation

The terrain correction takes into account the attraction effect of the
irregularities of the topography in the vicinity of the gravity station and is always
added to the observed value. Since the terrain correction can take values larger than
other corrections to gravity (Earth's tide, free-air, Bouguer) it is very important,
mainly in regions of rugged topography. The gravitational attraction of a vertical
triangular prism is the mathematical model used here for the terrain
correction computation (WOODWARD, 1975, RUPERT, 1988). The terrain is
geometrically represented by vertical prisms of triangular base (Bl, B2, B3) in
horizontal plane at the altitude of the gravity point (P) and tilted top (Al, A2, A3)
modeling the topography (Figure 10). Vertices of the triangular base are determined
according to the Delaunay structures and the density is assumed to be constant.
Within a given radial distance from each gravity point, the calculation of the vertical
component of attraction of the prisms is computed.

Figure 10 — Geometry of a triangular prism with tilted top.

X
-

Az
Y

Terrain corrections were computed for State of Rio de Janeiro area in a 1.5-
arcmin grid, using Delaunay triangulation (Figure 4) and the dataset presented in
Figure 3. A DTE dataset available online by the National Institute for Space
Research, INPE, Brazil, was used to fill in the blank areas. This topographical
database was unified and structured for the whole Brazil area - the TOPODATA
Project (VALERIANO and ALBUQUERQUE, 2008). It was produced by a refined
combination of local terrain elevation data and topographical information derived
from Shuttle Radar Topography Mission - SRTM data (USGS, 2007), for a 1-arcsec
horizontal resolution grid. A subset DTE grid of a 3-arcsec horizontal resolution
was used to the radial distance of 3 km and a 15-arcsec resolution subset grid for
radial distances between 3 km and 24 km. Distances and azimuths were calculated
using Vincenty formulas for solving the inverse problem of Geodesy (VINCENTY,
1975). The values range between 0 and 37.22 mGal, with mean value of 1.66 mGal
and standard deviation of 2.60 mGal. The Figure 11 presents a graphic with the
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contribution, in mGal, per distance range, in km, up to 24 km from the point of
maximum value of terrain correction (37.22 mGal), it is possible observe that, for
distances larger than 24 km, the contribution to terrain correction tends to zero. The
Figure 12 shows the map of the terrain correction in Rio de Janeiro State area,
computed using Delaunay triangulation (Figure 4) and the dataset presented in
Figure 3.

Figure 11 — Contribution per distance range in the terrain correction at the point of
maximum value, up to 24 km from the point.

14
12
— 10
@
E 8
3 ¢
5
o 4
*g 2
U D LI L L |I|I|I|I|I|lll|.l.|.|.l-|-l-l l-l-l-l 1
1 25 7 9111215171921 23
Distance range (km)

Figure 12 — Terrain correction on State of Rio de Janeiro area, with the curve of
2 mGal in highlight, as it was computed using Delaunay triangulation.
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3.3 The Indirect Effect Correction

As gravity reductions deal with topographic mass displacement, the resulting
indirect effect on the geoidal height must be computed (HEISKANEN & MORITZ,
1967). The Helmert's second method of condensation involves generally small
indirect effects, given by (SIDERIS and SHE, 1995):

7G Gpa, w1
NEFFECT:_ 7pH|§+ = ZT(HS_Hi3) ¥

i=1 9j

where §; is the Euclidean distance from computation point P, with elevation Hp, to
generic integration cells i, with elevation H; and area a;.

Using the same process applied to the terrain correction, with the same
Delaunay scheme, dataset and scanned distance, the indirect effect for Helmert’s
second method of condensation was computed. The values range between -0.424 m
and 0 m. The mean value and standard deviation are, respectively, of -0.025 m and
0.032 m.

Figure 13 — Contribution per distance range in the indirect effect correction at the
point of minumum value, up to 24 km from the point.
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The Figure 13 presents a graphic with the contribution, in mm, per distance
range, in km, up to 24 km from the point of minimum value of indirect effect
correction (-0.424 m), it is possible observe that, for distances larger than 21 km, the
contribution tends to zero. A map for the indirect effect is shown in the Figure 14.
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Figure 14 — Indirect effect for the Helmert’s second condensation method, with the
curve of -0.05 meter in highlight, as it was computed using Delaunay triangulation.
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3.4 THE GRADIENT OF THE HELMERT GRAVITY ANOMALY

For the solution of some geodetic problems, involving downward or upward
continuation of the gravity, it is useful to know the gradient of the gravity anomaly,
OAg/0H, which can be derived, assuming H and the radius vector, r, in the same
direction (HEISKANEN and MORITZ, 1967, page 115, Eq. 2-217):

OAg R’ rrAg—Ag, 2
o 2l R ©

where Agp isreferred to a fixed point P on which 6Ag/ér is to be computed; R is the
mean radius of the earth; | is the spatial distance between the fixed point P and the
variable surface element R? do;, expressed in terms of the angular distance y by

1}

I :2Rsin5. (10)
The Eq. (24) can be written as
0Ag R’ ;rAg—Ag 2
—=—||—-—""do-=Ag;, 11
o 2l T R 9P (4

without error larger than 0.0006 %.
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Since the gravity anomaly is not known as a continuous function, a numerical
integration, based on Eq. (10), may be used for computing its vertical gradient, by
discretizing the earth surface in cells, that is:

O0Ag 2 1 &a
T oSG, +— Y (A, - A
R gp+2”§|i3( g —Ag,) (12)

where n is the number of cells over the integrating area around the point P, i is the
order of a generic cell with area a; and mean gravity anomaly value Ag;. As the
summation decreases very rapidly with increasing distance, it is sufficient to extend
the numerical integration over the immediate neighborhood of the point P.

Vertical gradients of the Helmert gravity anomaly were computed for State of
Rio de Janeiro area in a 1.5-arcmin grid, using Delaunay triangulation (Figure 4)
and the dataset presented in Figure 3. A grid of 1.5-arcmin horizontal resolution was
used to fill in the blank areas. The neighboring area was scanned up to a radial
distance of 24 km. The values of the gradient vary from -68.6 mGal/km to 27.2
mGal/km.

Figure 15 — Contribution per distance range in the vertical gradient of Helmert
gravity anomaly at the point of minumum value, up to 24 km from the point.
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The Figure 15 presents a graphic with the contribution, in mGal/km, per
distance range, in km, up to 24 km from the point of minimum value of vertical
gradient (-68.6 mGal/km), it is possible observe that, for distances larger than 22
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km, the contribution tends to zero. A map for the vertical gradient of the Helmert
gravity anomaly is shown in the Figure 16.

Figure 16 — Vertical gradient of Helmert gravity anomaly with the curve of zero
mGal/km in highlight, as it was computed using Delaunay triangulation.
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4. CONCLUSIONS

Voronoi and Delaunay structures have been applied as alternative
discretization tools to compute numerical surface integration in geodetic problems
solutions, when under the integral there is a non-analytical function. Both schemes
were used to computing the Stokes’ integral, while terrain correction, indirect effect
and vertical gradient of the Helmert gravity anomaly were computed using
Delaunay triangulation.

The main advantage of those schemes is to perform the computation without
an interpolation grid, when the amount and distribution of data points are enough.
Even when this condition is not satisfied, it is possible to merge data points with a
grid of interpolated data, used to fill in the blank areas. In both cases, the original
data are preserved. However, when merged data are used, it is important to check
the consistency between the interpolated data grid and the original data. Any bias or
conflict should be eliminated a priori, to avoid artificial effects on results.

Both structures, of simple and efficient geometrical constructions, are useful
for the tessellation of a site in order to evaluate the geoidal undulations by means of
the Stokes’ technique. The Voronoi approach uses less discretization cells than the
Delaunay triangulation, nevertheless, both schemes leads to the same results, which
are somewhat more efficient than the classical method.
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Although a test with Voronoi scheme could have been done to the computation
of terrain corrections, indirect effects and vertical gradients of the Helmert gravity
anomaly, it was the Delaunay triangulation used here, having in sight the best fit of
the triangles to rugged surfaces. For the sake of comparison, a test with Voronoi
scheme could have been done.
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