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Abstract:

Among the exploratory spatial data analysis tools, there are indicators of spatial association, which measure 
the degree of spatial dependence of analysed data and can be applied to quantitative data. Another procedure 
available is geostatistics, which is based on the variogram, describing quantitatively and qualitatively the spatial 
structure of a variable. The aim of this paper is to use the concept of the variogram to develop a global indicator 
of spatial association (Global Spatial Indicator Based on Variogram – G-SIVAR). The G-SIVAR indicator has a 
satisfactory performance for spatial association, with sensibility for anisotropy cases. Because the indicator is based 
on geostatistics, it is appropriate for quantitative and qualitative data. The developed indicator is derived from 
theoretical global variogram, providing more details of the spatial structure of the data. The G-SIVAR indicator is 
based on spatial dissimilarity, while traditional indexes, such as Moran’s I, are based on spatial similarity.
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1. Introduction and background

Spatially correlated data exists in various areas of study, such as: epidemiology (Goovaerts, 2006; Goovaerts, 
2009; Sousa et al., 2017), geology (Lee et al., 2007; Orton et al., 2016; Tamayo-Mas et al., 2016); environment 
(Pearce et al., 2009; Park, 2013) and urban and transport planning (Pitombo et al., 2015; Sidharthan et al., 2011; 
Xie and Yan, 2013; Lindner and Pitombo, 2018). Thus, current approaches emphasize the need to include spatial 
components in the analysis and modelling of such data as traditional non-spatial modelling presupposes data 
independence (Sener et al., 2010).  

Using spatial models to estimate spatially dependent variables requires prior and exploratory investigation 
underlying the spatial dependence of these data. Among the exploratory spatial data analysis techniques, we 
highlight the use of indicators of spatial association. Various authors (for example, Moran, 1950; Geary, 1954; Getis 
and Ord, 1992; Anselin, 1995) developed indicators of spatial analysis in order to prove the existence of spatial 
autocorrelation and to quantify relations of spatial dependence. Most indexes refer to the similarity between values 
of the same variable in different locations and are applicable to quantitative variables. 

The use of these indicators is well known in the literature in several areas of knowledge. Sokal and Oden 
(1978) point out that the commonly used method for nominal data corresponds to join counts, whereas for 
quantitative and ordinal data, global analyses are used through Moran I and Geary’s c indices. The Moran I index is 
strongly affected by the difference between two neighbouring values in relation to the mean, and is more sensitive 
to extreme values, whereas Geary’s c index is affected by the absolute difference between neighbours, composing 
a function based on distance (Legendre and Fortin, 1989). Comparing the techniques, Moran’s I index has a more 
powerful hypothesis test than that presented in Geary’s c index (Cliff and Ord, 1981).

Getis and Ord (1992) developed the G-statistics family, indicating their use in addition to global indicators, as 
a local form of analysis, identifying spatial association pockets and outliers. Anselin’s (1995) Local Indicator of Spatial 
Association (LISA) not only identifies local spatial association, but also relates local values to the global measure of 
spatial association, thus evaluating the influence of outliers.

Currently, the most used approach for global analysis corresponds to the Moran index and to the LISA for local 
approach. The calculation of such indicators assumes that the variation of the values of the variable in space is the same 
for all directions (isotropy). Furthermore, these tools assume a normal distribution of data, they are not applicable to 
qualitative data and they are not capable of identifying and modelling the spatial structure of the data graphically.

Among spatial analysis techniques is also Geostatistics, which starts from measuring the dissimilarity of the 
values of a variable at different points of different locations, through a graphical tool known as variogram. While 
the spatial indicators, commonly known in the literature, present the result in the form of a number, geostatistics 
reflects the spatial autocorrelation phenomenon by calculating the experimental variogram graph, which relates 
semivariance and distance values between points, as well as its adjustment to a theoretical function. The technique 
is applicable to quantitative and qualitative variables. 

Thus, this article addresses exploratory spatial data analysis. In this study, the semivariogram concepts help 
in the composition of the indicator of spatial association. A methodological procedure is then proposed for the 
composition of a global indicator of spatial association.

This paper combines the practicality of the use of indicators, which characterize the spatial association 
through a number, with the tool of the variogram, which allows the applicability to quantitative and qualitative 
data. Geostatistics is able to investigate spatial dependence with respect to directions, enabling a more complete 
analysis of anisotropic data. Thus, the contribution of this study is the combination of concepts in order to create a 
more comprehensive indicator than those currently used.
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The developed indicator corresponds to the G-SIVAR, a short for Spatial Indicators based on Variographic 
Concepts or SIVAR.

This article presents seven sections besides this introduction. Section 2 describes basic concepts of the 
geostatistics tool. Section 3 indicates the methodological procedure developed for the proposal of the G-SIVAR 
indicator, while Section 4 describes the study region and database. Section 5 presents the results and discussions. 
Finally, section 6 addresses the conclusions and contributions obtained from this study.

2. The Experimental and Theoretical Semivariogram

The geostatistics analyses spatial data sets through a stochastic interpretation. Unlike Classical Statistics, 
observations are interpreted together to characterize the spatial pattern of the phenomenon faithfully (Wackernagel, 
2003; Journel and Huijbregts, 1978).

Matheron (1971) developed the theory of regionalized variables, which are numerical functions with spatial 
dependence and cannot be explained by deterministic functions. Nowadays, it is possible to apply geostatistical 
techniques to quantitative variables (continuous and discrete) and qualitative (nominal, ordinal and binary) variables.

The semivariogram can represent the quantitative variation of the regionalized variables by calculating the 
semivariance according to the distance between points, measuring the dissimilarity between the data. The lower 
the value of the semivariance, the more similar the data between the analysed points. Therefore, if there is spatial 
dependence, it is natural that the value of semivariance grows with distance and stabilizes at a Sill, from which there 
is no more spatial dependence (Burrough, 1986). The semivariogram is given by Equation 1.

γ(h) = 1
2n ∑[Z(x + h) − Z(x)]²

N(h)
      (1)

Where: γ(h) is the semivariogram function in h, h is the distance between variables, Z(x) is the random variable 
Z in x and N is the number of elements accounted for.

To develop the semivariogram, the values of the angle (direction), distance between points (lag) and band and 
angular tolerances must be determined. The pairs of points used for the calculation include the point of origin of the 
vector and the points within the area delimited by the tolerances. All points are analysed for multiple distances of 
h, so that a graph can be made relating variance γ and distance between pairs (h), as shown in Figure 1. The same 
figure shows the adjustment of points to a theoretical function.

The remarkable points of the semivariogram are: Range (a), corresponding to the distance to which there 
is spatial correlation; Sill (C), corresponds to the value of the semivariance in range; Nugget effect (C0), observed 
effect due to semivariogram discontinuities for small distances; Contribution (C1), difference between the Sill and 
the Nugget effect.

The modelling of the experimental semivariograms is performed by analysing the best theoretical model 
that fits the experimental semivariogram points. The most usual models are: the pure nugget effect, spherical, 
exponential and gaussian.
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3. G-SIVAR: Global Spatial Indicator Based on Variogram

The G-SIVAR indicator follows the assumptions: (i) for each pre-defined distance neighbourhood, a semivariance 
value is obtained; (ii) this value is evaluated in order to verify if there is spatial autocorrelation in the analysed data; (iii) 
the indicator Li is given as a function of the values of a given variable in the location i and the values of the neighbours 
i for this variable. Neighbours are considered from a certain distance and direction (Anselin, 1995).

Li = f(yi, yJi)      (2)

In which: Li is the indicator, yi is the variable in I and yJi are the values of the neighbours for variable i.

The developed indicator should be such that it is possible to infer the statistical significance of the spatial 
pattern of location “i”. A location “i” is spatial dependent if the value of the indicator  is larger than a critical value 
(δi), regarding a level of significance (αi). Thus, this requires that the probability of the indicator of being higher than 
the critical value is lower than the level of significance used.

Prob[Li > δi] ≤ αi      (3)

Where: Where Li is the indicator, δi is a critical value and ai is the significance level chosen or the pseudo-
significance level (for example, the result of a randomization test).  

It is noteworthy that, when there is spatial dependence, the variables calculated by the indicator are not 
random variables. Figure 2 shows a flowchart of the proposed methodological procedure for the composition and 
obtaining of the global indicator G-SIVAR.

Steps 1 and 2:

First, the coordinates were standardized, so as to make it possible to compare the results between different 
variables. In order to determine the distance that includes the most relevant points for the spatial analysis and 
to automate the selection of the lag between points, we used the bandwidth concept from the Geographically 
Weighted Regression (GWR) technique (Hoon Cho, Lambert and Chan, 2010; Fotheringham et al., 2002). 

The technique is used to model non-stationary spatial phenomena locally, adjusting a regression model for 
each point, using the parameters of the neighbouring points as input. Points of interest for the model are determined 
from the bandwidth. The selection criteria used were the minimizations through cross validation (CV) and the Akaike 
information criterion (AIC), and the lowest value was adopted (Fotheringham et al., 2002).
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Figure 1: Theoretical semivariogram scheme. Adapted from Burrough (1986).
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Figure 2: Flowchart of the proposed method for the Global Indicator of Spatial Association.
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Steps 3, 4 and 5:

The variographic analysis begins by defining the parameters to calculate the experimental semivariograms. The 
lag parameters, lag tolerance, angular tolerance, band and analysis directions are defined. When the experimental 
semivariograms are calculated, the main and orthogonal directions are determined.

Then, the theoretical semivariogram is determined, in which a model is adjusted that considers the 
experimental semivariogram of the main direction and the orthogonal direction. If the spatial structure is isotropic, 
the same semivariogram function will be adjusted for both directions. Otherwise, there is anisotropy and the range 
value used in the theoretical semivariogram equation is different for the main and orthogonal directions.

Steps 6, 7 and 8:

To determine if these values are spatially correlated, a hypothesis test is developed. The hypothesis test used 
corresponds to a pseudo-significance test, as applied to Moran’s indexes (1950). To estimate the significance of the 
proposed index it needs to be associated with a known probability distribution, such as the normal distribution. The 
basic hypotheses of the test are formulated as: (1) Null Hypothesis: the variable is spatially random; (2) Alternative 
Hypothesis: the variable is spatially dependent, there is a spatial pattern.

The objective of this methodological step is to generate a distribution of values of the proposed global 
indicator for the case of spatial randomness. This distribution is essential for determining the hypothesis test to 
evaluate the statistical significance of the indicator.

To do this, a database is created using the same geographical coordinates as the original, but with random 
data between the minimum and maximum limits of the original database. Then, omnidirectional experimental 
semivariograms and theoretical semivariograms for the simulated data were calculated and adjusted.

Since the generated data is random, the spatial dependence cannot be observed. When this occurs, the 
semivariogram tends to values corresponding to the mean semivariance of the data, forming a horizontal line near 
this value. In this situation, the graph is interpreted as the pure nugget effect.

After 100 repetitions, the normality of the distribution of theoretical semivariance is checked by the 
Kolmogorov-Smirnov test. If the distribution is similar to normal, the corresponding critical values can be found for 
the desired level of significance.

The G-SIVAR indicator corresponds to the theoretical semivariance of the standardized main direction and this 
is shown in Equations (4,5,6,7). As we can see, it is a set of possible equations representing the different possible 
adjustments: Exponential, Spherical, Gaussian and Pure Nugget Effect. The standardization should be performed in 
such a way that the maximum possible value for the semivariogram level is equivalent to the typical random data level, 
i.e. the mean value of the semivariance obtained for the simulated data (spatially random data) for the hypothesis test.

Exponential G_SIVAR(h) =
Co + C [1 − exp (−ha)]

Co + C                               (4)

Spherical G_SIVAR(h) =

{
 

 Co + C
2 [3 (

h
a) − (

h
a)

3
]

Co + C para h < 𝑎𝑎
1 para h ≥ a

 

  

    (5)

Gaussian G_SIVAR(h) =
Co + C [1− exp (−(ha)

2
)]

Co + C                        (6)

Nugget Effect G_SIVAR(h) = 1                                                                        (7)
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Where: G_SIVAR(h) is the Global Spatial Indicator Based on Variogram to the neighbourhood h, C0 is the 
Nugget Effect of the Theoretical Variogram, C is the Contribution of the Theoretical Variogram, h is the Distance and 
a is the Range of the Theoretical Variogram.

Having the values of the G-SIVAR indicator and the critical points, assuming that the distribution of semivariance 
of the random data is similar to the normal one, a test of significance is performed, evaluating whether or not to 
accept the hypothesis of spatial randomness for the values obtained for the indicator. The methodological steps for 
G-SIVAR calculation are available in a R - code for any interested user (https://jupedreirajr.github.io/g-sivar/).

4. Data

The database used corresponds to the average number of car trips per household for a cut from the City 
Center of São Paulo - SP, Brazil, from the Mobility Survey 2012 (Metrô, 2012). The data were aggregated into squares 
of 500m x 500m, represented by their centroids.

The city of São Paulo is the capital of the state of São Paulo, located in the southeastern region of Brazil, Latin 
America. For the year 2017, the estimated population corresponds to 12,106,920 inhabitants, being the municipality 
with the largest population of the country (IBGE, 2017). The region of interest is shown in Figure 3.

The database has 905 observations. The variable average number of car trips ranges from 0 to 10, with an 
average of 2.285 and a standard deviation of 1.906. Figure 4 shows the distribution of the study variable in the 
central region of São Paulo.

Figure 3: Location of the region of interest in the city of São Paulo, Brazil.
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Figure 4: Average number of car trips per square of 500 x 500 m represented in the form of centroids.

Avg. number of car trips

5. Results and discussion

The lag corresponding to the bandwidth of 0.044, determined by minimizing the Akaike information criterion, 
was used.

The variographic analysis of the variable average number of car trips was performed in the 0°, 30°, 60°, 90°, 
120° and 150° directions. The parameters were set as follows: lag of 0.044, lag tolerance of 0.022, angular tolerance 
of 22°, band tolerance of 0.022. It can be observed that the main direction corresponds to 120° and the orthogonal 
direction to 30°.

The theoretical semivariogram was adjusted through an Exponential function, the nugget effect (C0) 
corresponds to 2.000 and the contribution (C1) to 1.800. Anisotropy was observed in the data set. The variograms 
are shown in Figure 5 and the experimental and theoretical semivariance values for the main and orthogonal 
directions of the first and most relevant neighbourhoods are presented in Table 1.

Semivariogram - azimuth: 120° Semivariogram - azimuth: 30° 

  

 
Figure 5: Experimental and theoretical semivariograms for main and orthogonal direction.
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As previously described, a database was generated with the same coordinates as the original database. The 
values adopted for the variable average number of car trips correspond to random numbers between zero and ten, 
the minimum and maximum values of the original database. The semivariograms developed are ominidirectional, 
considering spatial tendencies that the data can present. The random data presented no spatial structure, producing 
semivariograms with a constant trend represented by the pure nugget effect model. This procedure was repeated 
100 times, generating new random data within each repetition.

The distribution of theoretical semivariance has an average of 8.292 and a standard deviation of 0.262 and 
is similar to normal according to the Kolmogorov-Smirnov test. Thus, the values corresponding to the critical points 
can be obtained by comparing the analysed distribution with the standard normal distribution.

For a 95% confidence level, the limit obtained through a unilateral analysis of the standard normal distribution 
corresponds to the semivariance of 7.861. If the value of the obtained indicator is above the established limits, the 
null hypothesis must be retained with a given level of significance, that is, the data have no spatial association. 
Otherwise, if H0 is rejected, there is spatial correlation.

Considering that the mean value of the semivariance of the simulated data corresponds to 8.292, the data 
can be standardised. Thus, the values presented in Table 2 were obtained, and the values of theoretical standardized 
semivariance for the main direction correspond to the proposed indicator.

Table 1: Summary of experimental and theoretical semivariance values for main and orthogonal directions.

Viz. Dist. (h)

Semivariance (γ)
Experimental Theoretical

Main direction
(120°)

Orthogonal Direction
(30°)

Main Direction
(120°)

Orthogonal Direction
(30°)

1 0.044 2.462 2.771 2.357 2.188
2 0.088 2.608 3.082 2.643 2.357
3 0.133 2.860 3.236 2.873 2.508
4 0.177 3.198 3.266 3.057 2.643
5 0.221 3.128 3.574 3.204 2.764
6 0.265 3.258 3.695 3.322 2.873
7 0.310 3.378 3.688 3.417 2.970

Table 2: Comparison of indicator values, z and null hypothesis status (for 95% significance) for Moran I Index and G-SIVAR.

Neigh, Dist,
Moran G-SIVAR

Index Z p-value H0 Index Z p-value H0
1 0.044 0.347 20.273 0.000 Rejects 0.620 -12.017 0.000 Rejects
2 0.088 0.234 26.101 0.000 Rejects 0.696 -9.633 0.000 Rejects
3 0.133 0.171 28.780 0.000 Rejects 0.756 -7.722 0.000 Rejects
4 0.177 0.148 28.217 0.000 Rejects 0.804 -6.190 0.000 Rejects
5 0.221 0.123 27.130 0.000 Rejects 0.843 -4.962 0.000 Rejects
6 0.265 0.106 26.589 0.000 Rejects 0.874 -3.978 0.000 Rejects
7 0.310 0.087 24.564 0.000 Rejects 0.899 -3.189 0.001 Rejects

Equation 8 shows the calibrated G-SIVAR for the study region and the main direction.
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G_SIVAR(h) = 0,526 + 0,474 [1 − exp (− h
0,200)]      (8)

Where: h is the Distance (neighbourhood)

It can be observed that G-SIVAR is a measure of dissimilarity and its values range from zero to one. The closer 
to one, the greater the dissimilarity between the pairs of points, considering a direction and tolerances, in addition 
to a distance, determined by the neighbourhood. This measure is associated with a hypothesis test that measures 
how significantly the indicator represents spatial association.

The last step in the methodology, illustrated in Figure 2, is to compare the G-SIVAR to an indicator commonly 
used in the literature with the purpose of validating the procedure described in this article. In this paper, the 
comparison between G-SIVAR and the Moran index was performed for the case of global spatial association. Table 
2, above, shows the relationship between G-SIVAR and the Moran index in order to validate the results found.

The Moran Index I value for the variable average number of car trips corresponds to approximately 0.347 for 
the first neighbourhood, reflecting a moderate spatial correlation between the data. The index values decrease as 
the distance considered increases, all of them are rejected for 95% confidence in the Moran hypothesis test, that is, 
there is a spatial correlation between the data for the first seven neighbourhoods.

In this example, it is clear that the indices are complementary as Moran’s index measures similarities while 
G-SIVAR measures dissimilarities. Values that correspond to the high spatial correlation are close to one for Moran 
and zero for G-SIVAR. The values obtained for the proposed and Moran index almost complement each other in 
terms of totalling the unit value, as shown in Figure 6. 
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6. Conclusions

The G-SIVAR indicator can identify and quantify the spatial association of spatially distributed data adequately 
and it is consistent with the Moran index, showing the advantage of being applicable to quantitative and qualitative 
data, as well as providing a more detailed analysis of the structure of the variable. 

In addition, the G-SIVAR indicator was sensitive to the chosen direction, and was able to identify anisotropy 
of the data and return different values of spatial association depending on the analysed direction. In the example 
presented, this was one practical benefit of using G_SIVAR instead of Global Moran. The proposed global indicator 
is more suitable when dealing with spatial dependence associated to a direction.

It is worth remembering that using the bandwidth of the GWR is a way of calculating the ideal distance of 
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analysis of the set of neighbours, but it is not a rule. As in the case of the Moran, the proposed indicator can be 
calculated for any distance that the user wants; the smoothing parameter is only a theoretical suggestion of distance.
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