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Abstract: 

3D similarity transformation is frequently encountered operation in the field of geodetic data processing, and there 
are many applications that involve large rotation angles. In previous studies, the errors of the coefficient matrix were 
usually neglected and a least squares algorithm was applied to calculate the transformation parameters. However, 
the coefficient matrix is composed of the point coordinates in source coordinate system, i.e., the coefficient matrix 
is also contaminated by errors. Therefore, a total least squares algorithm should be applied. In this paper, a new 
method is proposed to address the 3D similarity transformation problem with large rotation angles. Firstly, the 
scale factor and rotation matrix are put together as the parameter matrix to avoid the rank-defect problem. Then, 
the translation vector is removed and the multivariate model is constructed. Finally, the constraints are introduced 
according to the properties of the parameter matrix and the constrained multivariate total least squares algorithm 
is derived to obtain the transformation parameters. The experimental results show that the proposed method has 
a high computational efficiency.

Keywords: 3D similarity transformation; constraint; large rotation angle; multivariate total least squares

Resumo: 

A transformação da similaridade 3D é frequentemente encontrada no campo do processamento geodésico de 
dados, e há muitas aplicações que envolvem grandes ângulos de rotação. Em estudos anteriores, os erros da matriz 
de coeficientes foram geralmente negligenciados e um algoritmo de menos quadrados foi aplicado para calcular 
os parâmetros de transformação. No entanto, a matriz de coeficiente é composta pelas coordenadas de ponto no 
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sistema de coordenadas de origem, ou seja, a matriz de coeficiente também está contaminada por erros. Portanto, 
um algoritmo total de quadrados mínimos deve ser aplicado. Neste artigo, propõe-se um novo método para abordar 
o problema de transformação da similaridade 3D com grandes ângulos de rotação. Em primeiro lugar, o fator de 
escala e a matriz de rotação são montados como a matriz de parâmetros para evitar o problema de defeito de 
classificação. Em seguida, o vetor de tradução é removido e o modelo multivariado é construído. Finalmente, as 
restrições são introduzidas de acordo com as propriedades da matriz de parâmetros e o algoritmo multivariado 
multivariado restrito de menos quadrados é derivado para obter os parâmetros de transformação. Os resultados 
experimentais mostram que o método proposto tem alta eficiência computacional.

Palavras-chave: transformação de similaridade 3D; restrição; grande ângulo de rotação; multivariar total menos 
quadrados

1. Introduction 

The 3D coordinate transformation is a fundamental problem in the field of geodesy, photogrammetry and map 
projection etc. The 3D coordinate transformation model with seven parameters (i.e., scale factor, three translation 
parameters and three rotation angles), also known as similarity transformation, is the most frequently employed. 
When the rotation angles are small, the Bursa-Wolf model, Molodensky-Badekas model, Veis model and Vaniček-
Wells model can be used in the 3D similarity transformation problem (Rapp 1993). Yang (1999) employed the 
robust least squares in geodetic datum transformation so as to resist the influence of gross errors. You and Hwang 
(2006) utilized the least squares collocation in geodetic datum transformation so as to compensate the systematic 
distortion. However, the 3D similarity transformation with large rotation angles is among the frequently encountered 
operation in a practical project, e.g., the transformation between physical coordinate system and image coordinate 
system in photogrammetry. Therefore, it is necessary to develop a solution for the 3D similarity transformation with 
large rotation angles. In Chen et al. (2004), the nine elements of the rotation matrix were used to replace the three 
rotation angles. The coordinate transformation model with thirteen parameters was established, which can be used 
to deal with the 3D similarity transformation with large rotation angles, and the constraints were introduced because 
the rotation matrix is orthogonal. Then, the constrained least squares (CLS) algorithm was applied to estimate the 
transformation parameters. When both the coefficient matrix and the observation vector are affected by random 
errors, the total least squares (TLS) algorithm with errors-in-variables (EIV) model should be employed, which was 
termed by Golub and van Loan (1980). Numerous scholars have paid attention to TLS algorithm. De Moor (1993) 
considered the structural characteristics of the coefficient matrix, the structured TLS (STLS) algorithm was studied. 
Yan and Fan (2001) proposed the mixed LS-TLS method, in which the constant columns were separated from the 
coefficient matrix. However, the STLS algorithm and mixed LS-TLS algorithm are not satisfactory in measurement 
data processing. For this reason, Xu et al. (2012) extracted the random elements from the coefficient matrix, the 
weighted total least squares (WTLS) algorithm with partial EIV (PEIV) model was developed. The quantities that need 
to be estimated were reduced so that the computational efficiency was improved. Subsequently, Shi et al. (2015) 
improved the WTLS algorithm with PEIV model, the computational efficiency was further improved. In Schaffrin 
and Felus (2008), the observation vector and parameter vector were written in matrix form and developed the 
multivariate total least squares (MTLS) algorithm, but for the case of identity weight matrix. Fang (2011) formulated 
the weighted MTLS (WMTLS) algorithm, and the weight matrix was universal. Zeng et al. (2015) derived the WTLS 
algorithm with inequality constraints. Zhao and Gui (2017) studied the outlier detection for PEIV model. Because 
different observation types usually lead to a model with heterogenous observations, variance component estimation 
for the EIV model was also derived (Xu et al. 2014; Wang and Xu 2016).

The TLS algorithm has been widely applied in the 3D coordinate transformation as well (Fang 2014; Fang 
2015). Lu et al. (2014) took the gross errors in observed coordinates into consideration, and constructed the robust 
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weighted total least squares (RWTLS) algorithm. In Laari et al. (2016) and Okwuashi and Eyoh (2012), the TLS solution 
based on singular value decomposition was applied in the Bursa-Wolf and Molodensky-Badekas model. Because the 
aim of the 3D coordinate transformation is to obtain the coordinates of non-common points in the target coordinate 
system, Li et al. (2012) formulated the total least squares collocation to solve the 3D coordinate transformation 
problem. Thus, the errors of common points in both the source and target coordinate system could be taken 
into consideration. Furthermore, both the errors of non-common points in the source coordinate system and the 
correlations between the coordinates of common and non-common points were also taken into consideration. 
Both the computation of the transformation parameters and the transformation of the coordinates of non-common 
points were integratively implemented. In Lu et al. (2015), the weighted total least squares (WTLS) algorithm based 
on the nonlinear Gauss-Helmert model (Neitzel 2010) was applied in the 3D similarity transformation with large 
rotation angles. However, the method of Lu et al. (2015) has potential numerical instability because of the existing 
of the rank-defect problem (Yang et al. 2017). For this reason, Chang (2016) derived the closed-form least-squares 
solution, but the method would only be applied in the case with rotational invariant covariance structure. Mercan 
et al. (2018) provided an efficient solution to 3D similarity transformation, which is based on quaternions. In Amiri-
Simkooei (2018), the least-squares variance component estimation (LS-VCE) was introduced into EIV model for 
handling the 3D similarity transformation with hard constraints.

In this paper, the nine elements in the rotation matrix are treated as the unknown parameters. Thus, the 
complex formula derivation and tedious computation of trigonometric functions are avoided. The scale factor and 
rotation matrix are put together as the parameter matrix to avoid the rank-defect problem. Then, the translation 
parameters are eliminated and the multivariate model is constructed. Although the multivariate model had been 
constructed for the 3D coordinate transformation by Felus and Burtch (2009), the orthogonal Procrustes algorithm 
was applied so that their method is only suitable for the condition where the errors of observed coordinates are 
symmetrical and independent. Here, we develop the constraints according to the properties of the parameter matrix, 
and the constrained MTLS (CMTLS) algorithm is derived to determine the parameter matrix. Because we eliminate 
the translation parameters, the constants that result in a large number of computation will not appear in the 
coefficient matrix. Furthermore, we do not need to obtain the Jacobian matrix whose calculation is time-consuming 
for calculating the cofactor matrix of the coefficient matrix. Therefore, the proposed algorithm is computationally 
cheap. The main contributions  of our work are summarized as follows:

The random errors of both the coefficient matrix and observation matrix are taken into consideration. Thus, 
the more reliable posteriori standard deviation can be obtained. 

The translation vector is eliminated and calculated separately. The multivariate model is constructed to 
estimate the parameters. As a consequence, we avoid calculating the Jacobian matrix, and the coefficient matrix 
will not contain a large amount of constants. This reduce the computation time of the algorithm. 

2. 3D Similarity Transformation Model with Large Rotation Angles

In the 3D similarity transformation model with large rotation angles, the nine elements in the rotation matrix are 
treated as the unknown parameters in addition to the three translation and one scale parameters. The nine elements 
need to be estimated, rather than the three rotation angles (Lu et al. 2015). Let ),,( ZYX denote the coordinates 
in the target system and ),,( zyx  denote the coordinates of the corresponding points in the source system. The 
mathematical model of the transformation from the source coordinate system to the target coordinate system reads
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where k  is the scale factor, 000 ,, ZYX  are the three translation parameters, and R  is the rotation matrix. 

The rotation matrix is the product of three individual rotation matrices as follow
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If one wants to estimate the three rotation angles, the rotation matrix needs to be linearized, i.e., seeking the 
partial derivative of the rotation matrix with respect to the three rotation angles. The formula is rather complicated, 
and the tedious computation of the trigonometric functions will also be introduced. Therefore, Chen et al. (2004) 
directly estimated the nine elements in the rotation matrix. Then, to preserve the orthogonality of the rotation 
matrix, the following constraints should be applied
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3. The Constrained Multivariate Total Least Squares Algorithm

Transposing equation (1), we can obtain

[ ] [ ] [ ]000 ZYXzyxkZYX T += R      (4)

For n  number of common points, we have
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where n1  denotes the 1×n  vector of ones and ⊗  denotes the Kronecker product operator. 

Designing a matrix G so that [ ] 0ZYXn =⊗ )( 0001G , thus we can eliminate the translation vector. 
Through deduction, we have 
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We need to make 01G =⋅ n , so we can obtain
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where G  is an nn ×− ）（ 1  matrix. Then, multiplying equation (5) by matrix G , we obtain
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Let 
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TkRGSGT        (9)

The rotation matrix and scale factor are put together as the parameter matrix. That is TkRξ   . The aim is 
to avoid the rank-defect problem. The reason for the rank-defect problem was present in Yang et al. (2017). Let the 
coefficient matrix A = GS and the observation matrix Y = GT. Then, equation (9) can be rewritten in the following 
form

AξY        (10)

According to the Kronecker product and the property of the vectorized operator, we obtain

)()()()( 33 SGIGSIA vecvecvec ⊗==      (11)

)()()()( 33 TGIGTIY vecvecvec ⊗==      (12)

where )(⋅vec  is the mathematical operator to convert a matrix to a column vector by stacking one column 
of this matrix underneath the previous one, and 3I  denotes a 33×  identity matrix. According to the cofactor 
propagation law, the cofactor matrices of the coefficient matrix and observation matrix are
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where TQ  is the cofactor matrix of the coordinates in the target system, i.e., the cofactor matrix of T . SQ  is 
the cofactor matrix of the coordinates in the source system, i.e., the cofactor matrix of S . 

Because the rotation matrix is an orthogonal matrix, we can derive

3
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Then, according to equation (15), we can write
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As we can see, the diagonal elements of Tξξ   have the same value and the off-diagonal elements are equal 
to 0. Thus, the new constraints for the reduced observation equations are as follows
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In order to adjust the nonlinear model, we need to linearize equations (10) and (18). Whilst the random errors 
in the coefficient matrix and observation matrix are taken into consideration    
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where )9,,2,1(0
=iiξ  are the elements of 0ξ  , which is the initial value of the parameter matrix. AE is the 

random error matrix of the coefficient matrix, and YE  is the random error matrix of the observation matrix. 

Although ξE δA   is the second-order smaller quantity, the iterative computation could diverge or converge to a 
wrong stationary point if it is neglected (Pope 1972). However, this pitfall can be avoided by using the estimate 

)( jAE  of 
the j th iteration instead of AE  in equation (19), as suggested by Li et al. (2012). Noting 
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Next, the CMTLS algorithm will be derived. We start with the objective function

min=+ −−
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where )( AA vec Ee =  whose cofactor matrix is AQ , and )( YY vec Ee =  whose cofactor matrix is YQ . The 
corresponding Lagrange target function reads 
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where λ denotes a matrix of Lagrange multipliers, u  denotes a vector of Lagrange multipliers. 

The solution of this target function is derived via the Lagrange necessary condition, namely
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where hats indicate “estimated” quantities.

From equations (26) and (27), we can obtain
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Combining equation (34) and equation (30), we can obtain
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Thus, we get the CMTLS solution 
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Then, the updated parameter matrix is calculated as

ξξξ ˆ
0 δ       (37)
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After the parameter matrix is calculated, we can take the value of any diagonal elements of the matrix Tξξ   
to calculate the scale factor. For example

)1,1(ˆ Tk ξξ       (38)

where Tξξ  (1,1) denotes the first diagonal element of Tξξ  . 

Thus, the rotation matrix is given by

k

T

ˆ
ˆ ξR        (39)

Because the observation matrix Y  is an 3)1( ×−n  matrix and the parameter matrix ξ   is a 3 x 3 matrix, 
according to Schaffrin and Felus (2008) and Zeng et al. (2015), the  standard deviation is estimated as

73
)()(

533)1(3
ˆ

1












n
vecvec

n
y

T
Y

1
Y

T
YA

1
A

T
A AξYQAξYeQeeQe        (40)

In addition, we can calculate the estimated random error vectors of S  and T  with

AA
T

SSS vec eQGÉQEe ˆ)()ˆ(ˆ 1
3

−⊗==      (41)

YY
T

TTT vec eQGIQEe ˆ)()ˆ(ˆ 1
3

−⊗==     (42)

where SÊ  is the estimated random error matrix of S  and TÊ  is the estimated random error matrix of T . 

After the scale factor is computed by using equation (38) and the rotation matrix is computed by using 
equation (39), the adjusted coordinates are used to calculate the translation vector of each point as follows

T
ST k RESETΔ ˆ)ˆ(ˆ)ˆ(        (43)

Here, we observe that the calculated translation vectors of all the points are the same, so any row ∆i of ∆ can 
be considered as the translation vector. 

The calculation step is summarized as follows: 

Step 1: The prepared data include the coordinates in the source system, the coordinates in the target system, 
the cofactor matrix  SQ  of the coordinates in the source system, and the cofactor matrix TQ  of the coordinates in 
the target system. 

Step 2:Compute the initial value of the parameter matrix 0ξ   and set the initial random error matrix 
0AE  of 

the coefficient matrix as zero matrix. 
)()())()(()( 1

3
1

3
1

3)0( YQAIAIQAIξ vecvec Y
T

Y
T    

3)1()0( ×−= nA 0E

Step 3: Using the initial value, we start the following iterative process: 

)()( 1)(1)(   njAn
T
jYy IξQIξQQ  

)()( jAj EAA −=

)()( )(3
1

)(3 jy
T

j AIQAIN ⊗⊗= −

)()( 0
1

)(3 AξYQAIW   vecy
T
j  

))()(()ˆ( 11
)1( WCNWCCNCWNξ 1

0
T1T

jδvec 
   

)1()()1(
ˆ

  jjj δξξξ  

))ˆ()()(()(ˆ )1()()(
1

1)()1( 


 
 jj3jynjAA δvecvec

j
ξAIAξYQIξQe  
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Step 4: Repeat the step (3) until  )1(
ˆ

jδξ   (ε  is a preset threshold). 

Step 5: Compute the scale factor and rotation matrix by equations (38) and (39), and compute the translation 
vector using equation (43). 

Step 6: Compute the standard deviation  using equation (40).

4. Experiments and Analysis

4.1 Three-dimensional coordinate transformation

In this section, the simulation experiment is performed to illustrate the advantages of the derived CMTLS 
algorithm. Matlab is used to perform the experiment. We randomly choose ten points as the points in the source 
system. The true values of the scale factor, translation parameters and rotation angles are set as 

  ]60453087601.1[ 000
321000 ZYXk       (44)

Thus, we can calculate the coordinates of the ten points in the target system. The true values of the coordinates 
in the two coordinate systems are shown in Figure 1. The blue points are the points in the source coordinate system 
and the red points are the points in the target coordinate system.

 

(a)                                                                                     (b) 

 Figure 1: The ten points in the source coordinate system (a) and target coordinate system (b).

The random errors with different variances are added to the true values of the coordinates. The coordinates 
of point 1 to point 5 in the target system contain the random errors with zero mean and standard deviation of 
0.03m. The coordinates of point 6 to point 10 in the target system contain the random errors with zero mean and 
standard deviation of 0.06m. The coordinates of point 1 to point 5 in the source system contain the random errors 
with zero mean and standard deviation of 0.09m. The coordinates of point 6 to point 10 in the source system contain 
the random errors with zero mean and standard deviation of 0.12m. 

At first, the WMTLS (Fang 2011) and CMTLS are implemented to obtain the parameter matrix. The priori  
standard deviation is set as 0.03 to determine the cofactor matrices SQ  and TQ . The matrix Tξξ   is calculated 
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according to the calculated parameter matrix, as shown in Table 1.

Table 1: The calculated results of the two methods

Method WMTLS CMTLS

Tξξ  
















−
−−

−

0201.10001.00000.0
0001.00202.10001.0

0000.00001.00201.1

















0201.10000.00000.0
0000.00201.10000.0
0000.00000.00201.1

Because the rotation matrix is an orthogonal matrix, the diagonal elements of the matrix Tξξ   should be equal 
and the off-diagonal elements should be equal to 0. From the calculated results of Table 1, we note that the results 
of the CMTLS are consistent with the constraints. However, in the results calculated by the WMTLS, the diagonal 
elements are not equal, and non-zero values exist in the off-diagonal elements. Therefore, the results of the CMTLS 
are better and the additional constraints are necessary in this context. 

Next, the CWLS, CWTLS and CMTLS are implemented. The calculated results of the three algorithms are 
compared to perform analysis. In order to have an insight to the three algorithms, the CWLS and CWTLS for the 3D 
similarity transformation are presented in Appendix. We carried out 1000 simulation experiments and randomly 
extract the calculated results of one simulation experiment. The results of the CWLS are as follows:

1.00997767ˆ =k ,  8.044456056.943595966.05115997ˆ Δ  ,
















=

0.612351570.35358491-0.70710908
0.780346130.126839020.61234939-
0.126828480.926762950.35358869

R̂

The results of the CWTLS are as follows:

1.00997271ˆ =k ,  8.024534906.961730056.03809733ˆ Δ  ,
















=

0.612351340.35357640-0.70711353
0.780346320.126831610.61235068-
0.126828400.926767210.35357755

R̂

The results of the CMTLS are as follows:

1.00997271ˆ =k ,  8.024534906.961730056.03809733ˆ Δ  ,
















=

0.612351340.35357640-0.70711353
0.780346320.126831610.61235068-
0.126828400.926767210.35357755

R̂

As we can see, the results of the CWTLS are the same as those of the CMTLS. It indicates that the CMTLS is 
equivalent to the CWTLS in terms of the transformation parameter estimates. The results of the CWLS are slightly 
different from the results of the CWTLS and CMTLS. This is because the CWLS ignores the errors of the coefficient 
matrix. However, the estimated standard deviations are different. As shown in Figure 2, the standard deviations 
calculated by the CWLS are obviously higher than those calculated by the CWTLS and CMTLS. The mean value of the 
standard deviations calculated by the CWLS for 1000 simulations is 0.0787, which is higher than the priori standard 
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deviation. The mean values of the standard deviations calculated by the CWTLS and CMTLS for 1000 simulations are 
all 0.0296, which is close to the priori standard deviation. Therefore, the standard deviations obtained by the CWTLS 
and CMTLS are more reasonable. This advantage is significant for the statistical analysis of the results. The standard 
deviations calculated by the CWTLS and CMTLS are useful for gross error detection and hypothesis testing etc. 

Figure 2: The standard deviations calculated by the three algorithms for 1000 simulations

Although the calculated results of the CWTLS are the same as those of the CMTLS, the computational efficiency of 
two methods is different. The cofactor matrix of the coefficient matrix cannot be directly obtained when implementing 
the CWTLS. We need to compute the jacobian matrix of the coefficient matrix with respect to the coordinates in the 
source coordinate system. Then, we can obtain the cofactor matrix of the coefficient matrix according to the cofactor 
propagation law. In contrast, the cofactor matrices of the coefficient matrix and observation matrix can be obtained 
without extra computation within the CMTLS, because the matrix G  is given and easy to compile code, as shown in 
equations (13) and (14). Therefore, compared with the CWTLS, the CMTLS is easier to implement. In addition, for the 
CWTLS, there are numerous constants in the coefficient matrix, which result in a large computational burden.  

In order to compare the computational efficiency of the CWTLS and CMTLS, we simulate five common 
points, ten common points, fifteen common points and twenty common points, respectively. The computation 
time is plotted as a function of the number of the common points. As shown in Figure 3, the computation time is 
obviously less when implementing the CMTLS. With the increasing number of the common points, the growth of 
the computation time is also slow. However, when implementing the CWTLS, the growth of the computation time 
is significant. Hence the CWTLS algorithm is relatively time-consuming. For big data processing, the computational 
efficiency is very important. 

Figure 3: Computation time under different number of common points
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In some practical project, the point coordinates are obtained by control network adjustment, so the cofactor 
matrix of the point coordinates should be fully-populated, i.e., the cofactor matrix is a non-diagonal matrix. For this 
reason, a case with non-diagonal cofactor matrices SQ  and TQ  is presented. The data are the twenty common 
points used before. The random errors with standard deviation of 0.01m are added to the true values of the 
coordinates. The priori standard deviation is set as 0.01. Thus, the cofactor matrix of each point is the identity 
matrix. We assume that the point coordinates are correlated. The empirical covariance function in Li et al. (2013) is 
employed to construct the cofactor matrices. The correlation coefficient of two arbitrary points is 

2
0/1

1
）（ ddij

ij +
=ρ      (45)

where ijd  is the distance between points i  and j , and 0d  is a constant to govern the correlation strength, 
which is set as 1000 in this experiment. The maximum, minimum and mean correlation coefficients are respectively 
0.9412, 0.0513 and 0.2813. Note that the correlation coefficient is only computed between two points in the same 
coordinate system. 

Then, the CWLS, CWTLS and CMTLS are performed to calculate the transformation parameters.The results of 
the CWLS are as follows:

1.01000135ˆ =k ,  8.007958566.986112756.00053850ˆ Δ  ,
















=

0.612371450.35355886-0.70710489
0.780330780.126830060.61237080-
0.126826960.926774110.35355997

R̂

The results of the CWTLS are as follows:

1.01000293 ˆ =k ,  8.005569676.994582015.99430186ˆ Δ  ,
















=

0.612371610.35355719-0.70710559
0.780330150.126825060.61237264-
0.126830030.926775430.35355541

R̂  

The results of the CMTLS are as follows:

1.01000293 ˆ =k ,  8.005569676.994582015.99430186ˆ Δ  ,
















=

0.612371610.35355719-0.70710559
0.780330150.126825060.61237264-
0.126830030.926775430.35355541

R̂  

It can be seen that the results of the CMTLS and CWTLS are the same, and the results of the CWLS are slightly 
different from those of the CMTLS and CWTLS. The estimated standard deviation and the computation time are 
listed in Table 2. As we can see, the standard deviations calculated by the CWTLS and CMTLS are closer to the priori 
standard deviation, while the one calculated by the CWLS is much far away from the priori standard deviation. We 
can also see that the computation time of the CMTLS is significantly smaller than that of the CWTLS. For the case 
with non-diagonal cofactor matrices, the CMTLS still yields the more reliable standard deviation in comparison with 
the CWLS and has a significantly better computational efficiency in comparison with the CWTLS. 
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Table 2: The estimated variance components and the computation time

Method CWLS CWTLS CMTLS
Standard deviation 0.0283 0.0134 0.0134

Computation time (s) / 9.0860 0.1642

In our algorithm, the scale factor and rotation matrix are put together as the parameter matrix, and the 
translation vector is calculated by equation (43), so our algorithm can only get the variances of the parameters (the 
elements in the parameter matrix) rather than the variances of the transformation parameters. This is a drawback 
of the proposed algorithm. 

4.2 Point cloud registration

In order to indicate the importance of computational efficiency, a case involved point cloud registration 
is provided. The iterative closest point (ICP) algorithm (Besl and McKay, 1992) is the most popular registration 
method. It alternates between two steps until the convergence condition is reached. The first step is to establish 
correspondences, and the second step is to estimate the transformation. Here, the CWTLS and CMTLS algorithms 
are used for the second step. The TLS adjustment has already been used for the ICP-like algorithm by Tao et al. 
(2018) and Ge and Wunderlich (2016). 

The data are the point clouds of the “Man head” model, as shown in Figure 4(a). The two point clouds 
respectively contain 11283 and 10862 points. We down-sample them to 25%, 50% and 75% of their original points. 
The computation time required by the CWTLS and CMTLS algorithms is recorded under different sampling rates, 
which is shown in Figure 4(b). The registration result without down-sampling is also illustrated in Figure 4(a). As we 
can see, the computation time of the CWTLS algorithm is significantly more than that of the CMTLS algorithm. For 
the point cloud registration, it often involves a large number of points, so the computation efficiency is crucial. 

Figure 4: (a) the original points and the registration result, and (b) the computation time under different sampling rates

 

(a)                                                                                                  (b) 
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5. Conclusion

The 3D similarity transformation with large rotation angles is studied in this paper. A new method is developed 
to obtain the transformation parameters with multivariate model. Considering the property of the parameter matrix, 
the CMTLS algorithm is derived in this paper. Through the experiments, we can conclude:

Because the rotation matrix is an orthogonal matrix, the parameter matrix, which is the product of the scale 
factor and transposed rotation matrix, should satisfy the proper constraints. By comparing the results of the WMTLS 
and CMTLS, the matrix Tξξ   calculated by the CMTLS is more consistent with the constraints. Hence the constraints 
are necessary. 

The CMTLS algorithm and CWTLS algorithm take the errors of the coordinates in the two coordinate systems 
into consideration. The calculated standard deviations are more reliable, while the standard deviation calculated by 
the CWLS are greatly bigger than the priori standard deviation. 

The CWTLS algorithm is more time-consuming due to a large number of constants existing in the coefficient 
matrix and the calculation of jacobian matrix. Hence, the computational efficiency of the CMTLS is higher compared 
to the CWTLS, so it is useful to process big data. 
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6. APPENDIX

The CWLS algorithm and CWTLS algorithm for the 3D similarity transformation are presented in this section. 
The observation equation is

yBXe y       (A1)

where )(Ty vec= , ][ n33 1ISIB ⊗⊗= , [ ]TTvec ÄîX )(=  and ye  denotes the residual vector of y . 

We linearize equation  (A1)

LXBe −= δy      (A2)

where 0BXyL   , 0XXX −=δ  and 0X  denotes the initiate value of X . 

Considering the constraints, we obtain

[ ]



=+
−=

× 0
y

035 WX0C
LXBe

δ
δ

     (A3)

where 35×0  is a 35×  matrix whose elements are all zero, the meanings of other letters are the same as those 
mentioned above. 

If the errors of the coefficient matrix B  are neglected, the CWLS algorithm can be used to solve equation 
(A3). The cofactor matrix of L  is TQ  when implementing the CWLS algorithm. If the errors of the coefficient matrix 
are considered, the CWTLS algorithm can be used to solve equation (A3). The cofactor matrix of the coefficient 
matrix B  is T

SB MMQQ   , and the cofactor matrix of L  is still TQ . M  is the jacobian matrix of the coefficient 
matrix with respect to the coordinates in the source coordinate system. The CWLS algorithm and CWTLS algorithm 
have been studied extensively. Therefore, no longer described here. It is worth noting that the translation vector is 
not eliminated and the parameter matrix î  is still the product of the scale factor and transposed rotation matrix. 
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