Acessibilidade / Reportar erro

BORON AND ZINC FERTILIZER APPLICATION TO MAIZE CROPS IN A LITHIC QUARTZIPSAMMENT1 1 Paper extracted from the dissertation masters of the first author

ADUBAÇÃO COM BORO E ZINCO NO CULTIVO DE MILHO EM NEOSSOLO LITÓLICO DISTRÓFICO

ABSTRACT

The objective of this work was to evaluate the effect of soil application of different boron (B) rates to the soil, with and without application of zinc (Zn), on growth, production components, and grain yield of maize crops grown in a Lithic Quartzipsamment with low B and Zn contents. A randomized block experimental design was used, in a 6×2 factorial arrangement corresponding to six B rates (0, 1, 2, 3, 4, and 5 kg ha-1), with and without application of Zn (2.0 kg ha-1), applied to the soil at sowing, with four replications. Growth variables (stem diameter and plant height), and chlorophyll SPAD index were evaluated at the R1 phenological stage. Maize ear length, one-thousand grain weight, and grain yield, and the B maximum efficiency rate were evaluated at the R6 phenological stage. Application of B and Zn to the soil increases maize grain yield in soils with sandy clay loam texture and low B and Zn contents; the plant absorption and metabolism indicated synergism between these elements when using soil applications of 1.0 kg ha-1 of B combined with 2.0 kg ha-1 of Zn to the planting furrows. The rates with maximum technical efficiency for grain yield were 3.29 and 4.31 kg of B ha-1 in treatments without and with application of Zn, respectively.

Keywords
Zea Mays L; Mineral nutrition; Micronutrient

RESUMO

O objetivo desse trabalho foi avaliar o efeito da aplicação via solo de doses de boro (B), com ou sem adubação com zinco (Zn), sobre o crescimento, componentes de produção e produtividade do Milho em Neossolo Litólico distrófico, com baixos teores de B e Zn. O delineamento experimental utilizado foi blocos casualizados, em esquema fatorial 6 x 2, correspondente a seis doses de (B) aplicadas no solo (0, 1, 2, 3, 4 e 5 kg ha-1) e, sem e com adubação de Zn (2,0 kg ha-1 de Zn), ambas realizadas na semeadura, com quatro repetições. No estádio fenológico R1, foram avaliadas as variáveis de crescimento: diâmetro de colmo e altura de plantas, juntamente com o índice SPAD de clorofila. No estádio fenológico R6 foram analisados comprimento da espiga; massa de mil grãos, produtividade e dose de máxima eficiência (DME). A adubação com boro e zinco aumenta a produtividade do milho em solo com textura franco-argilo arenosa e baixos teores desses elementos, existindo sinergismo na absorção e metabolismo da planta quando se aplica 1,0 kg ha-1 de B juntamente com 2,0 kg de Zn ha-1 via solo no sulco de plantio. Neste estudo, as doses de máxima eficiência técnica para produtividade de grãos foi de 3,29 e 4,31 kg de B ha-1 para os tratamentos sem e com adubação com Zn.

Palavras-chave
Zea Mays L; Nutrição mineral; Micronutriente

INTRODUCTION

Agricultural systems in Brazil are under a period of high efficiency, profitability, and yield; thus, the sustainability of production processes is very important. Approximately 102 million Mg of maize grains are produced in Brazil every year, with yields that reach 14 Mg per hectare. In this context, adequate nutritional management is essential to maintain the current stability and further increases in grain yield (CRUZ, 2013CRUZ, S. J. S. Características morfofisiológicas de plantas e produtividade do milho. 2013. 77 f. Tese (Doutorado em Agronomia) - Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 2013.; CONAB, 2020CONAB - Companhia Nacional de Abastecimento. Análise do mercado agropecuário e extrativista. 2020. Disponível em: <https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuarioeextrativista/analises-do-mercado/historico-mensalde-milho>. Acesso em: 10 mai. 2021.
https://www.conab.gov.br/info-agro/anali...
).

One of the important variables to reach high grain yields is the supplying of nutrients, including boron (B) and zinc (Zn) (ABREU et al., 2016ABREU, J. A. A. et. al. Zinco: necessário para a produção de milho em solo de várzea (Iranduba) amazonas. Revista de Educação, Ciência e Tecnologia do IFAM. 10: 120-134, 2016.; SONGKHUM et al., 2018SONGKHUM, P. et al. Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Applied Clay Science, 152: 311-322, 2018.). Unfortunately, most soils in tropical regions are characterized as lowfertility soils (SANTOS et al., 2018SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.).

The main factors and causes of this low soil fertility, which affects B and Zn availability, are: soil pH (the higher the soil acidity, the lower the B availability to plants); soil texture (low availability of nutrients in sandy soils); low soil moisture maintenance capacity; low soil organic matter contents (mainly sandy soils); leaching (low soil water retention capacity); high phosphorus (P) rates (high P concentrations may result in Zn deficiency); application of products to correct soil acidity; and exports of nutrients through harvests (NOGUEIRA, 2016NOGUEIRA, L. M. Doses e modos de aplicação de boro e adubação com zinco na cultura do milho. 2016. 67 f. Dissertação (Mestrado em Agronomia) - Universidade Estadual Paulista "Júlio de mesquita Filho", Ilha Solteira, 2016.; OLIVEIRA et al., 2017OLIVEIRA, T. P. et al. Atributos químicos de um Neossolo Quartzarênico de cerrado sob diferentes sistemas de uso e manejo. Revista de Agricultura Neotropical, 4: 72-78, 2017.).

B absorption occurs by the combination of two types of passive transport through the plasma membrane, by simple diffusion of the nutrient through the lipid double layer, whose coefficient of permeability varies according to the species (TOMBULOGLU et al., 2016TOMBULOGLU, H. et al. Aquaporins in Boron- Tolerant Barley: Identification, Characterization, and Expression Analysis. Plant Molecular Biology Reporter, 34: 374-386, 2016.). Zn is absorbed by roots and transported as a divalent cation by symplastic and apoplastic pathways (GUPTA; RAM; KUMAR, 2016GUPTA, N.; RAM, H.; KUMAR, B. Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15: 89-109, 2016.). The lack of B and Zn indirectly affects the plant water absorption and root growth and, consequently, the absorption of these nutrients is also hindered (WIMMER; EICHERT, 2013WIMMER, M. A.; EICHERT, T. Review: mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, 204: 25-32. 2013.).

However, the research results are still inconsistent regarding the responses of crops to application of boron fertilizers, mainly due to the small difference between deficiency and toxicity levels and the boron absorption by organic matter and iron and aluminum oxides in the soil. (WIMMER; EICHERT, 2013WIMMER, M. A.; EICHERT, T. Review: mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, 204: 25-32. 2013.). It often discourages B application, even to soils with deficiency of this nutrient. However, the interaction between B and Zn is confirmed by several studies on biochemical and physiological processes of plants, such as synthesis of dehydrogenases, proteinases, peptidases, and phosphohydrolases, which are essential enzymes for the photosynthesis (ARAÚJO; SILVA, 2012ARAÚJO, E. O.; SILVA, M. A. C. Interação boro e zinco no crescimento, desenvolvimento e nutrição do algodoeiro. Revista Brasileira de Ciências Agrárias, 7: 720-727, 2012.; MOUSAVI; GALAVI; RAZAEI, 2013MOUSAVI, S. R.; GALAVI, M.; REZAEI, M. Zinc (Zn) importance for crop production-a review. International Journal of Agronomy and Plant Production. 4: 64-68, 2013.). Both micronutrients are indispensable for the growth and reproduction of plants, participating in the metabolism and translocation of carbohydrates, cell growth, integrity of plasma membrane, and production of flowers, fruits, and seeds (SOOMRO; BALOCH; GANDHAIL, 2015SOOMRO, Z. H.; BALOCH, P. A.; GANDHAIL, A. W. Comparative Effect of Foliar and soil applied Boron on Growth and Fodder Yield of Maize. Pakistan Journal of Agriculture And Veterinary Sciences, 27: 18-26. 2015.).

New maize hybrids usually present higher productivity and nutrient demand. Therefore, considering that B and Zn deficiencies are common in soils in the Brazilian Cerrado biome, where the application of high phosphorus rates induces Zn deficiency, and that the existence of synergistic or antagonistic effect in B and Zn interactions for absorption of these soil micronutrients is debatable, the development of researches for this region is needed.

In this context, the objective of this work was to evaluate the effect of soil application of different B rates, with and without application of Zn, on growth, production components, and grain yield of maize crops grown in a Lithic Quartzipsamment with low B and Zn contents.

MATERIAL AND METHODS

The experiment was conducted at the School Farm of the Federal Institute Goiano, Iporá campus, Goiás, Brazil (16°15'S, 51°12'W, and 611 m of altitude). The soil used was classified as Lithic Quartzipsamment (Neossolo Litolico distrofico; SANTOS et al., 2018SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.), with predominance of quartzose gravel (2.0 the 20.0 mm); the chemical attributes and granulometric composition are presented in Table 1 (TEIXEIRA et al., 2017TEIXEIRA, P. C. et. al. Manual de métodos de análise de solo. 3. ed. Revisada e ampliada. Brasília, DF: Embrapa, 2017. 573 p.).

Table 1
Chemical attributes and granulometric composition of a Lithic Quartzipsamment.

The climate of the region is Aw, tropical with two well-defined seasons (dry and rainy seasons), according to classification of Köppen (1900)KÖPPEN, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geographische Zeitschrift, 6: 657-679, 1900. adapted by Cardoso, Marcuzzo, and Barros (2015)CARDOSO, M. R. D.; MARCUZZO, F. F. N.; BARROS, J. R. Classificação climática de Köppen- Geiger para o estado de Goiás e o Distrito Federal. ACTA Geográfica, 28: 40-55, 2015.. The dry season encompasses five months; the mean annual temperature is 24 ºC and the mean annual rainfall depth is 1,613 mm. Climate data were recorded during the experiment by a meteorological station of the Federal Institute Goiano at 300 meters from the experimental area (Figure 1).

Figure 1
Mean temperatures (ºC) and rainfall depths (mm) during the experiment at the School Farm of the Federal Institute Goiano, Iporá, GO, Brazil.

A randomized block experimental design was used, in a 6×2 factorial arrangement consisting of six B rates (0, 1, 2, 3, 4, and 5 kg ha-1), with and without application of Zn (2.0 kg ha-1), applied to the soil at sowing, with four replications. The Zn rate was calculated as recommended by Sousa and Lobato (2004)SOUSA, D. M. G.; LOBATO, E. Cerrado: Correção do solo e adubação. 2. ed. Brasília, DF: Embrapa, 2004. 416 p.. The B and Zn sources used were: boric acid and zinc sulfate, respectively.

The experimental plot consisted of five 4- meter rows, spaced 0.5 m apart. The evaluation area of the plot consisted of the three central rows, excluding 0.5 m from each end. The maize hybrid used was the MG711 PW.

The sowing was carried out manually; the seeds were placed at 0.05 m depth in the sowing furrows for a stand of 80,000 plants ha-1. Soil fertilizer application at sowing consisted of 30, 150, and 75 kg ha-1 of N, P2O5, and K2O, respectively, and topdressing was carried out when the plants reached the V4 vegetative stage, with application of 145 kg of N ha-1. These two fertilizer applications were carried out as recommended by Sousa and Lobato (2004)SOUSA, D. M. G.; LOBATO, E. Cerrado: Correção do solo e adubação. 2. ed. Brasília, DF: Embrapa, 2004. 416 p..

Weed control was carried out by applying the herbicides nicosulfuron and atrazine at the rates of 20 g and 1000 g a.i. ha-1, respectively. The application was carried out using a CO2-pressurized backpack sprayer equipped with a 2-meter spray boom with 4 nozzles with DG11002 tips, maintained at constant pressure (210 kPa) and an application rate of 200 L ha-1. Application of insecticides was also needed; lufenuron and chlorpyrifos were used at rates of 0.2 and 0.5 L ha-1 respectively, to control Spodoptera frugiperda caterpillars.

When 50% + 1 maize plants reached the R1 phenological stage (silk stage and pollination) (MAGALHÃES et al., 2006MAGALHÃES, P. C. et al. Fisiologia da produção de milho. Sete Lagoas, MG: Embrapa Milho e Sorgo. 2006. 10 p. (Circular técnica, 76).), the growth variables were evaluated, namely, stem diameter; plant height; and chlorophyll SPAD index, determined in the leaf +1. When the plants reached the R6 phenological stage (physiological maturation) (MAGALHÃES et al., 2006MAGALHÃES, P. C. et al. Fisiologia da produção de milho. Sete Lagoas, MG: Embrapa Milho e Sorgo. 2006. 10 p. (Circular técnica, 76).), 20 ears per plot were collected to determine ear length, one-thousand grain weight, and grain yield, considering a grain water content of 13%, according to the method recommended by the Rules for Seed Analysis (BRASIL, 2009BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, DF: MAPA/ACS, 2009. 395 p.). The B maximum efficiency rate (MER) was determined through the fit of the data to two-degree equation (RG = b0 ± b1 × ± b2 x2) to estimate the maximum efficiency (MER = - [(b1)/(2b2)]).

The obtained data were subjected to analysis of variance; the means were compared by the Tukey's test at 5% probability level, for comparison of mean results of B application, with and without application of Zn, and subjected to regression analysis for studying the effect of B rates.

RESULTS AND DISCUSSION

The increase of B rates, with and without Zn application, did not result in increases in plant height; the overall mean for plant height was 2.2 m (Table 2). This is consistent with other studies that also showed no changes due to application of B rates varying from 0 to 4 kg ha-1 (JAMAMI, 2006JAMAMI, N, et al. Resposta da cultura do milho (Zea mays L.) à aplicação de boro e de zinco no solo. Acta Scientiarum. Agronomy, 28: 99-105, 2006.). However, the stem diameter increased significantly due to B application (F = 0.00), but the interaction between B and Zn applications was not significant for this variable (Figure 2).

Table 2
Height and stem diameter of maize plants as a function of application of six B rates at sowing, with or without application of 2.0 ha-1 of Zn.

Figure 2
Stem diameter of maize plants as a function of application of six B rates at sowing, with or without application of 2.0 ha-1 of Zn.

Soares (2003)SOARES, M. A. Influência de nitrogênio, zinco e boro e de suas respectivas interações no desenvolvimento da cultura do milho (Zea mays L.). 2003. 112 f. Dissertação (Mestrado em Agronomia: Área de Concentração em Fitotecnia), Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, 2003. found no increases in stem diameter when applying B rates to the bottom of sowing furrows, which was probably because the soil presented enough boron contents (0.35 mg dm-3). According to Fancelli and Dourado Neto (2000)FANCELLI, A. L.; DOURADO NETO, D. Produção de milho. Guaíba: Agropecuária, 2000. 360 p., adequate soil boron contents for maize crops are between 0.l and 0.3 mg dm-3. Therefore, the response of maize to B rates in the present study was due to the initial B content in the soil (control), which was 0.05 mg dm-3, below that recommended for maize crops.

The increases in stem diameter found in the present study, as a function of increase in B rate, also denote that B is essential not only at the crop reproduction stages (POSSAN, 2010POSSAN, A. Avaliação na aplicação de cálcio e boro, no estádio de floração na cultura da soja (Glycine max L. Merril) nas regiões do oeste catarinense. Monografia de conclusão de curso. 41 f. Universidade Comunitária da região de Chapecó. 2010.), but also at the vegetative growth stages, because it has several vital functions, including sugar transport, cell wall synthesis and lignification, cell wall structuring, and metabolism of carbohydrates and RNA (TOMBULOGLU et al., 2016TOMBULOGLU, H. et al. Aquaporins in Boron- Tolerant Barley: Identification, Characterization, and Expression Analysis. Plant Molecular Biology Reporter, 34: 374-386, 2016.). Plants with larger stem diameters also present higher growth of ears, with positive effect on grain yield (FANCELLI, 2013FANCELLI, A. L. Milho: Estratégias de Manejo. Edição de Antonio Luiz Fancelli. Piracicaba, SP: USP/ESALQ/LPV, 2013.).

The interaction between Zn and B was significant for chlorophyll SPAD index; however, the means were higher when applying Zn only for the rate of 1.0 kg of B ha-1 (Table 3). This increase can be connected to the fact that Zn is a component of dehydrogenases, proteinases, peptidases, and phosphohydrolases, which are essential enzymes for the photosynthesis process; in addition, Zn deficiency reduces the concentration of chlorophylls a and b (MOUSAVI; GALAVI; REZAEI, 2013MOUSAVI, S. R.; GALAVI, M.; REZAEI, M. Zinc (Zn) importance for crop production-a review. International Journal of Agronomy and Plant Production. 4: 64-68, 2013.), which are also essential for the photosynthetic process. Araújo and Silva (2012)ARAÚJO, E. O.; SILVA, M. A. C. Interação boro e zinco no crescimento, desenvolvimento e nutrição do algodoeiro. Revista Brasileira de Ciências Agrárias, 7: 720-727, 2012. evaluated the interaction between B and Zn on growth of cotton plants and found that B contents in plant shoots increased as a function of increases in Zn concentrations in the soil solution.

Table 3
Chlorophyll SPAD index of the leaf +3 of maize plants as a function of application of six B rates at sowing, with or without application of 2.0 ha-1 of Zn.

The absence of increases in chlorophyll SPDA index indicates that the B levels required for the maximum expression of chlorophyll in leaves of maize plants can be achieved in soils with low B contents by applying a B rate of 1.0 kg ha-1. Souza et al. (2015)SOUZA, J. A. et. al. Teor de clorofila e produtividade do trigo em razão da adubação foliar com boro na presença de aminoácidos. In: IV PARANAENSE DE REUNIÃO CIÊNCIA DO SOLO, 2015, Cascavel. Anais... Cascavel: SBCS, 2015. p. 357-357. applied B rates of up to 8.0 kg ha-1 for wheat crops and found no significant differences in chlorophyll SPAD indexes.

The analysis of production components showed no difference between the means of ear lengths due to the treatments; the overall mean for ear length was 12.9 cm. It is consistent with the results found by Jamami et al. (2006)JAMAMI, N, et al. Resposta da cultura do milho (Zea mays L.) à aplicação de boro e de zinco no solo. Acta Scientiarum. Agronomy, 28: 99-105, 2006., who also found no significant changes in plants with and without application of B. Similarly, Dourado Neto et al. (2004)DOURADO NETO, D. et. al. Efeito de boro e nitrogênio na cultura do milho. INSULA, 33: 51-67, 2004. found no significant effect of application of increasing B rates (up to 8 kg ha-1) on ear length. The highest B rate applied to sowing furrows in the present study (5 kg ha-1) and by Dourado Neto et al. (2004)DOURADO NETO, D. et. al. Efeito de boro e nitrogênio na cultura do milho. INSULA, 33: 51-67, 2004. did not affect negatively the maize ear lengths.

The one-thousand grain weight and grain yield increased due to the application of B (Table 3). The one-thousand grain weight means ranged from 293 g (control) to 330 g (application of 4.0 kg of B) in treatments with application of B and Zn. The treatments with application of only B presented no changes in one-thousand grain weight. Contrastingly, the interaction between application of B and Zn was significant for grain yield, with an increase of 793 kg in grain yield when applying the rate of 1.0 kg of B ha-1.

According to Taiz et al. (2017)TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre, RS: Artmed, 2017. 888 p., the quantity of chlorophyll is one of the factors that most affect the plant growth and development, as this molecule is essential for photosynthesis, i.e., transformation of atmospheric CO2 into metabolic energy. Therefore, a high chlorophyll index in leaves is connected to increases in grain weight and, consequently, with the grain yield (Tables 4 and 5), because this molecule is responsible for capturing solar energy and converting it into photoassimilates, directly affecting the crop yield.

Table 4
One-thousand grain weight and grain yield of maize plants as a function of application of six B rates at sowing, with or without application of 2.0 ha-1 of Zn.
Table 5
Grain yield of maize plants as a function of application of six B rates at sowing, with or without application of 2.0 ha-1 of Zn.

In addition, the means of production components as a function of application of B rates fitted to quadratic models. The maximum efficiency rate for one-thousand grain weight was 2.87 kg of B ha-1 with Zn application (Figure 3). The maximum efficiency rate for grain yield was 3.29 and 4.31 kg of B ha-1 for the treatments without and with application of Zn, respectively (Figure 4).

Figure 3
One-thousand grain weight (3A) of maize plants as a function of application of six B rates at sowing, with or without application of 2.0 ha-1 of Zn.

Figure 4
Grain yield of maize plants as a function of application of six B rates at sowing, with or without application of 2.0 ha-1 of Zn.

Jamami et al. (2006)JAMAMI, N, et al. Resposta da cultura do milho (Zea mays L.) à aplicação de boro e de zinco no solo. Acta Scientiarum. Agronomy, 28: 99-105, 2006. and Nogueira (2016)NOGUEIRA, L. M. Doses e modos de aplicação de boro e adubação com zinco na cultura do milho. 2016. 67 f. Dissertação (Mestrado em Agronomia) - Universidade Estadual Paulista "Júlio de mesquita Filho", Ilha Solteira, 2016. evaluated responses of maize hybrids (AG 1043 and BKB 350 PRO) to application of B (0, 1, 2, 3, and 4 kg ha-1) and Zn (0, 2.0, and 4.0 kg ha-1) and found that the applications of B and Zn to the sowing furrows did not increase B and Zn leaf contents, nor gains in grain yield. These results were probably due to the initial contents of B and Zn in the soil of the experimental areas used (0.07 and 0.16 mg of B dm-3 and 0.3 and 1.2 mg of Zn dm-3), which were enough to meet the crop demand in those crop conditions.

According to Fancelli and Dourado Neto (2000)FANCELLI, A. L.; DOURADO NETO, D. Produção de milho. Guaíba: Agropecuária, 2000. 360 p., the adequate B and Zn contents in the soil for maize crops are 0.1 to 0.3 mg dm-3 (B) and 0.5 to 1.0 mg dm-3 (Zn). The B and Zn contents in the soil used in the present experiment were, according to means of samples of two soil layers (0-20 and 20-40 cm), 0.03 and 0.4 mg of dm-3, respectively (Table 1), i.e., well below the recommended level for the crop.

The type of soil may have also contributed to the increase in grain yield; it was a Lithic Quartzipsamment (Neossolo Litolico distrofico; SANTOS et al., 2018SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.) with predominance of quartzose gravel in its coarse fraction, originally from leucocratic granitic rocks poor in nutrients. According to Castillo (2016)CASTILLO, G. A. Importância do boro para cultura da soja. 3r lab. 2016. Disponível em: <https://3rlab.wordpress.com/2016/10/05/aimportancia-do-boro-para-cultura-da-soja/>. Acesso em: 21 dez. 2021.
https://3rlab.wordpress.com/2016/10/05/a...
and Hansel and Oliveira (2016)HANSEL, F, D.; OLIVEIRA, M, L. Importância dos micronutrientes na cultura da soja no Brasil. Informações Agronômicas. In: IPNI - International Plant Nutrition Institute, 153, 2016. 8 p., soils from this class of rocks, poor in organic matter, tend to present low B and Zn availability; thus, plants grown in these soils present positive responses when the availability of these micronutrients is increased through soil fertilizer application.

CONCLUSIONS

The soil fertilizer application with boron (B) and zinc (Zn) increases the maize grain yield in soils with sandy clay loam texture and low B and Zn contents; the plant absorption and metabolism indicated synergism between these elements when using soil applications of 1.0 kg ha-1 of B combined with 2.0 kg ha-1 of Zn to the planting furrows. The rates with maximum technical efficiency for grain yield were 3.29 and 4.31 kg of B ha-1 for treatments without and with application of Zn, respectively.

  • 1
    Paper extracted from the dissertation masters of the first author

REFERENCES

  • ARAÚJO, E. O.; SILVA, M. A. C. Interação boro e zinco no crescimento, desenvolvimento e nutrição do algodoeiro. Revista Brasileira de Ciências Agrárias, 7: 720-727, 2012.
  • ABREU, J. A. A. et. al. Zinco: necessário para a produção de milho em solo de várzea (Iranduba) amazonas. Revista de Educação, Ciência e Tecnologia do IFAM 10: 120-134, 2016.
  • BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes Brasília, DF: MAPA/ACS, 2009. 395 p.
  • CARDOSO, M. R. D.; MARCUZZO, F. F. N.; BARROS, J. R. Classificação climática de Köppen- Geiger para o estado de Goiás e o Distrito Federal. ACTA Geográfica, 28: 40-55, 2015.
  • CASTILLO, G. A. Importância do boro para cultura da soja 3r lab. 2016. Disponível em: <https://3rlab.wordpress.com/2016/10/05/aimportancia-do-boro-para-cultura-da-soja/>. Acesso em: 21 dez. 2021.
    » https://3rlab.wordpress.com/2016/10/05/aimportancia-do-boro-para-cultura-da-soja/
  • CONAB - Companhia Nacional de Abastecimento. Análise do mercado agropecuário e extrativista 2020. Disponível em: <https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuarioeextrativista/analises-do-mercado/historico-mensalde-milho>. Acesso em: 10 mai. 2021.
    » https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuarioeextrativista/analises-do-mercado/historico-mensalde-milho
  • CRUZ, S. J. S. Características morfofisiológicas de plantas e produtividade do milho 2013. 77 f. Tese (Doutorado em Agronomia) - Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 2013.
  • DOURADO NETO, D. et. al. Efeito de boro e nitrogênio na cultura do milho. INSULA, 33: 51-67, 2004.
  • FANCELLI, A. L. Milho: Estratégias de Manejo. Edição de Antonio Luiz Fancelli. Piracicaba, SP: USP/ESALQ/LPV, 2013.
  • FANCELLI, A. L.; DOURADO NETO, D. Produção de milho Guaíba: Agropecuária, 2000. 360 p.
  • GUPTA, N.; RAM, H.; KUMAR, B. Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15: 89-109, 2016.
  • HANSEL, F, D.; OLIVEIRA, M, L. Importância dos micronutrientes na cultura da soja no Brasil. Informações Agronômicas. In: IPNI - International Plant Nutrition Institute, 153, 2016. 8 p.
  • JAMAMI, N, et al. Resposta da cultura do milho (Zea mays L.) à aplicação de boro e de zinco no solo. Acta Scientiarum. Agronomy, 28: 99-105, 2006.
  • KÖPPEN, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geographische Zeitschrift, 6: 657-679, 1900.
  • MAGALHÃES, P. C. et al. Fisiologia da produção de milho. Sete Lagoas, MG: Embrapa Milho e Sorgo. 2006. 10 p. (Circular técnica, 76).
  • MOUSAVI, S. R.; GALAVI, M.; REZAEI, M. Zinc (Zn) importance for crop production-a review. International Journal of Agronomy and Plant Production 4: 64-68, 2013.
  • NOGUEIRA, L. M. Doses e modos de aplicação de boro e adubação com zinco na cultura do milho 2016. 67 f. Dissertação (Mestrado em Agronomia) - Universidade Estadual Paulista "Júlio de mesquita Filho", Ilha Solteira, 2016.
  • OLIVEIRA, T. P. et al. Atributos químicos de um Neossolo Quartzarênico de cerrado sob diferentes sistemas de uso e manejo. Revista de Agricultura Neotropical, 4: 72-78, 2017.
  • POSSAN, A. Avaliação na aplicação de cálcio e boro, no estádio de floração na cultura da soja (Glycine max L. Merril) nas regiões do oeste catarinense Monografia de conclusão de curso. 41 f. Universidade Comunitária da região de Chapecó. 2010.
  • SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos 5. ed. Brasília, DF: Embrapa, 2018. 356 p.
  • SOARES, M. A. Influência de nitrogênio, zinco e boro e de suas respectivas interações no desenvolvimento da cultura do milho (Zea mays L.) 2003. 112 f. Dissertação (Mestrado em Agronomia: Área de Concentração em Fitotecnia), Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, 2003.
  • SOOMRO, Z. H.; BALOCH, P. A.; GANDHAIL, A. W. Comparative Effect of Foliar and soil applied Boron on Growth and Fodder Yield of Maize. Pakistan Journal of Agriculture And Veterinary Sciences, 27: 18-26. 2015.
  • SONGKHUM, P. et al. Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Applied Clay Science, 152: 311-322, 2018.
  • SOUSA, D. M. G.; LOBATO, E. Cerrado: Correção do solo e adubação 2. ed. Brasília, DF: Embrapa, 2004. 416 p.
  • SOUZA, J. A. et. al. Teor de clorofila e produtividade do trigo em razão da adubação foliar com boro na presença de aminoácidos. In: IV PARANAENSE DE REUNIÃO CIÊNCIA DO SOLO, 2015, Cascavel. Anais... Cascavel: SBCS, 2015. p. 357-357.
  • TAIZ, L. et al. Fisiologia e desenvolvimento vegetal 6. ed. Porto Alegre, RS: Artmed, 2017. 888 p.
  • TEIXEIRA, P. C. et. al. Manual de métodos de análise de solo 3. ed. Revisada e ampliada. Brasília, DF: Embrapa, 2017. 573 p.
  • TOMBULOGLU, H. et al. Aquaporins in Boron- Tolerant Barley: Identification, Characterization, and Expression Analysis. Plant Molecular Biology Reporter, 34: 374-386, 2016.
  • WIMMER, M. A.; EICHERT, T. Review: mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, 204: 25-32. 2013.

Publication Dates

  • Publication in this collection
    14 Nov 2022
  • Date of issue
    Oct-Dec 2022

History

  • Received
    25 Aug 2021
  • Accepted
    10 May 2022
Universidade Federal Rural do Semi-Árido Avenida Francisco Mota, número 572, Bairro Presidente Costa e Silva, Cep: 5962-5900, Telefone: 55 (84) 3317-8297 - Mossoró - RN - Brazil
E-mail: caatinga@ufersa.edu.br