


1. Introduction

In the Continuum Damage Mechanics (CDM), the damage effects 
are evidenced in the stiffness constitutive tensor. The damage 
leads to the reduction of several stiffness components, where the 
damaged material can either keep its isotropic properties or to be-
come anisotropic.
For isotropic models the damage affects neither the direction nor 
the initial number of symmetry planes presented by the material. 
Thus, it does not matter if the medium is initially isotropic or aniso-
tropic with some degrees. In this case, those initial characteristics 
are preserved during the damage process. Some constitutive dam-
age models have been proposed assuming the concrete as an iso-
tropic medium (Mazars [1], Mazars [2], Comi [3] and Berthaud [4]).
However, in the last decades anisotropic models which can modify 
both the direction and the number of the material symmetry planes 
have been proposed (Brünig [5], Pituba [6], Pietruszczak [7], Ibra-
himbegovic [8] and Dragon [9]).
Besides, another important characteristic presented by many fiber-
reinforced composite materials is the intrinsic bimodularity, i.e., 
distinct responses in tension and compression prevailing states. 
On the other hand, brittle materials, such as concrete, are a kind of 
composites that can be initially considered isotropic and unimodu-
lar. However when they have been damaged, those materials 
would start to present some degree of anisotropy and bimodular-
ity. Assuming small deformations, a formulation of constitutive laws 
for either initially isotropic or anisotropic elastic bimodular materi-
als was proposed by Curnier [10]. In order to incorporate damage 
effects, the formulation of Curnier has been extended by Pituba 
[11]. In particular, a constitutive model for concrete has been de-
rived. Accordingly, the material is initially considered as an isotro-
pic continuous medium with anisotropy and bimodularity induced 
by the damage. On one side the class of anisotropy induced and 
considered in the model (transversal isotropy) elapses from the 
assumption that locally the loaded concrete always presents a dif-
fuse oriented damage distribution as appointed by experimental 
observations (Van Mier [12]). On the other hand, the bimodularity 
induced by damage is captured by the definition of two damage 
tensors: one for dominant tension states and another one for domi-
nant compression states.
In order to use the Damage Mechanics in practical situations of 
Structural Engineering, constitutive models presenting a reduced 
number of parameters with easy identification and one-dimension-
al version are desirable. On the other hand, such models must 
present reliable numerical results in order to estimate the mechani-
cal behavior of the structure as accurate as possible. In this work, 
two examples of this kind of the damage models are used and 
here, they are called simplified damage models.
This work intends to discuss the related problems to the numeri-
cal applications of the isotropic and anisotropic damage models in 
the context of the one and two-dimensional analyses of reinforced 
concrete structures. Besides, one intends to show the potentialities 
of an anisotropic damage model recently proposed by Pituba [6]. 
Then, numerical responses supplied by the models are presented 
and compared in order to evidence the difficulties and advantages 
when one deals with this kind of modeling. Finally, some conclu-
sions about the employment of the simplified versions of these 
kinds of damage models are discussed.

2. Isotropic Damage Model

This model has been proposed by Mazars [1] and the damage 
is represented by the scalar variable D (with 0 ≤ D ≤ 1) whose 
evolution occurs when the equivalent extension deformation ε~  is 
bigger than a reference value. The plastic deformations evidenced 
experimentally are not considered. The equivalent extension de-
formation is given by:
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The damage activation occurs when =ε~ ed0, being ed0 the defor-
mation referred to the maximum stress of an uniaxial tension test. 
Thus the criterion is given by:

(2)0DSD,f £-= ee  with  S(0) = ed0 

Considering the thermodynamics principles, the damage evolution 
can be expressed by:
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where D. = dD/dt , i. e., D time derivative; ( )ε~F  is written in 
terms of ε~  and defined continuous and positive.
As the concrete behaves differently in tension and compression, the 
damage variable D is obtained by combining properly the variables DT 
and DC, related to tension and compression, respectively, as follows:
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where DT and DC are given by:
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and compression when damaged. This model has been proposed 
by Pituba [6] and it follows the from the formalism presented in 
Pituba [11]. Moreover, the model respects the principle of energy 
equivalence between damaged real medium and equivalent con-
tinuous medium established in the CDM (Lemaitre [13]).
Now, the damage model is shortly described. Initially, for dominant 
tension states, a damage tensor is given by:

(9)DT = f1(D1, D4, D5) )( AAÄ + 2 f2(D4, D5) )]()[( AAAIIA Ä-Ä+Ä

where f1(D1, D4, D5) = D1 – 2 f2(D4, D5) and f2(D4, D5) = 1 – (1-D4) 
(1-D5).
The variable D1 represents the damage in direction orthogonal to 
the transverse isotropy local plane of the material, while D4 is rep-
resentative of the damage due to the sliding movement between 
the crack faces. The third damage variable, D5, is only activated 
if a previous compression state accompanied by damage has 
occurred. In the Eq. (9), the tensor I is the second-order identity 
tensor and the tensor A, by definition, Curnier [10], is formed by 
dyadic product of the unit vector perpendicular to the transverse 
isotropy plane for himself.
On the other hand, for dominant compression states, it is proposed 
the other damage tensor:

(10)DC=f1(D2,D4,D5) )( AAÄ +f2(D3) )]()[( AAII Ä-Ä

+2f3(D4,D5) )]()[( AAAIIA Ä-Ä+Ä  

where f1(D2, D4, D5) = D2 – 2 f3(D4, D5) ,f2(D3) = D3 and f3(D4, D5)= 
1 – (1-D4) (1-D5).
Note that the compression damage tensor introduces two addi-
tional scalar variables in its composition: D2 and D3. The variable 
D2 (damage perpendicular to the transverse isotropy local plane 
of the material) reduces the Young’s modulus in that direction and 
in conjunction to D3 (that represents the damage in the transverse 
isotropy plane) degrades the Poisson’s ratio throughout the per-
pendicular planes to the one of transverse isotropy.
Finally, the constitutive tensors are written as follows:
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where  
011 ll =  and 01 µµ =  are Lamè constants. The re-

maining parameters will only exist for no-null damage, evidencing 
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In Eqs (5) AT and BT are parameters related to uniaxial tension tests 
while AC and BC are obtained from uniaxial compression tests. To 
compute the aT and aC values defined in Eq.(4), we have to obtain, 
initially, the deformations eT and eC associated, respectively, to ten-
sion and compression states as follows:

(6a)
 

I
EE

1
i

*
i

*
T

++ å-
+

= s
u

s
u

e

(6b)
 

I
EE

1
i

*
i

*
C

-- å-
+

= s
u

s
u

e

where I is the identity tensor, E the elastic modulus of a non-dam-
aged material, 

+

*σ  and 
−

*σ  are, respectively, positive and 
negative parts of the stress tensor *σ  obtained from the relation 

εσ 0
* D= , where 0D  is the elastic fourth order tensor of the 

non-damaged material.
Thus the coefficients Tα  and Cα  are obtained by the following 
expression:
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Finally, the constitutive relation can be expressed in terms of the 
actual deformation tensor as follows:

(8) ( ) es 0DD1 -=

3. Anisotropic Damage Model

In this model, it is assumed that the concrete belongs to a category 
of materials that can be considered initially isotropic and unimodu-
lar, however they start to present different behaviours in tension 
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damage induces anisotropy in the concrete. Therefore, it is con-
venient to separate the damage criteria into two: the first one is 
only used to indicate damage beginning, or that the material is 
no longer isotropic and the second one is used for loading and 
unloading when the material is already considered as transverse 
isotropic. This second criterion identifies if there is or not evolution 
of the damage variables. That division is justified by the difference 
between the complementary elastic strain energies of isotropic and 
transverse isotropic material. For identifying the damage beginning 
it is suggested a criterion that compares the complementary elastic 
strain energy ∗

eW , which is computed locally considering the me-
dium as initially virgin, isotropic and purely elastic, with a certain 
reference value Y0T, or Y0C, obtained from experimental tests of 
uniaxial tension, or compression, respectively. Accordingly, the cri-
terion for initial activation of damage processes in tension or com-
pression is given by:

(16)fT,C(s) = *
eW  - Y0T,0C < 0 

then DT = 0 (i. e., D1 = D4 = 0) for dominant tension states or DC = 
0 (i. e., D2 = D3 = D5 = 0) for dominant compression states, where 
the material is linear elastic and isotropic. The reference values  
 
Y0T and Y0C are model parameters defined by 
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respectively, where σ0T  and σ0C are the limit elastic stresses deter-
mined in the uniaxial tension and compression regimes.
It is important to note that the damaged medium presents a trans-
verse isotropy plane in correspondence to the current damage 
level. Then, the complementary elastic energy of the damaged 
medium is expressed in different forms, depending on whether 
tension or compression strain states prevail. In the case of domi-
nant tension states (g(e,DT,DC) > 0) assuming that direction 1 in 
the strain space be perpendicular to the transverse isotropy local 
plane, it can be written:
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For the damaged medium in dominant compression states, the re-
lationships are similar to the tension case, where the complemen-
tary elastic energy is expressed in the following form:
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in that way the anisotropy and bimodularity induced by damage. 
Those parameters are given by:
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The different dyadic products in Eqs. (8), (10) and (11) have the 
function of allocating the material constants in certain positions of 
the stiffness constitutive tensors. For more details see Curnier [10] 
and Pituba [11].
Observe that the bimodular character is taken into account by the 
conditions g (ε, DT, DC) > 0 or g (ε, DT, DC) < 0, where g (ε, DT, DC) 
is a hypersurface that contains the origin and divides the strain 
space into a compression and tension sub-domains. A particular 
form is adopted for the hypersurface in the strain space: a hyper-
plane g(ε,D) defined by the unit normal N and characterized by its 
dependence of both the strain and damage states. To simplify the 
presentation, the hyperplane will be here expressed as the one 
obtained by enforcing the direction 1 in the strain space to be per-
pendicular to the transverse isotropy local plane. Thus, the hyper-
plane is given by:

(13)g(e,DT,DC) = N(DT,DC) . ee  = g1(D1,D2) 
e
Ve + g2(D1,D2) 

e
11e

where g1(D1,D2) = {1+H(D2)[H(D1)-1]}h(D1)+{1+H(D1)[H(D2)-1]}
h(D2) and g2(D1,D2) = D1+D2. The Heaveside functions employed 
above are given by:

(14)H(Di) = 1 for  Di  > 0;  H(Di) = 0 for  Di  = 0 (i = 1, 2)

The h(D1) and h(D2) functions are defined, respectively, for the 
tension and compression cases, assuming for the first one that 
there was no previous damage of compression affecting the pres-
ent damage variable D1 and analogously, for the second one that 
has not had previous damage of tension affecting variable D2. The 
functions can be written as:
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As it has already been pointed out, in the model formulation the 
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Assuming a general situation of damaged medium for dom-
inant tension states, the criterion for the identification of 
damage increments is represented by the following rela-
tionship:

(19)fT(s) = 00 £- *
+

*
Te YW  

where the reference value ∗
TY0  is defined by the maximum com-

plementary elastic energy computed throughout the damage pro-
cess up to the current state. Analogous expressions are valid for 
dominant compression states.
In the loading case, i. e., when  0¹TD

.
 or  0¹CD

.
, it is nec-

essary to update the values of the scalar damage variables that 
appear in the DT and DC tensors, considering their evolution laws.
Considering just the case of monotonic loading, the evolution laws 
proposed for the scalar damage variables are resulting of fittings 
on experimental results and present similar characteristics to those 
one described in Mazars [1] and Berthaud [4] works. The general 
form proposed is:
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where Ai, Bi and Y0i are parameters that must be identified. The 
parameters Y0i are understood as initial limits for the damage 
activation, the same ones used in Eq. (16). The parametric 
identification of the model is accomplished by uniaxial tension 
tests in order to obtain A1, B1 and Y01 = Y0T, by uniaxial com-
pression tests for the identification of the parameters A2, B2 
and Y02, and finally by biaxial compression tests in order to 
obtain A3, B3 and Y03 = Y02 = Y0C. On the other hand, the identi-
fication of the parameters for the evolution laws corresponding 
to the damage variables D4 and D5, which influence the shear 

concrete behavior, it won’t be studied in this version of the 
model because the experimental tests are not available yet 
to allow the parameter calibration or, even, the proposition of 
more realistic evolution laws.
When the damage process is activated, the formulation starts 
to involve the tensor A that depends on the normal to the trans-
verse isotropy plane. Therefore, it is necessary to establish 
some rules to identify its location for an actual strain state. Ini-
tially, it is established a general criterion for the existence of 
the transverse isotropy plane. It is proposed that the transverse 
isotropy due to damage only arises if positive strain rates ex-
ist at least in one of the principal directions, Pituba [6]. After 
assuming such proposition as valid, some rules to identify its 
location must be defined. First of all, considering a strain state 
in which one of the strain rates is no-null or has sign contrary to 
the others, the following rule is applied:
“In the principal strain space, if two of the three strain rates are 
extension, shortening or null, the plane defined by them will be 
the transverse isotropy local plane of the material.”
The uniaxial tension is an example of this case where the 
transverse isotropy plane is perpendicular to the tension stress 
direction. Obviously, it can be suggested criteria based on oth-
ers formulations, such as for instance, the microplanes theory 
developed by Bazant [14].

Figure 1 – Geometry details of 
the plain concrete beam

All dimensions in metres

P P

Figure 2 – Parametric identification in uniaxial compression and tension tests for plain concrete beam
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4. Numerical Applications

4.1 Plain Concrete Beam

In this first numerical application, previously performed by 
Guello [15], we have considered the concrete beam without 
any reinforcement bar described in Figure [1]. The beam whose 
concrete has elasticity modulus Ec = 24700 MPa, is subjected to 
two concentrated loads P applied at a distance of 0,225 m from 
the symmetrical axes.
Table [1] contains the parameter values of both models employed 
in this example. The parametric identification of the damage mod-
els has been done using a computational code developed by Pitu-
ba [11] based on error minimization procedure. The compression 
and tension parameters values of the Pituba’s model have been 
identified by numerical responses proposed by Guello [15] using 
the Mazars’ model, as described in Figure [2].
Moreover, the parameters values associated to D3 have been 
identified by numerical simulation of biaxial stress tests in concrete 
specimens, Pituba [11]. It is important to note that the concrete 
used for the identification of Y03, A3 and B3 parameters is similar to 
the one considered in this numerical application.
For the 1D analysis, bar elements with transversal section 
stratified in layers are used, see Figure [3] where layer K can 
represent concrete or reinforcement bar. A mesh with 40 ele-
ments and 20 layers has been considered. On the other hand, 
a mesh with 120 constant strain quadrilateral (4 nodes) ele-
ments divided into 5 layers of 24 elements and placed in whole 
extension of the concrete beam has been considered for the 2D 

analysis, as described in Figure [4]. Note that in this numerical 
example, the layer with finite elements in black representing the 
reinforcement does not exist.
The numerical responses are displayed in Figure [5]. In the 
2D analysis context, it can be observed that the difference be-

Table 1 – Parameter values – plain concrete beam

Mazars’ model  Pituba’s model
Tension Compression Tension Compression  

A  = 0,7T   A  = 1,13C   -4Y  = 0,25x10  MPa01   
-3Y  = 0,5x10  MPa02  -3 Y = 0,5x10 MPa03   

B  = 8000T   B  = 1250C   A  = 501   A  = -0,92   A  = -0,63   
e  = 0,000067d0   -1B  = 6700 MPa1   -1B  = 0,4MPa2   -1B  = 1305MPa3   

Figure 3 – 1D finite element

Figure 4 – 2D finite element discretization

Z 

Y 
X 

Z 

Y 
Z 

X 

Figure 5 – 1D and 2D numerical responses 
for plain concrete beam
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Figure 6 – Damage distribution of Mazars' model, Proença [16]

Figure 7 – Damage distribution of Pituba's model for 1D and 2D numerical analyses
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tween the numerical responses is mainly due to the excessive 
stiffness reduction presented by isotropic model, what does not 
happen with the anisotropic model. Being an isotropic damage 
model, the Mazars’ model degrades the stiffness exaggerat-
edly in all directions. Besides, one believes that the quality of 
results related to the Pituba’s model can be better if the dam-
age process related to the shear behavior of the concrete is 
considered, because it can produce an important contribution 
to the released energy.
Note that in the one-dimensional analysis the difference be-
tween numerical responses of damage models is mainly due 
to more aggressive reduction of the stiffness in the anisotro-
pic model. While the Mazars’ model presents a linear reduc-
tion way of the material stiffness (Strain Equivalence - Eq. 
(8)), the Pituba’s model reduces the material stiffness in a 
quadratic way (Energy Equivalence - Eq. (11)). In this analy-
sis, it is possible to reproduce a stiffness break about 45 kN. 
Soon after, a subsequent strength recovery of the structural 
element is illustrated by the models. Then, the difference 
between the numerical responses is increased. Finally, note 
that in 1D and 2D numerical analyses, both models present 
the same qualitative behaviors. 
In order to visualize the damage distribution in the beam, 
Figure [6] presents the isodamage curves for Mazars´model, 
Proença [16]. Figure [7] shows the damage distribution for 1D 
and 2D numerical analyses with Pituba´s model considering a 
loading stage about 50 kN. These curves have been obtained 

by interpolation of the damage variables along the adopted 
integration points.
In the context of 1D analysis, when the Proença’s response 
is compared with the Pituba´s model, the damage configura-
tion is very similar, mainly due to damage in tension. Note 
that Mazars’ model presents only one damage variable rep-
resenting a combination of tension and compression damage 
processes. For the concrete structures, both models assume 
that locally the damage is due to extensions. On the other 
hand, the 2D numerical responses show a more intense dam-
age process in compression given by D2 and D3 variables. In 
fact, the variable D3 tries to simulate a crushing process of 
the concrete near of the supports and in upper middle zone 
of the beam.   

4.2 Reinforced Concrete Bar Structure

The second numerical simulation deals with a reinforced concrete 
bar structure. Figure [8] shows the geometry of the structure. A 
reinforcement bar with 10.0 mm is placed in the centre of the sec-
tion where a force P is applied. This numerical application was per-
formed previously by Mazars [1]. Table [2] presents the parameter 
values of each damage model. These parameters were obtained 
through procedure similar to the previous example with Ec=30000 
MPa, where the parameters suggested for the Mazars’ model were 
taken as reference values, see Figure [9]. For the steel, Ea = 210 
GPa has been adopted.

Figure 8 – Geometry of the reinforced concrete bar structure

All dimensions in meters

P

Figure 9 – Parametric identification in uniaxial compression and tension tests 
for reinforced concrete bar structure
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In the 1D analysis, a mesh with 20 elements and 10 layers has 
been considered. On the other hand, in the 2D analyses performed 
by Guello [15] with Mazars’ model, a mesh with 38 x 16 triangle 
finite elements (6 nodes) has been used in order to represent the 
concrete, while a mesh with 30 bar elements represents the steel. 
On the other hand, in this work, a mesh with 100 constant strain 
quadrilateral (4 nodes) elements divided into 10 layers of 10 el-
ements and placed in whole extension of the structural element 
has been considered for the 2D analysis with Pituba’s model. Note 
that, in this mesh, one layer represents the reinforcement bar, see 
Figure [4]. The results are described in the Figure [10].
In the 1D analysis, once again the stiffness degradation is observed 
in a more evident way in the anisotropic model by the reasons previ-

ously explained. However, that difference is more evident after the 
adherence loss stage between the reinforcement bar and concrete 
presented in the Fig. [10] about 28 kN. Note that the 1D models pres-
ent a stiffness recovery after to total concrete cracking. That new re-
sistance is just owed to the reinforcement bar that presents an elastic 
behavior up to yielding resistance be achieved. Those observations 
are in agreement with others works (Mazars [1] and Guello [15]).
On the other hand, in the 2D analysis, the anisotropic model has 
presented locking problems related to numerical responses due to 
the distortion of the finite element that should be partly responsible 
for the excessive stiffness, what does not happen with the Mazars’ 
model (triangular element). Therefore, there was not possibility 
of more intense stiffness degradation by the anisotropic model. 
Note that in this analysis the elastic behavior for reinforcement 
bar has been assumed leading to the increase of difference about 
numerical responses given by the models, due mainly to the finite 
elements. Besides, in the 2D analysis the strain localization is an 
important phenomenon in the behavior of concrete structures. In 
particular, this structure is mainly tensioned presenting a localized 
cracking configuration[15].

4.3 Reinforced Concrete Beam

The third numerical application is about a reinforced concrete beam 
submitted to monotonic loading. This beam was tested by Delal-
ibera [17]. The elastic parameters of the concrete are fck=25MPa 
and Ec=32.3MPa. For the reinforcement has been adopted Ea= 
205 GPa, yielding stress 590 MPa and ultimate stress 750 MPa. 
The geometric characteristics of the beam are given in Figure [11]. 
The loading is composed by two equal forces applied on the beam.
The uniaxial stress tests that were performed by Delalibera [17] 
and they were used in order to identify the models parameters, see 

Table 2 – Parameter values – reinforced concrete bar structure

Mazars’ model  Pituba’s model
Tension Compression Tension Compression  

A  = 0,8T   A  = 1,4C   -4Y  = 0,25x10  MPa01   
-3 Y  = 0,1x10 MPa02

  -3Y  = 0,5x10  MPa03   
B  = 20000T   B  = 1850C   A  = 1301   A  = 32   A  = -0,63   

e  = 0,00001d0

-1B  = 1000 MPa1
-1B  = 11 MPa2

-1B  = 1305 MPa3

Figure 10 – 1D and 2D numerical responses 
for reinforced concrete bar strucuture

Figure 11 – Geometry details of the reinforced concrete beam, dimensions in meters
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Figure [12]. The parameters values as described in the Table [3].
Initially, the longitudinal discretization has been composed by 16 
finite elements and cross section was divided into 15 layers, where 
there are layers that represent the reinforcement areas located in 
their barycenters, see Figure [3].

The numerical responses obtained with isotropic and anisotropic 
damage models are able to simulate the experimental behavior of 
the beam, see Figure [13]. Both damage models present a strong 
loss of stiffness about 18 kN trying to evidence a possible damage 
localization process. In this context, in Delalibera [17] is reported 
that the first crack occurs about 25 kN. As it can be seen, the 
numerical responses are quite satisfactory when compared to the 
experimental results since the beginning of the damage process 
up to the complete rupture of the beam.
On the other hand, it is noted that the numerical responses pres-
ent a difficulty of convergence evidenced by the increase of the 
iterations about 115 kN. In this stage, the concrete presents high 
values for the damage variables in many layers of finite elements 
located in the medium zone of the beam, therefore the beam stiff-
ness is mainly due to the reinforcement bars.

5. Conclusions

The study concerns to the employment of anisotropic and isotropic 
damage models to one and two-dimensional concrete structure 
analyses. In a general way, the numerical results obtained from 
the damage models presented in this work have been quite satis-
factory. The potentialities of the Damage Mechanics when deals 
with numerical simulation of the non-linear behavior of concrete 
structures are shown. In particular, the employment of anisotro-
pic models has shown some advantages in 2D analysis when 

Figure 12 – Parametric identification in uniaxial compression and tension tests 
for reinforced concrete beam

Uniaxial Tension Test

Table 3 – Parameter values – reinforced concrete beam

Mazars’ model Pituba’s model
Tension Compression 

 
Tension Compression 

A  = 1,71T   A  = 2280C   Y  = 1,137x10  MPa01 -4  
-5Y  =5,0x10  MPa02  

B  = 11300T   B  = 12800C   A  = 5,331   A  = 0,00862   
e = 0,0000675d0   -1B  = 5660 MPa1   -1B  = 5,71 MPa2   

Figure 13 – Experimental and 1D numerical 
responses of the reinforced concrete beam
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compared to the isotropic ones, such as, the selective stiffness 
deterioration and evolution of cracking configuration supplying a 
more realistic numerical response, see Pituba [6]. This feature can 
be more evident in three-dimensional analyses. However, it must 
be observed that structures with low reinforcement rates can evi-
dence some numerical problems due to plane analysis, see Pituba 
[6], Pituba [18] and Comi [19]. In these cases, the cracking process 
starts to present a localized distribution limiting the employment of 
the damage models. In order to overcome numerical problems a 
non-local version of the anisotropic model can be proposed and 
implemented in a computational code, for instance, with so-called 
Generalized Finite Element Method.
On the other hand, it is important to observe that the proposal 
and parametric identification of evolution laws for damage vari-
ables D4 and D5 must increase the accuracy of the anisotropic 
model. In fact, these cracking processes related to shear behav-
ior of the concrete are significant contributions to the released 
energy. This feature has been studied by Pituba [20] and a theo-
retical analysis has shown that the anisotropic model has ad-
vantage upon constitutive models that use the so called “shear 
retention factor”.
The 1D analysis has shown an efficient and practical employment, 
without numerical problems and low computational cost. Besides, 
the parametric identification is simple. In this case, the anisotropic 
or isotropic damage models could be used in estimative analyses 
of structures in practical situations, such as: numerical simulation 
of displacement in cracking concrete beams in order to propose an 
alternative procedure to the Brazilian Technical Code (Pituba [21]), 
estimative of ultimate load capacity of frames and beams and col-
lapse configuration of reinforced concrete frames (Pituba [22] and 
Pituba [23]), included the numerical analyses of the structures sub-
mitted to cyclic loading (Pituba [24]) . Finally, this work has dem-
onstrated that simplified damage models are a good alternative to 
estimate the mechanical behavior of reinforced concrete structures.
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