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Abstract  

Resumo

In this work a computational model is presented to evaluate the ultimate bending moment capacity of the cross section of reinforced and pre-
stressed concrete beams. The computational routines follow the requirements of NBR 6118: 2014. This model is validated by comparing the re-
sults obtained with forty-one experimental tests found in the international bibliography. It is shown that the model is very simple, fast and reaches 
results very close to the experimental ones, with percentage difference of the order of 5%. This tool proved to be a great ally in the structural analy-
sis of reinforced and prestressed concrete elements, besides it is a simplified alternative to obtain the cross section ultimate bending moment.

Keywords: reinforced concrete, prestressed concrete, ultimate bending moment, beams.

Neste trabalho é apresentado um modelo computacional que calcula o momento resistente último de seções transversais de vigas de concreto 
armado e protendido. As rotinas computacionais seguem as prescrições da NBR 6118: 2014. Este modelo é validado através da comparação 
dos resultados obtidos com quarenta e um ensaios experimentais encontrados na bibliografia internacional. É mostrado que o modelo é bastante 
simples, rápido e atinge resultados muito próximos dos experimentais, com diferença percentual da ordem de 5%. Esta ferramenta se mostrou 
uma grande aliada na análise de elementos estruturais de concreto armado e protendido, além de uma alternativa simplificada para obtenção 
do momento de ruína da seção transversal. 
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1.	 Introduction

One of the assumptions of structural analysis is to have at hand a good 
mathematical model that satisfactorily represents the behavior of the 
structural element. Thus, in this article, we will present the validation of 
a mathematical model that calculates the ultimate flexural strength of 
cross sections of reinforced and prestressed concrete beams.
In this validation, the model results are compared to 41 experi-
mental tests. The determination of the flexural response of the 
prestressed concrete structures requires initial conditions such as 
compatibility of deformations, geometric and material properties 
and equilibrium equations. In this way, it is possible to formulate 
a mathematical model to obtain the ultimate bending moment MRd.
The developed model allows the nonlinear analysis of prestressed 
concrete beams with adherence for two types of cross-section: 
rectangular and T. An iterative procedure, which uses the secant 
method, is applied to obtain the depth of the neutral axis, during 
the process of calculating the bending moment that causes the 
cross-section failure.
To conclude, it will be shown that this model presents good results 
and, therefore, can be used as a simple and fast way of calculating 
the ultimate flexural strength of prestressed concrete beams.

2.	 Prestressed concrete beams – ultimate 
	 flexural strength evaluation 

Prestressed concrete beams generally exhibit three distinct behav-
ioral phases when subjected to increasing static loads until failure. 
Figure 1 shows a beam under flexural test and Figure 2 shows the 
behavior of a prestressed concrete beam with adherent tendons 
subjected to this test.

2.1	 Stage I: linear elastic

The linear elastic regime corresponds to the interval between the 
beginning of the loading and the load that causes the cracking of 
concrete, Fr. In this case, the concrete, the non-prestressed steel 
and the prestressed steel have a linear elastic behavior and the 
tensile stress in the concrete does not exceeds its tensile strength 
in bending. Through Figure 3 it is possible to see that all the cross-
sectional area collaborates in the balancing of the internal forces.

2.2	 Stage II: cracked cross-section

This stage is achieved after loading on the beam reaching the load 

Figure 1
Flexural test of a prestressed beam

Figure 2
Stages of a beam flexural test (load x deflection)
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Fr  that causes cracking. The materials continue to work in the elas-
tic regime, but the tensile stress in the concrete is greater than its 
tensile strength in the bending and thus only steel is considered to 
withstand tensile stresses in the member cross-section (Figure 4). 
The cross-section is cracked.

2.3	 Stage III: failure mode

As the load increases, the materials exhibit different behavior from 
the other phases until failure. The concrete presents non-linear 
behavior, the reinforcement reaches the limit of yielding and the 

concrete has tensile stresses greater than the tensile strength of 
the concrete in bending. It is assumed (Figure 5) that the stress 
distribution in the concrete occurs according to a parabola-rectan-
gle diagram. Only the compressed concrete zone contributes to 
resistance to the internal forces.

3.	 Cross-section geometry

The developed numerical model applies to rectangular and T 
cross-sections, for any number of layers of non-prestressed and 
prestressed reinforcement. The dimensions of the section are 

Figure 3
Stresses in the cross-section at Stage I

Figure 4
Stresses in the cross-section at Stage II

Figure 5
Stresses in the cross-section at Stage III for concrete class up to C50
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taken as input data of the model. Values referring to web width 
(bw), flange width (bf), total section height (h) and flange height (hf) 
should be entered.
Figure 6 and 7 are presented to illustrate the elements that com-
pose the geometry of a typical rectangular and T cross-section, cor-
respondingly. The position and identification of the non-prestressed 
and prestressed reinforcement are also showed in these figures.
- b is the web width;
- h is the cross-section total height;
- As1 is the area of non-prestressed tension reinforcement;
- As2 is the area of non-prestressed compression reinforcement;
- Ap is the area of prestressed tension reinforcement;
- Apele is the area of skin reinforcement;
- di is the effective depth = distance from extreme-compression 
fiber to centroid of reinforcement layer “i”.
- bf is the flange width;
- bw is the web width;
- h is the cross-section total height;
- hf is the flange thickness;
- di is the effective depth = distance from extreme-compression 
fiber to centroid of reinforcement layer “i”.
- As1 is the area of non-prestressed tension reinforcement;
- As2 is the area of non-prestressed compression reinforcement;

- Ap is the area of prestressed tension reinforcement;
- Apele is the area of skin reinforcement.

4.	 Fundamental assumptions

Since the evaluation of the flexural strength of prestressed con-
crete beams aims to determine the ultimate bending moment MRd, 
for a given cross-section, where the dimensions, reinforcement 
and material properties are previously known, the analysis is car-
ried out in Stage III. Below are presented the fundamental hypoth-
eses for analysis at such stage.
The cross-sections initially plane and normal to the beam axis re-
main plane and normal in relation to the deformed axis.
There is perfect adherence between prestressed and non-pre-
stressed reinforcement and the concrete surrounding them.
The strain distribution diagram in the failure regime shall comply 
with the provisions of NBR-6118:2014, ABNT [3], see Figure 8.
The previous elongation must be included in the deformation of the 
prestressed reinforcement.

(1)
Where:
P∞  is the prestressing force;
Ep  is the prestressed reinforcement modulus of elasticity;
σ(c,p)  is the compression stress in the concrete caused by the pre-

Figure 6
Cross-section geometry and reinforcements

Figure 7
T cross-section geometry and reinforcements

Figure 8
Strain distribution diagram at failure – adapted from NBR-6118:2014, ABNT [3]
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stress at the centroid of the prestressed reinforcement;
Ec  is the concrete modulus of elasticity.
The tensile strength of the concrete is neglected. 
For the purposes of simplification, according to NBR-6118: 2014, 
ABNT [3], a rectangular stress diagram with a depth of  0.8 ∙ x  for 
concrete class up to C50 is allowed, where x is the depth of the 
neutral axis.Figures 9, 10 and 11 illustrate the constitutive rela-
tions, respectively, of the concrete, the non-prestressed reinforce-
ment and the prestressed reinforcement.
In the case of concrete, for analysis in the ultimate limit state, the 
idealized tensile-strain diagram shown in Figure 9 can be used. 
The compressive stresses in concrete should obey equation (2).

(2)
For concrete classes up to C50, the value adopted for the strain of 
For concrete classes up to C50, the value adopted for the strain 
of concrete at the maximum stress is εc2 = 2,0‰, and the strain at 
failure is equal to εcu = 3,5‰.
The stress-strain relationship shown in Figure 10 is elastic-per-
fectly plastic and recommended by NBR-6118:2014, ABNT [3], for 
calculation in the service and ultimate states. The ultimate strain 
εu applied in this case for passive reinforcement is equal to 10‰.
For calculations in the service and ultimate limit states, NBR-
6118:2014, ABNT [3], allows using the simplified bilinear strain-
strain relationship according to Figure 11.
Where:
fpyk : nominal yielding strength of prestressed steel reinforcement;

fptk : nominal tensile strength of prestressed steel reinforcement;
εu : strain at failure of prestressed steel reinforcement.

5.	 Calculation of the ultimate  
	 flexural strength

The two equilibrium equations required for the calculation of the ulti-
mate bending moment use the basic assumptions and simplifications 

Figure 9
Stress-strain relationship for concrete in compression Figure 10

Stress-strain relationship for non-prestressed steel 
reinforcement

Figure 11
Stress-strain relationship for the prestressed steel 
reinforcement

Figure 12
State of strain
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From Figure 13, the calculation of the stresses can be done from 
the equations:

(8)

(9)

(10)

(11)

(12)

Using the simplification of the rectangular diagram 0,8 ∙ x and  
σcd = 0,85 ∙ fcd, the resultant forces on concrete and non-prestressed 
and prestressed reinforcement will be given by:

(13)

(14)

allowed in NBR-6118:2014, ABNT [3].
The methodology used allows the computation of the ultimate 
bending moment for several layers of non-prestressed and pre-
stressed reinforcement, however, since it is a very common case, 
Figures 12, 13 and 14 show only one layer of non-prestressed ten-
sion reinforcement, a layer of non-prestressed compression rein-
forcement and a prestressed reinforcement layer.
Observing Figures 12, 13 and 14 and assuming that the safety 
Observing Figures 12, 13 and 14 and assuming that the safety 
condition, Msd = Mrd,  is satisfied,  it becomes possible to make the 
following considerations.
From Figure 12, the calculation of the strains can be made from:

(3)

(4)

(5)

(6)

(7)

Figure 13
State of stress

Figure 14
Resultant forces acting on the cross-section
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(15)

(16)
In the cross-section, the balance of forces and moments comes In 
the cross-section, the balance of forces and moments comes from  
∑ Fh = 0  and  ∑ Mcc  = 0. The sum of moments will be made around 
the centroid of the concrete compression zone that is at a distance 
of  0,4∙x from the compressed edge.

(17)

(18)

Where MRd is the ultimate bending moment of the cross-section. 
Expanding equations 17 and 18 in the form of stress and making 
some simplifications, we have:

(19)

(20)
Equation 19 serves to find the depth of the neutral axis x, and 
consequently, the ultimate bending moment of the section is found 
in Equation 20. However, the depth of the neutral axis cannot be 
found directly because the stresses are also functions of x. Then, 
it is necessary to use an iterative numerical process, the secant 
method, to solve the problem.
Equation 19 can be written generically in the form  f (x) =0, where:

(21)
The secant method is an iterative procedure used for the root 
solution of an Equation (See, for example, ARAÚJO [2]). In this 
context, the root of Equation 21 should be in the interval  [0,ds1], 

which encompasses the domains of deformation for simple 
bending. The bounds of the range where the root is located are  
x0 = 0  and  xu = ds1. Hence, the function  f(x)  values at the extremes 
are  f(x0 ) = f0  and  f(xu ) = fu, respectively, as shown in Figure 15.
As can be seen, the first approximation  x1  to the root of the func-
tion is taken as the intersection of the line through the function 
ends and the axis of the abscissa.
The value of  x1  is given by:

(22)
Then f1 = f(x1) is calculated and the convergence is tested. For the con-
vergence to be satisfied and the solution to the problem to be found, the 
absolute value of the calculated root must be less than a pre-established 
tolerance | f1 | < tol. This tolerance, tol, can be as small as you wish.
In case that convergence is not achieved, the evaluation inter-
val should be reduced. For this, it is tested whether the product  
f1 ∙ f0 > 0 and if it is true, as shown in Figure 15, the new evaluation 
interval is [ x1,xu ], otherwise [ x0,x1 ].
With the new interval, smaller than the previous one, the procedure 
is repeated and a new value of  x  is now found, x2, and, again con-
vergence is verified. These steps are repeated until the tolerance 
reaches the expected value.
Knowing the depth of the neutral axis, we find the ultimate bending 
moment of the cross-section using Equation 20.

6.	 Model validation

We present below experimental results in the literature for the ul-
timate bending moment of prestressed concrete beams with initial 
adherence, denominated here as Mu,exp. Then, the ultimate flexural 
strength of the beams, called Mu,calc, is calculated using the numeri-
cal model. Thus, it was possible to compare the obtained results 
and to analyze the limitations of the model.

6.1	 Experimental results

Forty-one concrete beams with adherent prestressing were  

Figure 15
Secant method – adapted from ARAÚJO [2]
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evaluated. They are presented in Table 1. There are 27 beams of 
BILLET [4], 6 of FELDMAN [5], 3 of WARWARUK [12], 3 of TAO 
and DU [11] and 2 of MATTOCK [8] classified according to the 
author of tests.
b : is the beam web width;
bf : is the beam flange width;
h : is the beam height;
hf : is the beam flange height;
dp : is the effective depth of the prestressed reinforcement;
ds : is the effective depth of the non-prestressed reinforcement;
Ap : is the prestressed steel reinforcement area;
As : is the non-prestressed steel reinforcement area;
fc : is the mean value of the concrete compressive strength;
fpt : is the mean value of the prestressed steel reinforcement  
tensile strength;

fpy : is the mean value of the prestressed steel reinforcement yield-
ing strenth;
fy : is the mean value of the non-prestressed steel reinforcement 
yielding strength;
Ep : is the modulus of elasticity of the prestressed steel reinforcement;
Es : is the modulus of elasticity of the non-prestressed steel rein-
forcement;
fse : is the effective stress applied to the prestressing tendons.
For the calculation of the pre-elongation of the prestressed rein-
forcement, it is enough to do:

(23)
The modulus of elasticity Ep measured in the tests carried out by 
BILLET [4] was equal to 20684.27 kN/cm².

Table 1
Data from the beams tested by BILLET [4]

Beam b
cm

h
cm

dp
cm

Ap
cm2

fc
kN/cm2

fpt
kN/cm2

fpy
kN/cm2

fse
kN/cm2

Mu,exp
kN ∙ m

B1 15.24 30.48 23.14 1.497 3.79 169.34 142.03 74.33 49.975

B2 15.62 30.86 24.21 0.748 3.74 169.27 142.03 80.53 29.679

B3 15.24 30.78 24.43 0.374 2.59 169.34 142.03 82.74 15.361

B4 15.49 30.71 23.34 1.497 2.37 169.34 142.03 78.53 45.162

B5 15.49 30.63 23.70 1.606 3.90 171.68 151.55 78.67 55.602

B6 15.39 30.63 20.62 2.206 2.03 171.68 151.55 79.98 50.938

B7 15.57 30.81 20.55 3.013 4.07 171.68 151.55 77.77 72.943

B8 15.57 30.63 20.29 3.013 2.26 171.68 151.55 77.84 67.167

B9 15.39 30.63 23.44 1.510 4.36 165.47 142.51 13.72 47.725

B10 15.39 30.56 22.89 0.381 2.43 165.47 142.65 13.10 13.314

B11 15.39 30.63 23.39 1.510 2.70 165.47 142.51 14.07 47.223

B12 15.39 30.81 21.16 2.832 3.83 165.47 142.65 14.07 62.029

B13 15.29 30.73 20.70 2.077 2.59 165.47 142.51 14.62 48.023

B14 15.24 30.68 20.29 2.832 2.59 165.47 142.51 13.93 53.094

B15 15.32 30.71 23.60 1.510 3.94 165.47 142.65 103.42 48.308

B16 15.27 30.51 22.86 0.381 2.30 165.47 142.65 103.63 14.141

B17 15.24 30.51 23.09 1.510 3.16 165.47 142.65 104.11 45.894

B18 15.24 30.38 21.06 2.077 2.83 165.47 142.51 102.59 52.172

B19 15.44 30.66 21.01 2.832 4.29 165.47 142.65 104.32 71.560

B20 15.37 30.81 23.55 1.006 2.63 171.68 151.55 81.77 31.753

B21 15.44 30.66 22.99 1.006 4.52 171.68 151.55 81.36 34.397

B22 15.42 30.66 23.19 2.006 5.26 171.68 151.55 79.43 66.937

B23 15.34 30.56 20.83 3.013 5.65 171.68 151.55 80.88 79.980

B24 15.42 30.58 20.93 2.406 4.22 171.68 151.55 80.25 66.964

B25 15.39 30.58 20.35 2.006 2.25 171.68 151.55 78.94 50.165

B26 15.49 30.40 23.55 1.606 0.88 171.68 151.55 80.32 38.993

B27 15.42 30.66 21.23 3.013 3.16 171.68 151.55 81.36 70.136
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The modulus of elasticity Ep measured in the tests by FELDMAN 
[5] are presented in table 3.
The modulus of elasticity  Ep  measured in the tests carried out by 
WARWARUK [12] was equal to 20684.27 kN/cm².

Table 5: Data of the beams tested by TAO e DU [11]

Table 6: Additional data for the beams tested by TAO e DU [11]

Table 7: Data of the beams tested by MATTOCK [8]

Table 8: Additional data for the beams tested by MATTOCK [8]

Through the developed model, the ultimate bending moment for 
the forty-one beams was calculated with the purpose of evaluating 

the ability of the method to determine the flexural strength of the 
midspan cross-section.
The process is carried out with the aid of spreadsheets that use 
subroutines created in Visual Basic for Application to calculate the 
stresses and strains of the element, checking the strain diagram 
at failure and then obtaining the ultimate bending moment of the 
cross-section.

Table 2
Data of the tests carried out by FELDMAN [5]

Beam b
cm

h
cm

dp
cm

Ap
cm2

fc
kN/cm2

fpt
kN/cm2

fpy
kN/cm2

fse
kN/cm2

Mu,exp
kN ∙ m

F28 15.62 30.56 20.14 1.494 1.72 128.24 97.91 63.78 30.70

F29 15.65 30.58 20.50 2.615 2.95 128.24 97.91 63.91 50.63

F30 15.47 30.73 20.52 0.561 1.99 170.99 137.90 69.71 17.64

F31 15.44 32.26 20.90 1.868 2.38 170.99 137.90 64.88 44.93

F32 15.24 30.81 23.67 1.839 4.95 176.51 169.61 79.50 65.31

F33 15.32 30.66 23.06 1.103 5.74 176.85 163.41 80.60 43.36

Table 4
Data of the beams tested by WARWARUK [12]

Table 5
Data of the beams tested by TAO e DU [11]

Beam b
cm

h
cm

dp
cm

Ap
cm2

fc
kN/cm2

fpt
kN/cm2

fpy
kN/cm2

fse
kN/cm2

Mu,exp
kN ∙ m

W34 16.00 30.48 23.01 1.361 2.74 184.09 151.68 78.60 40.79

W35 15.27 30.48 23.11 0.587 3.64 184.09 151.68 81.50 22.37

W36 15.39 30.48 23.06 2.335 3.61 184.09 151.68 76.67 64.29

Beam b
cm

h
cm

dp
cm

Ap
cm2

fc
kN/cm2

fpt
kN/cm2

fpy
kN/cm2

fse
kN/cm2

Mu,exp
kN ∙ m

TD37 16.00 28.00 22.00 0.588 3.56 166.00 136.00 92.40 35.00

TD38 16.00 28.00 22.00 1.568 3.56 166.00 136.00 87.90 61.60

TD39 16.00 28.00 22.00 1.960 3.56 166.00 136.00 82.50 71.40

Table 3
Modulus of elasticity of the beams tested by 
FELDMAN [5]

Beam Ep
kN/cm2

F28 20477.43

F29 20477.43

F30 19925.85

F31 19925.85

F32 20408.48

F33 20408.48
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Table 6
Additional data for the beams tested by TAO e DU [11]

Table 8
Additional data for the beams tested by MATTOCK [8]

Beam Ep
kN/cm2

Es
kN/cm2

fy
kN/cm2

As
cm2

ds
cm2

TD37 20000.00 20000.00 26.70 1.57 25.00

TD38 20000.00 20000.00 26.70 2.36 25.00

TD39 20000.00 20000.00 26.70 1.00 25.00

Beam Ep
kN/cm2

Es
kN/cm2

fy
kN/cm2

As
cm2

ds
cm

bf
cm

hf
cm

M40 19500.00 21000.00 37.71
Sup. 0.62 1.91

– –
Inf. 0.62 28.58

M41 19500.00 21000.00 37.71
Sup. 0.62 1.91

96.52 5.08
Inf. 0.62 28.58

Table 7
Data of the beams tested by MATTOCK [8]

Beam b
cm

h
cm

dp
cm

Ap
cm2

fc
kN/cm2

fpt
kN/cm2

fpy
kN/cm2

fse
kN/cm2

Mu,exp
kN ∙ m

M40 15.24 30.48 25.40 2.534 2.76 192.36 175.89 129.76 93.44

M41 15.24 30.48 25.40 2.534 2.76 192.36 175.89 125.90 103.44

The results are shown in Table 9, where  Mu,exp  is the ultimate bend-
ing moment obtained from the experimental results and  Mu,calc  is 
the ultimate bending moment obtained by the numerical model.
To represent the relationship between ultimate bending moments 
obtained experimentally and those obtained through the model, 
the Greek letter  η  is used.
By analyzing the forty-one results of the relation between the ex-
perimental ultimate bending moment and those of the model all 
together, it can be verified that the ratio  η  presented a mean value 
equal to 1.0524 and a standard deviation equal to 0.0963.

Figure 16 shows the histogram obtained for the forty-one analyzed 
beams and Figure 17 shows the graph of adherence of the  η  ratio 
to the normal distribution of probabilities. By subjecting the values 
of  η  to the Kolmogorov-Smirnov test, ANG and TANG [1], adher-
ence to the Gaussian theoretical model can be demonstrated, since 
the maximum distance between the values of cumulative probability 
distribution of the data and the normal curve was below the limit con-
sidering a level of significance of 95%. It is possible to note a relative 
symmetry of the results around the mean, presenting values both 
below and above. This indicates a non-biased model.

Figure 16
Ratio η histogram
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6.2	 Model error evaluation (θ)

In addition to the inherent variability of the strength of the materials 
and the forces applied to the structures, the uncertainties inherent 
to the numerical models adopted in the analysis must be consid-
ered. The estimation of the model error followed the recommenda-

tions presented by MAGALHÃES [6] and MAGALHÃES et al [7].
The relationship between the experimental and theoretical results 
is affected by variations provided by the computational model, by 
the variability of the random variables of the system and by the 
inherent variability of the experimental process of the test, and is 
represented by Equation 24.

Table 9
Experimental results versus numerical results

Beam Mu,exp
[kN ∙ m]

Mu,calc
[kN ∙ m]

Mu,exp

Mu,calc
Beam Mu,exp

[kN ∙ m]
Mu,calc

[kN ∙ m]
Mu,exp

Mu,calc

B1 49.975 46.049 1.085 B22 66.937 65.933 1.015

B2 29.679 25.226 1.177 B23 79.980 83.915 0.953

B3 15.361 12.872 1.193 B24 66.964 66.650 1.005

B4 45.162 43.951 1.028 B25 50.165 47.249 1.062

B5 55.602 53.684 1.036 B26 38.993 30.326 1.286

B6 50.938 47.026 1.083 B27 70.136 73.456 0.955

B7 72.943 77.557 0.941 F28 30.70 26.056 1.178

B8 67.167 54.800 1.226 F29 50.63 46.377 1.092

B9 47.725 47.467 1.005 F30 17.64 15.678 1.125

B10 13.314 12.157 1.095 F31 44.93 45.150 0.995

B11 47.223 45.071 1.048 F32 65.31 69.177 0.944

B12 62.029 67.702 0.916 F33 43.36 41.489 1.045

B13 48.023 45.198 1.063 W34 40.79 44.74 0.912

B14 53.094 48.060 1.105 W35 22.37 21.060 1.062

B15 48.308 47.966 1.007 W36 64.29 71.916 0.894

B16 14.141 12.260 1.153 TD37 35.00 27.744 1.262

B17 45.894 45.833 1.001 TD38 61.60 58.039 1.061

B18 52.172 52.538 0.993 TD39 71.40 60.004 1.190

B19 71.560 73.274 0.977 M40 93.44 94.840 0.985

B20 31.753 33.621 0.944 M41 109.93 105.484 1.042

B21 34.397 34.005 1.012 – – – –

Figure 17
Adherence to Gauss distribution theoretical model
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(24)
Onde:
Vη  é o coeficiente de variação da razão  η ;
Vmodel  is the model error coefficient of variation;
Vbatch  is the coefficient of variation of the laboratory test results of 
the system variables, such as dimensions and resistances;
Vtest  is the coefficient of variation of the results obtained experi-
mentally in the test of the prestressed concrete beams.

(25)

The coefficient of variation of the ratio  η  was determined through 
the 41 experimental results ( ). The coefficient of varia-
tion of the test must be equal to or less than 0.04, MAGALHÃES 
[6]. The maximum value was used: Vtest = 0.04.
The batch coefficient of variation was adopted, according to MAG-
ALHÃES [6], as being equal to 0.044 (Vbatch = 0.044).
In these conditions, using Equation 25, the value Vmodel = 0.068 
was calculated.
In general, the model error has a mean value close to 1.00 and a 
standard deviation between zero and 0.10, depending on the ac-
curacy of the numerical model. 
The mean value of the model error can be evaluated through 
Equation 26. 

(26)
As the batch mean value and the test mean value are close to the 
unit, the mean value of the model error can be calculated through 
Equation 27.

(27)
According to NOWAK [9], the model error follows a Normal prob-
ability distribution, with a mean value between 1.04 and 1.06 for 
prestressed concrete beams.
Using the model error coefficient of variation (Vmodel = 0.068) and 
the error model mean value (μmodel = 1.052), the results for the ulti-
mate flexural strength of the beam can be corrected by the model 
error estimate (θR) randomly generated in each simulation, accord-
ing to Equation 28. The corrected values of the ultimate bending 
moment are used in the reliability analysis. 

(28)

7.	 Results and discussion

The methodology used to evaluate the ultimate bending moment 
of prestressed concrete beams is the traditional model that calcu-
lates the ultimate flexural strength of the cross-section based on 
the assumptions of the plane sections and perfect adherence be-
tween steel and concrete. In addition the following premises were 
also considered: the ultimate strain distribution diagram according 
to NBR-6118:2014, a rectangular stress diagram for concrete, an 
elastic-perfectly plastic tension diagram for non-prestressed re-

inforcement steel and a bi-linear stress diagram for prestressed 
reinforcement steel. The secant method is employed to solve the 
non-linear system of equations resulting from equilibrium and com-
patibility conditions.
This methodology is a simplified alternative to obtain the ultimate 
bending moment of reinforced and prestressed concrete beams 
that complies with the requirements of NBR 6118: 2014. A satisfac-
tory validation was obtained for this model when compared with 
experimental results found in the literature.
By observing the results of Table 9, it can be noted that the model 
for calculation of the ultimate bending moment exposed in this 
work presents good results.
This tool is a great ally in the analysis of structural elements of 
reinforced and prestressed concrete, presenting good results and 
a low computer processing time.
This model will be used in the evaluation of the reliability of beams 
of prestressed concrete bridges.
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