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Abstract  

Resumo

The tunnel design is a subject that demands a three-dimensional analysis dealing with two different players: lining and rockmass. The traditional 
methods of getting the necessary parameters for design do not consider a correct interaction between the two players, but the New Implicit Method 
(NIM) takes this characteristic in its core and develops some formulations for elastic, plastic and viscous rockmasses. Understanding that the 
stiffness of the lining and the distance between the lining and the tunnel face change the convergence of the tunnel, a code in MatLab for NIM is 
validated through Finite Element (FEM) with its results being presented. The validation of this method was compared with FEM analysis and the 
results obtained an average accuracy of 12% what represents a good approximation regarding geotechnical issues.

Keywords: tunnel design, new implicit method, elastic, plastic and viscoplastic rockmass, convergence.

O dimensionamento de túneis requer uma análise tridimensional lidando com duas estruturas muito diferentes: o maciço e o revestimento. Os mé-
todos simplificados tradicionais de dimensionamento de túneis não consideram a correta interação entre essas duas estruturas. O “Novo Método
Implícito” leva em consideração a correta interação e é desenvolvido para maciços elásticos, plásticos e viscoplásticos. O parâmetro chave desta 
interação é a convergência no instante da colocação do revestimento que é afetada, entre outros, pela rigidez do revestimento. Um código em 
MatLab do NIM foi desenvolvido e validado com resultados de cálculos numéricos em elementos finitos. Os resultados desta comparação forne-
cem uma precisão de 12%, demonstrando um ótimo resultado para obras geotécnicas.

Palavras-chave: dimensionamento de túneis, Novo Método Implícito, maciços elásticos, plásticos e viscoplásticos, convergência.
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1. Introduction

The design of tunnel support is one of the most complex 
tasks in the tunnel design, and most of the projects remain 
empirically analyzed and designed. However, it is getting 
unsuitable, since it is being proved that the interaction of 
the soil and lining matters in a way to change the stresses 
taken by the concrete as well as the deformation caused 
by the rockmass. This deformation of the rockmass over 
the lining is the main parameter and it is going to be called 
convergence.
The Association Française des Tunnels et de L’Espace 
Souterrain (AFTES) [1] classifies the tunnel support design 
methods into four types: (i) purely empirical methods indi-
cating the most appropriate type of support for a situation 
defined from various geotechnical classification systems; 
(ii) methods for determining the loads acting on the support, 
regardless of support type and deformation; (iii) support de-
sign methods which consider loads exerted by the ground 
as input data with some integration of support stiffness, de-
formation and the reactions of the surrounding ground; (iv) 
and more recent methods taking full account of the ground/
support interaction. 
The first method consists on the reproduction of succeeded 
tunnel supports and does not provide an assessment of the 
safety factor. The second and third method derives from the 
strength of the materials and consider the tunnel a semi-
circular beam reacting to external loads. The support reac-
tions are given as Winkler springs to reproduce the strength 
of the soil.
The last classification is derived from the continuous me-
dia theory and this is the reason why it was chosen to be 
applied in this work. This classification integrates the tra-
ditional Convergence-Confinement Method (CV-CF) for 
analytical solution and some numerical solutions with Finite 
Element which can describe better the 3D effect around the 
tunnel face. 
The New Implicit Method (NIM) was developed by BERN-
AUD and ROUSSET [3] as evolution of the Convergence-
Confinement Method. The NIM fully integrates the influence 
of the lining on the final convergence at equilibrium, since it 
shows that stronger the lining is, the smaller is the conver-
gence (dimensionless displacement). Regarding that, the 
paper’s main objectives are: (1) to present the New Implicit 

Method and (2) to introduce the NIM in MatLab for prelimi-
nary tunnel design. 
Every relevant and recurrent parameter shown in the text 
are summarized on Appendix I at the end.
 
2. Interaction problem

The determination of the load transferred to the support re-
quires an analysis of the interaction of the load-deforma-
tion characteristics of the elements comprising the system 
ground/support. The preliminary design of tunnels foresees 
the necessary strength of the lining since it is able of pre-
senting the convergences of the rockmass. 
Let us consider a circular deep tunnel (radius Ri), driven in 
a homogeneous and isotropic rockmass [Figure 1], initially 
subjected to a geostatic stress field (σ0):

(1)
The Equation (1) gives the initial stresses (before the ex-
caThe Equation (1) gives the initial stresses (before the ex-
cavation). It is dependent on the P∞ which is the pressure 
exerted by the soil mass above the tunnel. According to 
PARK [9] since it is a circular deep tunnel, it is accepted to 
consider the same pattern for vertical and horizontal axes. 
Parameters ρ and g are the unit mass and gravity accelera-
tion respectively.
With the assumption that the lining is a ring of constant 
thickness e, made of a homogeneous and isotropic materi-
al; and, moreover, that the lining is set at a distance d0 from 
the plane and vertical tunnel face, the problem becomes 
an axisymmetric problem dependent only on the radial dis-
tance r to the tunnel axis and the time t. 
In the other hand, the deep section of the tunnel can be 
treated as a Plane Strain problem since the lining speed is 
constant (time dependent), so the parameters will depend 
only on the radial distance r as well.
Firstly, the most used method to predict the stresses upon 
the lining is the Convergence-Confinement method [1] 
which is a procedure that allows the load imposed on a sup-
port installed behind the face of a tunnel to be estimated. 
Per CARRANZA and FAIRHURST [5], when a section of 
support is installed in the immediate vicinity of the tun-
nel face, it does not carry the full load to which it will be  
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Figure 1
Simplification of the behavior of the problem. (BERNAUD and ROUSSET, 1994, [3])
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subjected eventually; a part of the load is redistributed 
around the excavation face itself. However, as the tunnel 
and face advance, this ‘face effect’ decreases and the sup-
port must carry a greater proportion of the load that the face 
had carried earlier.
The method explained in the previous paragraph is de-
fined by two curves [Figure 2]: the convergence curve is 
the dashed line, also known as the ground reaction curve 
that gives the internal pressure exerted at the wall versus 
the convergence of the tunnel’s wall and it depends on the 
characteristics of the rockmass and the adopted plastic cri-
teria; the second curve is the confinement one (or support 
characteristic curve), which illustrates the relationship be-
tween the pressure Pi versus the closure of the lining Ui

s 
defined as the straight line in [Figure 2].
The Confinement curve starts at the convergence of the in-
stallation of the lining Uo and its slope is defined as the lining 
strength Ks.
The parameters of Figure 2 A are:
Uo and P0: the convergence (radial deformation) and the 
pressure at the distance d0 from the tunnel face;
Ueq and Peq: the convergence and the pressure at a section 
far from the tunnel face at equilibrium, where both pressure 
and convergence are stabilized;
Rp: the plastic radius is the limit between the elastic and 
plastic zone around the tunnel.
Figure 2 illustrates the relationship between the pressure 
Pi versus the closure of the lining Ui

s (convergence). Since 
it is shown in Figure 2 (A) that the rockmass presents an 
elastoplastic behavior, there is a plastic zone around the 
tunnel (B). The convergences Uo and Ueq are shown in (B) 
and the pattern of initial increase and final stabilization of 
the rockmass displacement is shown as well. 
Eventually, the Convergence-Confinement curve is drawn and 
the safety factor can be obtained by comparing the concrete 
strength with the stress at a distance far from the tunnel face 
that is imposed by the rockmass upon the lining structure.

3.	 The	lining	stiffness	

PANET [8] brings equations for the lining stiffness (Ks). 
There are two main equations which describe the lining stiff-
ness. They are derived from a thin shell and a thick pipeline. 
This work uses the normal solution only, considering that 
in deep tunnel, there is a uniform convergence only. For 
other cases, Panet [8] shows the lining stiffness for bending 
resistance. Considering a thin shell and Ri /e>10, the lining 
stiffness is:

(2)

In the other hand, when a thick pipeline is used (Ri /e<10), 
the lining stiffness is:

(3)
Where:
Ri: radius of the excavated tunnel;
e: thickness of the lining;
EL: Modulus of Young of the lining;
νL: Poisson coefficient of the lining.

4. The New Implicit Method (NIM)

The Convergence at equilibrium is the final displacement 
imposed on the lining ring and it has been calculated by 
the NIM, the Pressure at equilibrium is defined by the NIM 
too. The Method derived from the CV-CF method contains 
four main steps and for every rockmass behavior (elastic, 
elastoplastic and viscoplastic) the steps follow the same se-
quence (see Figure 3).
The New Implicit Method (NIM) was developed by BER-
NAUD and ROUSSET [3] and consists on deducing the 
curve of convergence with a geometrical transformation 
from unsupported to supported tunnel. The transformation 

Figure 2
Tunnel equilibrium in a diagram Pi x Ui (a) and equilibrium of a tunnel (b) (BERNAUD and ROUSSET, 1996, [3])
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is a function a0 (x) of the unsupported tunnel and it was ap-
proximated by:

(4)

Where Uf = Ui
f (0) is the convergence at the tunnel face of 

the unsupported tunnel and Ui
f (∞)=U∞ is the convergence 

of the unsupported tunnel far from the tunnel face. The NIM 
showed that as (x) depends on the Ks (lining stiffness) that 
had not been predicted by the CV-CF method; so, a function 
for the supported tunnel is proposed:

(5)

Then, for a given constitutive law of rockmass, the applica-
tion of the NIM can be summarized by the following steps:
a) Choose the reduced lining function α^* (Ks' ).Then, for the 
supported tunnel, Equation (5) becomes:

(6)

(7)

b) Solve the convergence of the tunnel face Uf according to 
the rockmass behavior.
c) The solution of the problem is then obtained by solving 
the following equations:

Figure 3
Sequence of solution of a tunnel convergence Ueq  and Pressure Peq

Figure 4
Calculation of a tunnel with the NIM
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(8)
d) In the System (8), the convergence U0 is a function of Ueq 
(that explains the name of ‘implicit method’). By (7) and (8) 
we can write:

(9)

Figure 4 sums up how the NIM method works integrating 
the two charts which correlate the convergence, the pres-
sure and the location of the studied section by setting the 
lining supported function and getting the value for U0 and its 
respective pressure.
Another use of the simplified method is to determine the 
ratio λ0 (or the convergence U0) at the moment of lining in-
stallation and then use this value as a good approach to 
calculate the tunnel in a 2D plane strain condition with a 

more complex geometry and loading (anisotropic loading 
for instance).
Figure 5 shows how the pressure Pi is obtained by using 
the ratio λ0.

4.1 The Numerical Code GEOMEC91

The tunnel face advance process is studied here by the ‘de-
activation/reactivation’ method developed in the numerical 
code ‘GEOMEC91’ [4] It is a 2D axisymmetric analysis of 
tunneling that considers the sequences of excavation and 
lining placement as it is illustrated in Figure 6. The excava-
tion process is simulated by the ‘deactivation’ of the stiffness 
of the elements representing the ground removed during 
the excavation step (face advance). This is accomplished 
by a significance reduction of their Young’s Modulus and 
Poisson’s ratio.
Tunnel support is placed using the reactivation process at 
a specified distance, d0, from the advancing face. This is 
calculated by substituting the lining characteristics in the 
corresponding lining elements. At this moment, the lining 
elements are stress and strain free.
BERNAUD [4] validated this numerical code with the experi-
mental values of the Boom clay in Belgium, and for a 230-m 
deep tunnel the in-situ convergence was about 2.20% and 
the numerical solution returned a convergence of 2.04% 
presenting an average difference of 0.16% (between GEO-
MEC91 and experimental measures) showing the accuracy 
of the CEOMEC91 used here as the validation tool of the 
New Implicit Method (see Figure 6).
QUEVEDO [10] and FIORE et al [6] compared the solu-
tion of the GEOMEC91 with the numerical solution given by 
software ANSYS and showed an accuracy of GEOMEC91 
used here. The model used by Fiore presented an accuracy 

Figure 5
Application of the ratio λ0 in a plane strain model

Figure 6
Typical mesh of GEOMEC91 (BERNAUD and ROUSSET, 1996 [4])
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of 5% when compared to the GEOMEC91 solution. The val-
ues for the convergence and stress at equilibrium are two of 
the driving characteristics to build a reliable and safe tunnel, 
and as the text follows, the solution of the incognitos cited 
before are going to be given for different behavior of the 
rockmasses depending upon the geology, type and creep 
characteristic of the rock around the lining.

4.2 Elastic rockmass

Some dimensionless parameters are going to be introduced 
to reduce the number of parameters shown in text. For an 
elastic solution, the dimensionless parameters are:

(10)

Where:
P∞: Initial geostatic stress as defined in Equation (1);  
E: Modulus of Young of the rockmass;
Ks: stiffness of the lining.
The steps to follow by the NIM to find the convergence and 
pressure at equilibrium are as follow:
a) Get the entry parameters: P∞, E, Ks, d0, ν (Poisson coef-
ficient of the rockmass) and Ri;  
b) For an unsupported tunnel, we have:

(11)

c) For elastic, and plastic solutions, the function as (x) is 
given from Equation (7) in function of a dimensionless lining 
function (α*), and it is illustrated in Figure 7 proving that this 
function is dependent on the lining stiffness: 

(12)

The approximate method by BERNAUD and ROUSSET[3] 
proposed an average function for the reduced lining func-
tion, so α* = α*average. See Figure 7:

(13)
d) So, the function as (x') from Equation (7) is going to be 
changed by replacing the average function of α* from Equa-
tion (13): 

(14)

(15)

e) Calculate the convergence and stress at equilibrium:

(16)

(17)
f) The convergence at d0 is given by Equation (9).

4.3 Plastic rockmass

The rockmasses subjected to plastic strain presenting co-
hesion and/or friction angle will be treated here with Tresca 
(ϕ = 0) and Coulomb (ϕ > 0) criteria. However, some other 
criteria like Hoek-Brown is valid and presented in the origi-
nal text of NIM [3]. 

(18)

Figure 7
(a) Lining function α* for Ns  and (b) dimensionless average lining function α* for Ns
(BERNAUD and ROUSSET, 1996 [4])
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4.3.1 Tresca criterion

This criterion is valid for rockmasses whose main geotech-
nical characteristic is given by the cohesion. The steps to 
follow by the NIM to find the convergence and pressure at 
equilibrium are as follow:
a) Get the entry parameters: P∞, E, Ks, d0, C, ν = 0.5 and Ri.
b) For Tresca, the Friction Angle (ϕ) is zero and a new pa-
rameter is introduced:

(19)
c) The reduced dimensionless lining function is given in 
Equation (13).
d) Calculate the convergence U∞ and at the tunnel face Uf, 
as follows:

(20)

(21)
e) The as (d0') is the same as the shown one in Equation (14);
The solution of this criterion valid for Peq < P∞ – C; if  
Peq > P∞ – C the rockmass is elastic. So, solving the System (8), 
the convergence and the stress at equilibrium are as follow: 

(22)

(23)

(24)
g) The plastic radius is:

(25)

For Mises, the solution is given by the System (8) with C  
 
replaced by .

4.3.2 Coulomb criterion

This criterion is valid for rockmasses whose main geotech-
nical characteristic is given by cohesion and friction angle  
 
when . The steps to follow by the  
 
NIM to find the convergence and pressure at equilibrium 
are as follow:
a) Get the entry parameters: P∞, E, Ks, d0, C, ϕ, ν = 0.5 and  Ri;
b) For Coulomb, two new parameters depending on the fric-
tion angle (ϕ) are introduced:

(26)

(27)

When the Friction Angle is zero, the solution is for Tresca 
criterion shown in Equation (22).
c) For Coulomb, the reduced lining function (13) is changed 
by the insertion of the influence of the friction angle on it:

(28)

d) The Equation (28) changes the Equation (7) for as (d0') 
as follows:

(29) 

e) Calculate the parameters Kp and H for Coulomb:

(30)

(31)
 

f) Calculate the convergence U∞ and at the tunnel face Uf 
from Equation (21), as follows:

(32)

g) The solution of the System (8) gives the convergence 
and stress at equilibrium:

(33)

(34)

(35)

4.4 Viscoplastic rockmass

The NIM for viscoplastic rockmasses was developed as the 
same way as the elastic and plastic rockmasses, so the 
solution is given by getting a transformation equation from 
unsupported to supported tunnel. The reduced velocity of 
excavation V* is the new parameter for viscoplasticity and 
it is written as:

(36)

Where:
η: viscosity constant.
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The transformation function obtained from the unsupported 
tunnel is changed and it is given as follows:

(37)

The parameters A and B in Equation (37) are:

(38)

(39)

 
 

(40)

However, for the supported tunnel, as it was developed for 
the elastoplastic rockmasses, the relationship between the 
unsupported and supported equation is given as:

(41)

(42)

a) The calculation of the lining function α is different from 
the ones presented before for elastoplastic solution and it 
is as follows:

(43)

(44)

(45)

b) Calculate the convergence at the supported tunnel face 
(Uf), as follow:

(46)

(47)

c) The    gets:

(48)

Since it is a viscoplastic solution, a criterion for the plasticity 

surface is required, the solution shown in the next topics is 
given for Tresca criterion presented before.

4.4.1 Tresca solution

a) The convergence U∞ is:

(49)

b) The solution of the System (8) is:

(50)

(51)

(52)
c) The plastic radius is given by Equation (25).
Figure 8 illustrates the influence of the reduced velocity 
on the convergence profile of the tunnel, showing that the 
faster it gets, the smaller is the convergence. According to 
BERNAUD and ROUSSET [3], when the velocity trends to 
infinity, the solution trends to the elastic convergence, when 
there is no enough time to generate residual strain.

5. Results and validation

The code is developed in MatLab and gives the .gui  
executable. The code has been developed with the equa-
tions of the New Implicit Method shown before, and after-
wards some response charts and solutions are given to 
compare the solution of NIM with GEOMEC91, the finite 
element tool described in Item 4.1.

Figure 8
The influence of the reduced velocity on the 
convergence. (BERNAUD and ROUSSET, 1994 [3])
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5.1 Elastic solution

The first results are shown for elasticity used for instanta-
neous strain pattern, we adopted:

(53)
The solution obtained for the convergence through the Finite Ele-
ment Analysis (Ueq

FE (%)) was taken from the GEOMEC91 solu-
tion introduced by [4]. The errors between the FEM and NIM are 
shown and presented good approximation as shown in Table 1.
Ueq

FE,NIM: solution for the convergence at a far distance from 
d0 through Finite Element Method and NIM method analysis 
respectively.
Figure 9 shows the results obtained through the .gui execut-
able for the second d0' shown in the Table above, showing 
the charts developed automatically by the executable for 
stiffness varying from 0 to 20 000 MPa.

The executable generates three charts which are the solu-
tions for many supporting stiffness, it also generates a .xlsx 
file with the numerical solution for each supporting stiffness, 
the dashed line represents the solution for P∞' = 0.008,  
d0' = 0.67 and Ks' = 72.

5.2 Plastic solution

The results shown in Table 2 concerns the plasticity with a 
Tresca and a Coulomb criterion. The plastic solution is used 
in over consolidated soils which present residual strain.  For 
this analysis, we adopted:

(54)
Peq

FE,NIM: solution for the pressure at a far section from d0^ 
through Finite Element and NIM method analysis respectively.

Table 1
Validity of the method for elastic rockmass

Constitutive 
law P∞' d0' Ks' Ueq

FE (%) Ueq
NIM  (%)

Elasticity

0.008 0 0.72 0.87 0.76 12.64%

0.008 0.67 7.2 0.90 0.93 -3.33%

0.008 1.67 72 1.02 1.11 -8.82%

Figure 9
Solution for an elastic rockmass using .gui MatLab
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The results for Coulomb and Tresca criteria present some 
errors smaller than 12% which is acceptable if compared to 
the results of the Finite Element analysis, indicating that the 
NIM is an adequate method for predicting the convergence 
and stress at equilibrium.

5.3 Viscoplastic solution

The results for viscoplastic cases are using the Tresca cri-
terion as the plasticity surface. Some soils, mainly clays, 
present a creep behavior what increases the strain after 
some time and this behavior is important to assess. The 
results shown here have been compared to the ones given 
by GEOMEC91 as well. The results for many viscoplastic 
examples are given in Table 3.
As it is shown above, the method works well for every type 
of condition. 
Figure 10 shows the results of the executable for a visco-
platic rockmass, the three charts given by the .gui are in 
function of the reduced velocity instead of the lining stiff-
ness as it was for the elastic and plastic solutions shown 
before, the dashed line shows the solution for Ns = 5,  
d0' = 1, V* = 500 and Ks' = 0.72 matching with the solution 
shown is Table 3.

6. Conclusion

A supported tunnel behaves as a three-dimensional struc-
ture for which strain and stress fields of the surrounding 
ground are strongly influenced. This paper develops an 
easy tool executable with MatLab to solve the problem of 
convergence and stress at equilibrium for elastic, elasto-
plastic and elastoviscoplastic tunnels.
It is important to know beforehand some geotechnical char-
acteristics of the rockmass and the loading pattern to select 
the stress-strain criteria correctly. It is known that if the rock-
mass does not present permanent strain after being stressed 
it is going to behave as an elastic model, however the exis-
tence of creep and permanent deformations implies a plastic 
or a viscoplastic trend which give different solutions.
The problem was proved to be slightly different from the one 
solved by the Convergence-Confinement method, since the 
New Implicit Method highlights that the stiffness of the sup-
port is a great player on the convergence U0 (at a distance 
d0 from the tunnel face).
A point to be added is to take the permanent deformation of 
the supporting, for instance the concrete one, since it may 
change the curvature of the confinement curve. 
The accuracy of the new method is satisfactory for a  

Table 2
Validity of the method for plastic rockmass

Constitutive 
law P∞' d0' Ks' Peq

FE Peq
NIM

Tresca

C = 1 MPa
C = 1.33 MPa

0.008
0.008

0.33
1.00

7.2
72

1.48
0.90

1.50
0.85

-1.35%
5.56%

Coulomb

C = 1 MPa
C = 1 MPa

C = 1.33 MPa

0.008
0.008
0.01

0.67
1.67
1.67

0.24
2.4
24

0.76
0.35
0.309

0.75
0.31
0.31

1.32%
11.43%
-0.32%

Table 3
Validity of the method for viscoplastic rockmass

Ns d0' V* Ks' Peq
FE Ueq

FE (%) Peq
NIM Ueq

NIM (%)

2
0.33

1000
0.72 0.86 1.06 0.77 1.11 -10.43% 4.72%

1 36 0.72 0.38 0.79 0.37 10.33% -2.63%

3

0.33 2000 18 1.78 0.39 1.77 0.39 -0.68% 0.00%

1

150
0.24 0.92 2.8 0.92 2.79 0.51% -0.36%

2.4 1.59 2.0 1.74 1.86 9.54% -7.00%

500
0.72 1.49 2.1 1.44 2.15 -3.09% 2.38%

7.2 1.97 1.66 2.19 1.49 11.02% -10.24%

5 1 500 0.72 1.53 1.93 1.60 1.77 4.67% -8.29%



596 IBRACON Structures and Materials Journal • 2018 • vol. 11 • nº 3

Coding the “New Implicit Method” in MatLab for preliminary tunnel design

geotechnical preliminary study, regarding the numerical 
limitations. The average error stays at a maximum of 12%, 
with most of the solutions under 8% when compared to the 
numerical solution. Generally, most of the differences are 
being for the safety, since it is increasing the value of the 
stress at equilibrium which is imposed over the lining.
The results are good for values of Ks' greater than one. 
In addition to that, the results for smaller d0' present bet-
ter convergence than the ones of greater distance of lin-
ing placement. These smaller values represent most of the 
excavated tunnels, such as the value of d0' ≅ 0,16 used in 
Tunnel Paraíso in Sao Paulo (Mafra, 2011, [7]). So, for con-
ditions of Ks' > 1 and d0' < 1, most of the solutions converge 
better to the numerical solution.
The numerical code GEOMEC91 presents an approxima-
tion of actual behavior. However, considering the valida-
tion of GEOMEC91 with clays shown before and that it is 
a realistic tool to preview the behavior of deep tunnels, it 
was used to evaluate the solutions given by the New Implicit 
Method encoded here in MatLab.
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9. APPENDIX I

The most relevant parameters used in this paper are sum-
marized in the following list. The parameters subscripted 
with (L used in EL, νL and so on) are defined regarding the 
lining characteristics. The superscript (' used in Ks',d0' and 
so on) indicates that such parameter is dimensionless.

P∞ Initial geostatic stress as defined in Equation (1);
Ks Stiffness of the lining as defined in Equations (2) and (3);
d0 Distance between the tunnel face and the lining dur-

ing the excavation;
Uo Convergence of the tunnel at distance d0;  

[dimensionless]
Uf Convergence of the tunnel at its face; [dimensionless]
U∞ Convergence of the unsupported tunnel very far 

from the face; [dimensionless]
E Modulus of Young;
RP Plastic radius as Equation (25);
C Cohesion of the rockmass;
ϕ Friction angle;
u Poisson coefficient;
a,b,c Parameters for the plastic solution system as Equa-

tions (23) and (34);
H Parameter on Coulomb Criterion;
as

vp Transformed function of unsupported to supported 
tunnel in viscoplastic field;

R Radius of the excavated tunnel;
NS Parameter used in plasticity that indicates the level 

of plastification as Equations (19) and (27);
Ueq Convergence of the supported tunnel very far from 

the face; [dimensionless]
Peq Pressure of the supported tunnel very far from the face; 
Kp Coefficient of horizontal stresses at rest as Equa-

tion (30);
as Transformed function of unsupported to supported 

tunnel;
V Velocity of excavation;
η Viscosity constant;
V* Reduced velocity;
Peq Pressure at equilibrium;
Rc Parameter on Coulomb Criterion;
α* Average solution which includes the influence of the 

lining strength on the convergence;
A,B Parameters for the viscoplastic solution as Equa-

tions (38) and (39);

C1, C2 Parameters for the viscoplastic average solution as 
Equations (44) and (45).

The other remaining parameters are listed on work pre-
sented before. They are referred as soon as they show up, 
and the list above are with the most recurrent and important 
parameters to take note.


