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Abstract: Structural Health Monitoring (SHM) programs play an essential task in the field of civil engineering, 
especially for assessing safety conditions involving large structures such as viaducts, bridges, stadiums, and tall buildings. 
In fact, some of these structures are monitored 24 hours a day, 7 days a week, to supply dynamic measurements that can 
be used for the identification of structural problems, e.g., presence of cracks, excessive vibration, damage, among others. 
SHM programs may provide automated assessment of structural health by processing vibration data obtained from 
sensors attached to the structure. Frequently, SHM uses wired systems, which are usually expensive due to the necessity 
of continuous maintenance and are not always suitable for sensing remote structures. Conversely, commercial wireless 
systems often demand high implementation costs. Hence, this paper proposes the use of a low-cost wireless sensing 
system based on the single board computer Raspberry Pi, which significantly reduces implementation expenses while 
keeping data’s integrity. The wireless communication is performed in real-time through a local wireless network, 
responsible for sending and receiving vibration data. The proposed system is validated by comparing its results with a 
commercial wired system through a series of controlled experimental applications. The results suggest that the proposed 
system is suitable for civil SHM applications. 

Keywords: structural health monitoring, wireless sensors, low-cost accelerometers. 

Resumo: Os programas de Monitoramento Dinâmico Estrutural (SHM, em inglês) desempenham uma tarefa essencial 
na área da engenharia civil, especialmente para avaliar as condições de segurança que envolvem grandes estruturas, como 
viadutos, pontes, estádios e edifícios altos. De fato, algumas dessas estruturas são monitoradas 24 horas por dia, 7 dias 
por semana, com o objetivo de prover medições dinâmicas que possam ser usadas para a identificação de problemas 
estruturais como, por exemplo, presença de fissuras, vibração excessiva, danos, entre outros. Os programas de SHM 
podem fornecer uma avaliação automatizada da integridade estrutural, processando dados de vibração obtidos de 
sensores conectados à estrutura. Frequentemente, o SHM usa sistemas com fio que geralmente são caros devido à 
necessidade de manutenção contínua e nem sempre são adequados para utilização em estruturas de acesso dificil. Por 
outro lado, os sistemas sem fio comerciais geralmente exigem altos custos de implementação. Portanto, este artigo propõe 
o uso de um sistema de monitoramento sem fio de baixo custo baseado no computador de placa única Raspberry Pi que 
reduz significativamente as despesas de implementação, mantendo a integridade dos dados. A comunicação sem fio é 
realizada em tempo real através de uma rede local sem fio, responsável pelo envio e recebimento de dados de vibração. 
O sistema proposto é validado comparando seus resultados aos de um sistema comercial com fio a partir de uma série de 
aplicações experimentais controladas. Os resultados sugerem que o sistema proposto é adequado para aplicações de SHM 
em estruturas de engenharia civil. 
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1 INTRODUCTION 
The assessment of vibration tests performed on structural systems has great practical importance for Civil 

Engineering. Several works published in the literature show different types of structural instrumentation schemes and 
data acquisition systems. These systems are often used as a tool for dynamic monitoring in structures of significant 
value, such as the Rio-Niterói Bridge [1] in Brazil, the Z24 Bridge [2] in Switzerland and the Millau Bridge [3] in 
France. 

Numerous researches were carried out using long-term monitoring [4]–[6]. In fact, some structures are monitored 
24 hours a day, 7 days a week, to supply dynamic measurements that can be used for the identification of structural 
problems, such as the presence of cracks [7], [8], excessive vibration [9]–[11], damage identification [12]–[15], among 
others. Furthermore, structural dynamic analyses allow performing a quite extensive structural evaluation concerning 
its reliability, vulnerability or even its life cycle [16]. 

Structural Health Monitoring (SHM) systems may provide automated assessments of structural health by processing 
data from sensors attached to the structure. SHM often uses wired systems, which are usually expensive due to the 
necessity of continuous maintenance and are not always suitable for sensing remote structures. Moreover, power and 
wiring constraints imposed by these systems can increase the acquisition costs of such datasets, impose significant setup 
delays, and limit the number and location of sensors due to costs and installation logistics. Thus, wireless sensor 
networks (WSNs) are a possible alternative for structural health monitoring systems, since they enable dense in situ 
sensing and simplify deployment of instrumentation [17], [18]. Nevertheless, wireless sensor networks should be wisely 
designed to contemplate important aspects, such as the connection range, i.e., how far is the sensor placed from the data 
processing unit. For short to mid-range distances, the engineer might opt for Wi-Fi protocols. For long distances, 
however, radio transmissions could be considered. 

Due to their high installation costs, wired sensor networks are generally only feasible for long-term SHM 
applications. The significant cost reductions of using WSNs for SHM would enable their utilization in important public 
and private infrastructure and increase the use of applications such as short-term structural monitoring. Such systems 
could extend the lifespan of numerous structures by enabling earlier damage detection and eliminating the cost of 
routine inspections [19]. 

Table 1 gathers the most important comparative metrics for both wired and wireless sensor networks. 

Table 1. Comparison of wired and wireless sensor networks (adapted from Noel et al. [19]). 

Metric Wired Sensor Networks Wireless Sensor Networks 
Cost Very high, real world examples costing $10,000 to $25, 000 Low, each sensor node costing approximately $500 

Deployment Time Very long, one real world example taking several days Short, same real world example taking a half hour 
Lifespan Long, typically limited by hardware lifespan Short, typically limited by node battery lifespan 

Number of Sensors Typically low due to sensor installation difficulty Typically higher due to ease of sensor installation 
Sensor Synchronicity Very high due to wired connections. Concern due to wireless connection. 

The number of studies seeking the development of new sensors for the acquisition of dynamic data is growing 
continuously. In parallel, one observes the innovation regarding the use of wireless networks, proving better results 
when it comes to decreasing the presence of noise in signals while reducing maintenance costs. Particularly, WSNs 
start being used to facilitate data transmission. Wireless acquisition is advantageous for enabling instrumentation in 
inaccessible places, reducing installation and maintenance costs while expanding its use in situations where large wired 
systems are not feasible. WSNs have been historically powered by batteries and, as a result, the limiting factor in their 
overall lifespan has always been the battery lifetime. However, alternative solutions can be listed, such as the use of 
solar panels and the development of sensors that converted ambient vibrations into electromagnetic energy. 
Sazonov et al. [20] reported a field test in which the self-powered sensors were used on a rural highway. The sensors 
were shown to be self-powering even during periods of low traffic. 

SHM makes use of different kinds of sensors to monitor structures: displacement sensors, strain-gages, and 
accelerometers, to name a few. In this paper, we focus on an accelerometer-based system. Accelerometers measure, as 
the name suggests, accelerations of the surface they are mounted on. From a structural engineering standpoint, 
accelerometers are characterized by several performance parameters: sensitivity, which denotes the smallest measurable 
acceleration and is expressed in g’s (gravitational acceleration); dynamic range, which denotes the range of 
accelerations that the device is capable of measuring and is also expressed in g’s; and noise, which is measured either 
as an RMS (root mean square) value, or is expressed as a function of the frequency of vibration [21]. 
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Varanis et al. [22] proposed the analysis of mechanical vibrations in the time domain and frequency domain using 
the Arduino platform. The work has validated its use for educational purposes, and, in their work, they compared the 
experimental results with those obtained through numerical models using three applications: a cantilever beam, a simply 
supported beam and a fixed ended beam. The accelerometer used was the MPU-6050 and the results were enough for 
educational use considering its accuracy and low cost. 

Abdelgawad and Yelamarthi [23] presented the importance of the Internet of Things concept for Structural Integrity 
Monitoring system based on the connectivity of sensors to the worldwide computer network. To this end, it proposes 
the use of a prototype based on Raspberry Pi 2 for the detection of damage in aluminum plates. The sensor used was 
not an accelerometer, but a pulse sensor to evaluate damage through the pulse-echo method. The proposed model was 
able to differentiate the presence of non-existence damage with 0% error, with 1.03% error in the location of the 
damage, and 8.43% error when measuring the damage. However, results of the proposed prototype were not compared 
to the conventional accelerometer counterpart. 

Afsana et al. [24] proposed a wireless sensor network for detecting cracks in concrete structures. For this, they 
suggested the use of Raspberry Pi 3 Model B along with an unspecified vibration sensor. A relevant feature is the use 
of a GSM modem to perform the remote communication with the user, uploading the data on a web page. The work 
has no test results and is based on the indication of hardware for assembly of a prototype. A couple of works also 
pointed in this direction, such as Shachi and Manjunatha [25] and Chandankhede [26]. 

In this sense, this paper presents a study to explore the potentialities and verify the suitability of low-cost sensors 
as replacements to commercial wired accelerometers in specific testing scenarios. To this end, this paper details the 
design, programming, implementation, and evaluation of a low-cost wireless accelerometer based on a small single-
board computer named Raspberry Pi. This platform significantly reduces implementation costs while keeping data’s 
integrity. The wireless communication is performed in real-time through a local wireless network, responsible for 
sending and receiving data. To get acceleration data, two sensors are used in this work and are compared to evaluate 
the cost-effectiveness of each; these are the MPU-6050 and the MPU-9250. The proposed system is validated by 
comparing its results with a commercial wired system through benchmark experimental applications performed in 
laboratory. 

2 DESIGN AND IMPLEMENTATION OF THE SYSTEM 
In order to design a reliable and robust wireless accelerometer, certain minimum prerequisites are needed to fulfil 

an adequate sensing performance. The most important requirements are: sensor’s autonomy, real-time data acquisition 
and transmission, low cost, and data’s reliability. 

Concerning sensor’s autonomy, the choice of proper physical components plays a pivotal role. Thus, using modules 
with low-power consumption and a platform that supports the use of an external battery and sustainable energy systems 
are essential. 

For a SHM system, the device must be able to receive orders from the remote user and send real-time data acquisition 
according to a given command. That means real-time data acquisition and transmission. Being low cost is the main 
purpose of this work, proposing an inexpensive wireless system. Thus, the physical components should be easy to buy, 
affordable as well as the controlling software should be preferably free. 

Within this study, the synchronization is made using a broadcast command without addressing a specific IP. This 
means that a packet is received by all equipment almost simultaneously. Given the fact that all equipment is connected 
to a local network and care was taken to avoid interference from nearby networks, the latency reached was 1-2ms, 
which is not sufficient to significantly offset the frequency range proposed for the system. 

For large-scaled applications, one could easily use GPS. However, it should be kept in mind that increasing the 
complexity of Wi-Fi networks, it would also increase the communications’ latency. Thus, it would be possible to easily 
use a GPS module that has microsecond accuracy for remote synchronization. Such a procedure is already widely used 
for standalone sensors that require a high level of accuracy. 

Data’s reliability covers several factors such as noise, data loss, sensitivity, frequency range and duration of data 
acquisition. Noise can vary according to the accelerometer’s resolution and to its way of acquiring data. However, it 
can also be influenced by how devices are connected to each other, especially the wiring. Data loss happens especially 
in wireless communication if the wireless accelerometers and the data acquisition module are not well synchronized or 
if there is an incompatibility between the devices. Sensitivity, frequency range and duration must be provided for each 
application so that the accelerometer is arranged to receive values in a frequency band. Thus, sampling frequency and 
time of acquisition are defined according to the sampling Nyquist-Shannon theorem. The proposed wireless system can 
be schematically represented as Figure 1 shows. 
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Figure 1. Wireless system schematics. 

3 HARDWARE 
The physical components are chosen to meet the aforementioned prerequisites. Their specifications should meet 

design specifications and must be compatible with each other. To assemble the wireless system proposed in this work, 
some components are used, including primarily the Raspberry Pi 3 Model B, followed by the sensors MPU-6050 and 
MPU-9050. 

3.1 Raspberry Pi 3 Model B 
Raspberry Pi is known as a single-board computer, being a complete computer built on a single circuit board, with 

microprocessor, memory, input/output (I/O) and other features required for a functional computer. 
Raspberry Pi 3 Model B shown in Figure 2 is based on a Quad Core 1.2GHz Broadcom BCM2837 64bit and 1GB 

RAM. Its connectivity is made by cable with 10/100 Mbit/s Ethernet or wirelessly via BCM43438 wireless LAN and 
Bluetooth Low Energy (BLE) on board. The design of this model does not include non-volatile memory - such as a 
hard drive - but it has an SD card slot for data storage, which is a must for the proposed prototype. 

 
Figure 2. Raspberry Pi 3 

3.2 MPU-6050 
The InvenSense MPU-6050 sensor contains a MEMS accelerometer and a MEMS gyro on a single chip. It is very 

accurate since it contains 16-bit analog-to-digital conversion hardware for each channel. Therefore, it captures the x, y, 
and z directions at the same time. The sensor uses the I2C-bus to interface with Raspberry Pi. MPU-6050 was the first 
MotionTracking device designed for low-power, low-cost, and high-performance requirements for smartphones, 
tablets, and handheld sensors. All this in a device of dimensions 4 mm x 4 mm x 0.9 mm with prices ranging from 
around 6 to 8 US dollars. 

The accelerometer is programmable by the user in several acceleration ranges, being able to be set on ± 2g, ± 4g, ± 8g 
and ± 16g. The MPU-6050 has an input voltage of 6-16V, a low-pass filter between 5-260Hz, and a data output rate between 
4 to 1000 Hz. The prototype developed in this work uses the accelerometer sensor set on frequency range of ± 2g. 
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3.3 MPU-9250 

The InvenSense MPU-9250 sensor is also a sensor containing a MEMS accelerometer and a MEMS gyro on a single 
chip. Its specifications are remarkably similar to the MPU-6050 previously mentioned, but with improvements that can 
be useful in structural monitoring. 

From all improvements, three are highlighted: i) the promise of a 25% reduction in noise; ii) the increase of the 
sampling rate, to 4000 Hz (versus 1000 Hz of the MPU-6050); and iii) the data output rate is between 2.5 to 1000 
Hz. This allows sampling in the 3 axes simultaneously at approximately 1300 Hz, while its predecessor was limited 
to approximately 300 Hz if the 3 axes were acquired at the same time. 

According to the Nyquist-Shannon Theorem, a bandlimited continuous-time signal can be sampled and perfectly 
reconstructed from its samples if the waveform is sampled over twice as fast as its highest frequency component. Thus, 
for the case of the MPU-6050, it would be possible to properly sample a signal containing frequencies up to 150 Hz, 
whereas for the MPU-9250 such value would increase to 1300 Hz. 

For common civil structures, which are the main focus of this paper, both would be appropriate for use. 
However, it is very important to have vibration signals sampled with adequate time and frequency resolutions 
(i.e., more data samples within a time window), since this would allow a better representation of the structure’s 
dynamic behavior, yielding better post-processing of the data (e.g. modal identification, filtering, input to 
damage detection techniques, etc.). 

4 SOFTWARE 

The choice of suitable software to program and control the prototype is extremely important, since one of the most 
important points of the prototype is to efficiently perform the communication between the remote user and the 
accelerometer. In addition, considering a low-cost system, preference was given to free distribution and open source 
software. Concerning Raspberry Pi, it is still crucial to carefully choose the operating system, which will be decisive 
for the suitable functioning of the equipment according to the needs of the sensing system. 

4.1 Raspbian Lite 

Raspbian [27] is a free operating system based on Debian and optimized for Raspberry Pi hardware. The operating 
system is composed of a set of basic programs and utilities that allow the initialization and basic use of the device. Its 
reputation revolves around being a high-quality, stable, and scalable operating system. Being scalable indicates the 
ability of the system to increase its performance according to the increase of resources, for example, more powerful 
hardware. 

Because Raspbian is an adaptation of Debian, there is a wide range of bibliography and documentation, as both 
have been extensively explored by users of various applications. The Raspbian operating system itself is offered through 
a graphical interface. The use of the graphical interface ends up generating a computational cost that does not generate 
return to the remote sensing system. Thus, it is interesting that the equipment has as priority only the acquisition and 
processing of the acceleration data. 

From this comes the Raspbian Lite operating system, being a variation of the Raspbian system with the same 
functionalities, but without the graphical interface. All the configuration of the device, as well as its use and monitoring, 
is performed through the system terminal from command lines. With this, the prototype processor is relieved of graphic 
processing and can be used exclusively on its function as a sensor. 

4.2 Putty 

Putty [28] is an SSH communication client originally developed by Simon Tatham, an open source program 
that is currently developed and enhanced by a group of volunteers. Its utility is to be able to remotely access the 
terminal of any Raspberry Pi that is connected in the same Wi-Fi network as the user. That is, the user can 
reprogram any system sensor remotely, having access to the terminal of the coordinator of the accelerometer, in 
this case, the Raspberry Pi. 

SSH is an acronym for Secure Shell which is a cryptographic network tool used in insecure networks to operate 
safely without data interception. The main use of this tool is the remote access of computers in a network, having access 
to their terminal. 
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4.3 WinSCP 
WinSCP [29] is a software that is designed to be a free solution for file transfers using the FTP protocol and its 

variants, being a free award-winning software for file management. In the wireless sensing system, the accelerometers 
work remotely. This means that the computer does not have to be connected to the system during the test. Once 
automated, the system will run until the user asks to stop or set an end-of-trial parameter. 

During the test, the accelerometers can instantly send their readings or save the dataset to their flash memory. Thus, 
WinSCP arises to enable the process of transferring files safely between the remote sensor and the user. 

FTP is an acronym for File Transfer Protocol which is a standard network protocol used to transfer digital files 
between client and server on a computer network. This protocol is not considered secure purely. Thus, the variation 
used in this work is SFTP, which is the FTP protocol with SSH authentication explained previously. 

To connect to the sensors and to recover the acceleration data, it suffices that the user is connected to the same Wi-Fi network 
and knows the IP address of the sensor. It is also possible to set a password authentication before full accessing Raspberry Pi. 

5 EXPERIMENTAL APPLICATIONS 
The effectiveness and robustness of the proposed wireless acquisition system is assessed through a series of 

experimental applications. The methodology relies on attaching three different accelerometers to two excitation 
modules. The first accelerometer is the CCLD 4507B, a commercial accelerometer with calibration certificate 
connected to a QuantumX MX1601B acquisition system; this setup represents a traditional wired instrumentation and 
is used as baseline for comparison. This assembly costs around 3000 US dollars. 

The second accelerometer is the MPU-6050 connected to a Raspberry Pi 3 Model B, being a basic proposal of 
prototype using Raspberry Pi. The third accelerometer is the MPU-9250 connected to a Raspberry Pi 3 Model B, being 
a suggestion of improvement of the MPU-6050. Both assemblies cost around 30 US dollars. 

The communication of the first accelerometer is entirely done through cables, whereas for the second and third 
accelerometers, data transmission is performed via local Wi-Fi network established in laboratory without connection 
to the Internet. All tests are performed at a constant acquisition rate of 600Hz, considering the Nyquist-Shannon theorem 
that limits the tested frequencies at 300Hz. Two sets of tests are performed separately using two different shakers. 

The first testing setup consists in an experiment performed using an accelerometer calibrator. This equipment can generate 
a pure sinusoidal wave without harmonics in a frequency and amplitude predefined during its manufacture. The model PCB 
394C06 operates at a frequency of 159.2Hz with a peak acceleration of 1.00g (9.81m/s2). In this case, since there is a constancy 
of frequency and amplitude of acceleration, tests with three simultaneous accelerometers are not mandatory and thus, can be 
performed one after another, consecutively. Figure 3 shows the instrumentation scheme for these tests. 

 
Figure 3. Testing setup (MPU-6050 attached to the calibrator). 

The second testing setup consists in a modulated experiment using a ModalShop 2004E shaker. To modulate frequency and 
amplitude, a Keysight 33210A arbitrary waveform and function generator was used. The generator chosen is digital to offer 
greater control and stability to the system. In this process, the acceleration data are registered simultaneously for all three 
accelerometers and then compared. Figure 4 shows the instrumentation scheme for these tests. 
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Figure 4. Testing setup (three accelerometers attached to the shaker). 

5.1 Prototype Implementation 
The process starts with the setup of a local Wi-Fi network, choosing the best channel to avoid interference during 

wireless communication. 
Then, Raspbian Lite operating system is installed in the Raspberry PI module, setting the configuration for automatic 

connection to the local network with access password and the enabling of the SSH and I2C interfaces. Thus, tools such 
as I2C Tools and Python SMBUS are installed, followed by the algorithm that controls the data acquisition process, 
e.g. sampling rate, beginning of test, end of test, method of internal storage, data transferring and so on. 

In this methodology, the start parameter of each experimental test is a command sent by a computer to all the 
equipment connected to the same network. After receiving this command, all prototypes start registering the readings 
at 600 Hz, with the end of the test being its duration (set to 90 seconds). Data is stored in the memory card in txt format. 

Acquired data can be internally post-processed by the prototype using the Raspberry Pi’s processing capability. 
However, this work is mainly interested in analyzing the data without any internal treatment. Thus, the txt files are 
stored until the user remotely accesses them and downloads them. Files are identified by their start acquisition date and 
time, with an accuracy of seconds. Figure 5 schematizes the entire instrumentation process. 

 
Figure 5. Flowchart of the prototype’s implementation 
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5.2 Zero-G output tests 
The zero-g output tests were performed comparing the response of the three accelerometers placed on a flat surface 

at rest without any vibration, as a way of assessing internal noise. Figure 6 depicts a part of such tests. 

 
Figure 6. Comparison of the responses registered by the accelerometers at rest. 

These results represent a limitation of the proposed system concerning vibration tests that generally occur under 
very low acceleration amplitudes (ambient excitation). However, this drawback is circumvented in frequency domain 
analyses, where the low cost sensors present very good results compared to the commercial accelerometer (further 
discussion is provided in section 5.3). 

To better compare the influence of internal noise of each accelerometer, a statistical analysis is now proposed. When 
analyzing the noise range of the three accelerometers, 5% of the readings that are too far away from the mean values – 
outliers – are removed to avoid measurements that do not represent the usual behavior of the accelerometers. Thus, the 
95% of the retained readings represent a range of noise that the accelerometer shows without external vibration. These 
acceleration ranges are shown in Table 2. 

Table 2. Comparison of noise bands. 

 Zero-G output (g) 
Negative peak Positive peak Average range 

4507B -0,0014 0,0013 ±0,00135 
MPU-6050 -0,0105 0,0100 ±0,01025 
MPU-9250 -0,0095 0,0095 ±0,00950 

According to Table 2, the noise band for the MPU-6050 is 759% larger than the 4507B’s counterpart, while the 
MPU-9250 is 704% larger. Thus, there is a noise reduction of 7.3% from the MPU-9250 to its predecessor. 

Even though the percentage differences are substantial, the absolute differences may be insignificant depending on 
the desired application for the sensors. If the application requires a sensitivity of 0.001g, the commercial accelerometer 
would be the most recommended. On the other hand, applications that allow an uncertainty of 0.01g in the 
measurements, both MPU-6050 and MPU-9250 could meet the requirements of resting noise at a much lower cost. 

The noise at rest does not actually represent the total existing reading error when the structure is in acceleration, but 
rather from which minimum acceleration of the structure it is possible to differentiate what is real structural acceleration 
to what is resting noise. 

5.3 Frequency domain analyses 
In the frequency domain, the interest is in determining the precision and accuracy of the results obtained by the 

prototypes when compared to the commercial accelerometer. 
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To this end, the first analysis is performed using the universal calibrator. This equipment guarantees an excitation 
frequency equal to 159,2 Hz. The second analysis utilizes the ModalShop 2004E shaker of modulated frequency and 
amplitude. 

Figure 7 shows the frequency responses of the three accelerometers using the universal calibrator. For all cases, the 
natural frequency is exactly identified at 159.2 Hz. The difference in the peak values in the y axis reflects the 
divergences in the time domain, which will be discussed in the next section. Other identified frequencies indicated by 
the arrows were found only by the MPU-6050 and MPU-9250, with amplitudes proportional to the noise detected in 
the signals. Such spurious frequencies are not representative, given the discrepancy of their amplitudes in relation to 
main frequencies. 

 
Figure 7. Responses in the frequency domain using the universal calibrator at 159,2 Hz/1,0g. 

Figure 8 shows the results in the frequency domain for the tests carried out at 2.5Hz / 0,02g. This represents the 
‘worst’ scenario for the prototypes since it has the lowest signal-to-noise ratio. For this case, all frequencies identified 
by the 4507B were also detected by the other two low cost accelerometers. It is interesting to note the tendency to find 
multiple frequencies from 2.5 Hz to the 95 Hz frequency, except for a few that were not detected by any of the three 
accelerometers. 

 
Figure 8. Responses in the frequency domain using the modulated shaker at 2,5 Hz / 0,02g. 

For the frequency of 20 Hz, the most unfavorable situation is the acceleration amplitude of 0.2 g (see Figure 9). 
Again, the prototypes presented very satisfactory results. 
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Figure 9. Responses in the frequency domain using the modulated shaker at 20 Hz/0,2g. 

The accuracy, precision and reliability of the results obtained by the prototypes allow validating their operation in 
the frequency domain within the frequencies and amplitudes tested. 

5.4 Time domain analyses 

The main consequence of high internal noise levels lies mostly in the time domain. Therefore, quantifying the 
prototype’s divergences from the commercial accelerometer is crucial for assessing their potential to accurately 
represent structural vibration. Hence, quantifying such errors allows establishing confidence acceleration intervals for 
the prototypes. While within these confidence intervals, the prototypes can be used in structural diagnostics established 
from temporal data, such as the criterion of maximum acceleration in a structure. 

The first testing setup uses the universal accelerometer calibrator. The acceleration amplitude of 1,0 g without 
harmonic frequencies is guaranteed by certification, being the only test with a pure sinusoidal behavior. Results for the 
three accelerometers are shown in Figure 10. 

 
Figure 10. Responses using the universal calibrator at 159,2 Hz/1,0g. 

By observing Figure 10, both MPU-6050 and MPU-9250 were able to reasonably represent the behavior of the 
vibration in the time domain when compared to the 4507B. Nonetheless, since the sampling rate is 600 Hz and the 
excitation frequency is 159.2 Hz, the acceleration peaks in the readings often do not match the accelerator peaks of the 
calibrator. Table 3 shows the maximum and minimum accelerations found for each accelerometer. 
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Table 3. Absolute acceleration peaks using the calibrator. 

 
Acceleration (g) 

Negative peak Positive peak Average range 

4507B -1,0279 1,0191 ±1,0235 

MPU-6050 -0,9717 0,9600 ±0,9658 

MPU-9250 -0,8671 0,8717 ±0,8694 

The maximum acceleration values are important to realize that the 4507B, which has the lowest noise level, obtained 
a higher acceleration range value based on the maximum readings. Therefore, it is necessary to establish a multiplication 
factor for the prototype accelerometers, just as the 4507B has a calibration constant in its certificate. 

The multiplication factor is evaluated by firstly identifying the positions in the time in which the dominant frequency 
reaches its maximum acceleration and then by extracting its respective acceleration peaks. 

For the universal calibrator, the multiplication factor’s evaluation becomes simpler because the signal has only one frequency. 
In the modulated shaker, however, it is necessary to use a frequency filter to obtain the time location where the maximum 
acceleration for the dominant frequency is, and then return to the raw signal to obtain the acceleration at that instant of time, since 
the frequency filters change the signal amplitude. Next, a filter is created to remove outliers. Thus, 5% of the most distant readings 
from the mean value are removed, i.e. 2.5% of the lowest readings and 2.5% of the highest readings. 

With the average of the maximum values already filtered, all accelerometers are then compared. Note that for each 
set of experiments, new multiplication factors must be evaluated. Tables 4 and 5 show the average values (and 
respective standard-deviations) of the multiplication factors for the tests performed. Tests were repeated five times for 
each combination ‘acceleration band’ x ‘frequency’. 

Table 4. Multiplication Factors for the MPU-6050 (average and standard-deviation values). 

 
Acceleration band 

0,02 g 0,05 g 0,1 g 0,2 g 0,5 g 1 g 1,5 g 

Fr
eq

ue
nc

ies
 

2,5 Hz 0,8991 (0,0179) 0,9427 (0,0049) 1,0021 (0,0107) 1,1077 (0,0291) 1,0925 (0,0029) 1,0738 (0,0028) X 

5 Hz X 0,9149 (0,0074) 0,9519 (0,0096) 0,9791 (0,0083) 1,0800 (0,0070) 1,0509 (0,0102) 1,0119 (0,0175) 

10 Hz X 0,9640 (0,0171) 1,0225 (0,0012) 1,0646 (0,0138) 1,0180 (0,0205) 1,0254 (0,0133) 1,0404 (0,0029) 

20 Hz X X X 1,0846 (0,0106) 1,0771 (0,035) 1,0610 (0,0113) 1,0366 (0,0083) 

49 Hz X X X X 1,0877 (0,0082) 1,0768 (0,0035) 1,0280 (0,0098) 

95 Hz X X X X X 1,1538 (0,0109) 1,1165 (0,0116) 

159,2Hz X X X X X 1,1361 (0,0213) X 

Table 5. Multiplication Factors for the MPU-6050 (average and standard-deviation values). 

 Acceleration band 
0,02 g 0,05 g 0,1 g 0,2 g 0,5 g 1 g 1,5 g 

Fr
eq

ue
nc

ie
s 

2,5 Hz 0,8801 (0,0200) 0,9487 (0,0013) 0,9912 (0,0112) 1,0842 (0,0079) 1,0906 (0,0013) 1,0813 (0,0036) X 
5 Hz X 0,9035 (0,0071) 1,0380 (0,0253) 1,0245 (0,0133) 1,0386 (0,0018) 1,0558 (0,0055) 1,0587 (0,0123) 

10 Hz X 1,0287 (0,0135) 1,0799 (0,0166) 1,0569 (0,0233) 1,0486 (0,0048) 1,0582 (0,0104) 1,0281 (0,0237) 
20 Hz X X X 1,0839 (0,0145) 1,0304 (0,0086) 1,0368 (0,0122) 1,0436 (0,0168) 
49 Hz X X X X 1,0781 (0,0136) 1,0854 (0,0126) 1,0482 (0,0128) 
95 Hz X X X X X 1,2006 (0,0066) 1,1614 (0,0178) 

159,2Hz X X X X X 1,1980 (0,0117) X 

Figure 11 depicts the responses at 2.5 Hz/0.02g (low signal-to-noise ratio) for all accelerometers in the time domain 
after applying the multiplication factors. A general good agreement can be seen among the accelerometers’ outputs. 
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Figure 11. Responses in the time domain using the modulated shaker at 2,5 Hz/0,02g. 

Figure 12 shows the 2.5 Hz/1g test responses with a high signal-to-noise ratio, where it is possible to observe the 
vibration behaviors on a scale where the noise is visually imperceptible for the three accelerometers. 

 
Figure 12. Responses in the time domain using the modulated shaker at 2,5 Hz/1g. 

In summary, from the results obtained, considering a frequency range of 2.5 Hz to 49 Hz, it is safe to stipulate a 
margin of error of 10% between the measurements of the prototypes and the commercial accelerometer. If the frequency 
range is between 2.5 Hz and 159.2 Hz, such a margin increases to 20%. These are estimates for the reading errors of 
the MPU-6050 and MPU-9250 sensors, not including design safety factors, which must be added after considering the 
margin of error of the accelerometers. If the structural applications allow the margin of error presented in this work and 
are within the frequency range stipulated for the allowed error, then it is possible to use the MPU-6050 or MPU-9250. 

Consequently, the main performance loss of the MPU-6050 (and the MPU-9250) happens in the time domain. 
Prototype accelerometers are not intended to achieve high-frequency performance, such as the 4507B that works up to 
6 kHz with a 10% margin of error. In this study, it was possible to verify the reliability of the sensors for frequency 
bands compatible mainly with those found in SHM of civil engineering structures, such as buildings and bridges. 

Finally, it is important to emphasize that the multiplication factors yield values that would best fit the signals’ trend 
and not measurement-to-measurement values, which would be very difficult to achieve and not so useful, since in a 
structural health monitoring system, for example, numerical analyses would treat such peaks as outliers. 
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6 FINAL REMARKS AND CONCLUSIONS 
This paper proposed a low-cost wireless accelerometer for dynamic structural monitoring based on a single-board 

Raspberry Pi computer. The entire planning, coding, execution, and evaluation process was carried out with the 
objective of reducing implementation costs while maintaining data’s integrity. The main idea of this paper was to 
present a raw comparison between low cost and commercial accelerometers and show how close, in terms of 
performance and reliability, the former could get to the latter. 

To assess the prototypes performance, several experimental applications were performed using controlled 
excitations. Firstly, the noise of the sensors at rest were evaluated. Both low-cost sensors presented higher noise values 
compared to the commercial accelerometer. Thus, for applications where readings are in the range of 0.001g, prototypes 
are not indicated. However, for accelerations above 0.01g, the use of the prototypes becomes viable. Moreover, it is 
important to keep in mind that no type of signal processing or conditioning (such as filtering, amplification, attenuation, 
among others) was performed during the acquisition process for both MPUs. If that were the case, such discrepancies 
would be largely reduced. 

When it comes to frequency domain analyses, the prototypes presented remarkably similar performance compared 
to the commercial accelerometer for the tested frequency range between 2.5Hz and 159.2Hz. 

Finally, in the time domain, the prototypes presented their largest differences compared to the commercial 
accelerometer. This happened since the sensors used in the prototypes do not have a calibration constant, such as the 
4507B. However, by evaluating specific multiplication factors, those differences have significantly decreased. 

In summary, the proposed prototypes could represent a potential low-cost replacement of conventional monitoring 
cabled systems or commercial wireless sensors for SHM applications. When it comes to field testing in real large-scale 
structures, it is imperative to carry out preliminary tests to assess suitable multiplication factors - according to frequency 
and acceleration ranges - so that the results will represent the structure’s behavior properly. 

As for further developments, the authors are working on fully wireless sensors using small solar panels as sources 
of energy and the remote synchronization of several sensors. Moreover, a special focus is being given to embedded 
data compression techniques along with filtering procedures. Finally, the proposed prototypes will be tested in real civil 
structures in the near future in applications concerning modal tracking and structural damage identification. 
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