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Abstract: Prestressed composite steel-concrete structures are scarcely used due to a lack of clear standardized 
design guidelines and formulations on the subject. The present research aims to present design methodologies 
for steel-concrete composite beams with external pretension applied via straight tendons. A computer program 
to perform structural analysis of such beams was developed based on two different methodologies: the first 
one is presented in ABNT NBR 8800:2008, in which the guidelines for the design of composite beams with 
compact webs are adjusted to include the effects of the pretension force. The second methodology is extracted 
from international literature and presents a structural design process based on stress distribution on the beam. 
Ninety prestressed and thirty non-prestressed beams were analyzed and designed with the aforementioned 
computer program to evaluate the influence of beam length, degree of symmetry of the steel profile and 
eccentricity of the pretension force on the mechanical resistance of the beams. It was observed that, although 
the prestressing force considerably improved resistance to bending, it introduced high compression stresses 
on the steel profile; hence, the pre-stressing of composite beams is proved efficient only for steel profiles with 
symmetrical cross-sections. 

Keywords: prestressed composite beams. design methodology. external prestressing. computer program. 

Resumo: A protensão em estruturas mistas de aço e concreto é pouco utilizada pela falta de normas e 
formulações claras sobre o assunto. Esse trabalho visa apresentar metodologias de análise e dimensionamento 
de vigas biapoiadas mistas de aço e concreto com protensão externa e cabo de traçado reto (pré-tração). Um 
programa computacional que efetua a análise e o dimensionamento dessas vigas foi elaborado com base em 
duas metodologias distintas: a da ABNT NBR 8800:2008, de vigas mistas compactas, ajustada para incluir os 
efeitos da força de protensão e uma segunda, extraída da literatura internacional, em que o dimensionamento 
é feito por meio da verificação das tensões atuantes. Noventa vigas mistas protendidas e trinta sem protensão 
foram calculadas por meio do programa computacional desenvolvido para avaliar a influência do 
comprimento do vão, do grau de monossimetria da seção transversal do perfil de aço e da excentricidade da 
força de protensão na capacidade resistente das vigas. Observou-se que embora a protensão gere uma melhora 
considerável no comportamento à flexão, a força de protensão introduz altas tensões de compressão no perfil 
de aço, por isso a eficiência da protensão foi comprovada apenas nos casos de vigas mistas com perfil de aço 
duplamente simétrico. 

Palavras-chave: vigas mistas de aço e concreto protendidas. metodologias de dimensionamento. protensão 
externa. programa computacional. 
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1 INTRODUCTION 
External prestressing applied to steel-concrete composite beams results in elements of great structural efficiency, 

able to cover large spans and resist high loads with reduced structural weight. This technique is of interest for structural 
recovery and / or reinforcement of existing structures presenting severe pathologies caused by deterioration due to 
environmental agents or increases in service loads such as, for example, a bridge that experiences an increase in traffic 
or other loads throughout its lifespan. 

Advantages of using external prestressing systems include: the absence of sheaths, which facilitates the building 
process, making construction more agile; possibility of reducing cross-sections, resulting in lighter and more efficient 
structural elements; reduction of prestressing losses due to friction, which may even be neglected when using unbonded 
tendons; external tendons with simpler lines and easier verification after installation; since tendons are external, they 
are easily inspected and can be re-prestressed or even replaced without interrupting the use of the structure. Figure 1 
shows different cross-section types for composite beams with external prestressing tendons. 

 
Figure 1. Possible profiles for external prestressing. Source: Troistky [1]. 

Studies indicate that the application of prestressing to composite steel-concrete structures is recent. Ayyub et al. [2] 
and Troitsky [1] state that in 1959, Szilard [3] suggested methods for the analysis and design of prestressed composite 
steel-concrete beams considering the effects of concrete shrinkage and creep. Hoadley [4], in 1963, investigated the 
behavior of simply supported steel and steel-concrete composite beams, prestressed with high resistance tendons and 
constant eccentricity along the beam. Strass [5], in the following year, developed an experimental study of composite 
steel-concrete beams subjected to positive bending moment. In 1966, Regan [6] analyzed the effects of variations in 
slab thickness, prestressing forces and load types on the behavior of simply supported composite steel-concrete beams. 

Saadatmanesh et al. [7] to [8] published a series of analytical and experimental studies on prestressed composite 
beams in the regions of sagging and hogging bending moments. The authors reported some of the advantages of using 
prestressing in composite beams such as: reductions in the weight of structural steel; increases in the range of the linear 
elastic regime of the structure; increased strength; and improvements in fatigue and fracture behavior. 

Saadatmanesh et al. [9] tested two composite beams, one subjected to positive bending moment and the other to 
negative bending moment. The steel beams were prestressed before concrete casting to prevent cracking of the slab. 
Force versus displacement graphs of the beams were plotted, as well as graphs of force versus strain of the concrete, 
steel beam and prestressing bars. The values measured experimentally correlated well with values predicted by 
Saadatmanesh et al. [7], who used internal force equilibrium equations and strain compatibility. 

Chen and Gu [10] experimentally determined the strength of sagging moment regions in prestressed composite 
steel-concrete beams. In the first stage, the beams were tested without prestressing until the bottom flange of the steel 
beam began yielding, at which point the beams were unloaded. In the second stage, prestressing was applied to the 
composite beams before loading. The methodology adopted made it possible to analyze the behavior of the composite 
beams without prestressing. Additionally, based on the deformation compatibility of the tendons and the beam in the 
anchoring section and by balancing internal forces, the equation of the neutral axis is derived. A simplified expression 
to determine increases of stress on the tendons is developed, according to the method used to evaluate the capacity of 
the prestressed composite beam. 

In Brazil, among studies on the use of external prestressing in composite beams, one can mention Nelsen [11] and 
Linhares [12]. Nelsen [11] presented a systematic approach for the analytical design procedure of simply supported and 
externally prestressed composite steel-concrete I-beams based on requirements from ABNT NBR 8800: 2008 [13], with 
emphasis on ultimate limit states (ULS). The author studied the influence of prestress force levels, eccentricity of the 
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tendons and constructive methodology (pre-tensioning or post-tensioning) on the strength of structural elements, using 
spreadsheets developed with the software MathCAD. 

Linhares [12] carried out a case study of an externally prestressed composite box-girder bridge featuring two 
continuous spans, proceeding to an analytical verification following design criteria from AASHTO-LRFD. An initial 
model consisting of spatial frame bars was developed with the software STRAP for the structural analysis of the system, 
followed by the creation of a more refined finite element model featuring shell elements with the aid of the computer 
program SAP2000, to confront and validate the results of the initial model, especially in terms of stresses and 
displacements. The author concluded that prestressing the composite beam resulted in a small increase in flexural 
strength in the region subjected to positive bending moment, proving to be of little advantage, according to the 
AASHTO design criteria. The calculation of prestress force losses due to friction resulted in a small value, since the 
span only presented two inflection points. 

Recently, Lou et al. [14] developed a FE model to analyze composite steel and concrete beams with external 
prestressing under short and long-term loads, aiming to compare results with composite steel and concrete beams 
without prestressing. The effect of geometric non-linearity was added by considering the flexural and axial interaction 
in the finite element formulation, updating the eccentricities of the tendons in the numerical procedure. Results 
confirmed that prestressing composite beams considerably improved their behavior under short loads. However, there 
was no noticeable difference on the response to time-dependent effects. 

Liban and Tayşi [15], on the other hand, performed a numerical analysis of a simply supported pre-tensioned 
composite beam with overhangs, in order to observe the behavior of regions subjected to positive and negative bending 
moments, and also assess the influence of tendon position on the behavior of the structure. Results show that it is more 
beneficial for the structure to place the straight tendon near the top flange of the profile, thus obtaining an ultimate load 
approximately 22% larger than if the straight tendon was positioned near the bottom flange of the profile. 

On this research, a computer program was developed using Microsoft Office Excel [16] with an interface in Visual 
Basic language, in the Microsoft Visual Basic Express environment [17]. The program performs the analysis and design 
of simply supported composite steel and concrete beams with external prestressing and straight tendons (pre-tension), 
checking safety conditions for ultimate limit states and the serviceability limit state (SLS) of excessive deflection. 

1.1 Theoretical formulation 
The Brazilian standard NBR 8800: 2008 [13] addresses the design of composite steel and concrete beams without 

prestressing. Thus, for this research, the design equations were adjusted to include the effects of prestressing forces. 
This force is estimated according to Nunziata [18], considering that the maximum compressive stress in the central 
section of the steel profile at the time of prestressing cannot exceed the design yield strength of steel, according to 
Equation 1. 
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It is worth mentioning that at first, since the element is subjected to pre-tensioning with prestressing occurring 
before the application of the construction loads, the steel beam must resist all the stresses introduced by prestressing. 
As such, the formulation of Equation 1 uses the properties of the steel profile. Isolation of the prestressing force P 
results in Equation 2: 
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Where: P  is the prestressing force, ydf  is the design yield strength of the steel of the profile, gM  is the maximum 
bending moment caused by the weight of the profile, aW  is the elastic section modulus of the steel profile, _p ae  is the 
eccentricity of the prestressing tendon in relation to the center of gravity of the steel cross-section, aA  is the cross-
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sectional area of the steel profile, pγ  is a safety factor applied to the prestressing force and nβ  is the amplification factor 
of the prestressing force, introduced to compensate for losses in prestress force, taken as 1.1. 

Equation 2 was adjusted to fit the flexo-compression interaction curve of NBR 8800: 2008 [13]. Assuming that the 
design axial force is greater than 20% of the design resistance to axial force, Equation 3, the prestressing force value is 
obtained according to Equation 5. Furthermore, the term related to the bending moment due to the weight of the steel 
beam cannot be considered when the tendon layout is straight, since the effects favoring structural safety do not occur 
at the supported cross-sections in this case. 
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where RdM  is the design resistance to bending moment of the steel beam, pγ  is the load factor of prestressing force, 

RdN  is the design resistance to axial force of the steel beam and _p ae  is the eccentricity of the tendon in relation to the 
centroid of the beam cross-section. Remaining variables are defined according to Equation 2. 

With the application of the gravitational loads of construction, an increase in the value of the initial prestressing 
force is assumed, which varies according to the configuration of the prestressing tendon and the distribution of the load. 
This increase in the value of the initial prestressing force, called force increment, can be calculated in several ways, 
such as: with the application of the principle of virtual work (Troitsky [1]); deformation increment method or finite 
element method. If a straight tendon is considered, the expressions to determine the increase in prestressing force ∆P 
are Equation 6 for uniformly distributed load q and Equation 7 for two symmetrically placed concentrated loads F  of 
same magnitude, at a distance a  from supports. 
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where aE  is the modulus of elasticity of the steel profile, pE  is the modulus of elasticity of the prestressing tendon, L  
is the length of said tendon, equal to the length of the beam, trI  is the moment of inertia of the composite section, pA  
is the area of active reinforcing steel, trA  is the area of the transformed composite section, _p tre  is the eccentricity of 
the prestressing tendon in relation to the centroid of the composite section and q  is the uniformly distributed load. 
Remaining variables are defined according to Equation 5. 

1.2 Simplifying assumptions 
The present study was limited to the verification of simply supported composite steel and concrete beams with 

external prestressing (pre-tension) in regions of positive moment. The steel section and the prestressed composite 
section were designed with procedures defined in the standards: ABNT NBR 8800: 2008 [13], ABNT NBR 6118: 2014 
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[19], ABNT NBR 7482: 2008 [20] and ABNT NBR 7483: 2008 [21]. Some premises that simplify the analysis and 
limit the scope of the study were adopted, namely: 
• Compact steel section, that is, local flange or web buckling is not expected, meaning that aQ  = sQ  = Q  = 1; 
• Complete interaction between steel and concrete materials, guaranteed by the proper design of stud bold shear 

connectors; 
• Unshored construction; 
• Solid reinforced-concrete slab; 
• Tensile strength of concrete is neglected; 
• Straight line tendon; 
• Verification is limited to the mid-span section, where the largest bending moment is expected; 
• Shear force is resisted only by the steel profile. 

2 PRESENTATION OF THE PROGRAM 
The program verifies the ultimate resistance to bending of the prestressed composite beam according to the 

methodology adopted by ABNT NBR 8800: 2008 [13] but with the modifications proposed in item 1.1 of this paper. 
Doubly and monosymmetric steel profiles are accepted by the program. There is also the option of using the procedure 
proposed by Nunziata [18], which checks the stresses on steel and concrete. 

Design routines were developed in the form of flowcharts to systematize the entire script and assist in the elaboration 
of the program. The routines illustrate the procedures performed, clarifying the sequence of calculations, indicating the 
design equations used and the basic commands needed such as decision and data selection. In total, 11 routines were 
developed. Routine 1 calculates the position of the elastic neutral axis, ENA, and the moment of inertia of the 
homogenized composite section. 

Routines 2 and 3 calculate the design resistance to compression and the design resistance to bending moment of the 
steel profile, respectively. Routines 4 and 5 are intended, respectively, for calculating the prestressing force and its 
increase. Routine 6 verifies the combined bending and axial stresses of the steel profile. 

Routine 7 calculates the position of the plastic neutral axis, PNA, measured from the top of the slab, symbolized by 
the letter a when it passes through the slab and by yLNP when it crosses the steel profile. This routine also provides an 
expression for the ultimate bending moment of the composite section. 

Routine 8 calculates the ultimate shear force, routine 9 determines the midspan deflection of the prestressed 
composite section and in routine 10, the calculation of stresses on steel and concrete is presented. Finally, routine 11 
includes the calculation of the number of shear connectors needed for full interaction. The complete flowcharts for 
routines 1 to 11 are presented in Ribeiro [22]. 

The logic used in the program, enumerated below, performs the design in three stages of the lifespan of the structure: 
phase 1, during construction, when the steel profile resists the construction loads and the prestressing force; phase 2, 
when composite behavior is developed and the composite beam supports immediate loads such as live loads attributed 
to occupation and finally phase 3, when long-term effects are considered. Table 1 shows the loads considered in the 
structural analysis and Table 2 shows the load factors according to ABNT NBR 8800: 2008 [13] for construction load 
combination (before curing) and for normal load combination (after curing). Applied loads are calculated using 
construction combinations in phase 1 and normal combinations in phases 2 and 3. 

Table 1. Load considered in structural analysis 

(1) 1g  – Weight of the steel beam 

(2) P  – Prestressing force on steel tendons 

(3) 3g  – Weight of the concrete slab 

(4) 4P∆  - Increment of prestressing force due to the weight of the concrete slab 

(5) 5g  – Serviceability dead load 

(6) 6q  – Serviceability live load 

(7) 7P∆  - - Increment of prestressing force due to serviceability dead load 

(8) 8P∆  - - Increment of prestressing force due to serviceability live load 

(9) 9P  – Concrete slab shrinkage 
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Table 2. Loads safety fator ( γ ) 

Loads Before Concrete Casting After Concrete Casting 

Weight of the steel beam ( 1g ) '
g1γ  = 1.15 g1γ  = 1.25 

Prestressing force on steel tendons ( P ) '
g2γ  = 1.20 g2γ  = 1.20 

Weight of the concrete slab ( 3g ) '
g3γ  = 1.25 g3γ  = 1.35 

Serviceability dead load ( 5g ) - g5γ  = 1.35 

Serviceability live load ( 6q ) - g6γ  = 1.50 

1) Data input, calculation of geometric properties and ultimate forces of the steel profile and calculation of prestressing 
force: 

• Calculation of the geometric properties of the cross-section of the steel profile; 
• Calculation of the PNA of the steel profile section; 
• Calculation of the number of stud bolts; 
• Call Routine 1 - Calculation of the ENA of the homogenized section; 
• Call Routine 2 - Calculation of the design resistance to compression ( RdN ) of the steel profile; 
• Call Routine 3 - Calculation of the design resistance to negative moment ( RdM − ) of the steel profile; 
• Call Routine 4 - Calculation of the initial prestressing force (P); 
2) Design according to NBR 8800:2008 [13]: 

2.1) Verification in phase 1 – Steel beam 
• Loads: (1) + (2) + (3) + (4); 
• Call Routine 5 - Calculation of increases in prestressing force (∆P_4) due to the weight of the concrete slab and 

verification of maximum stress on the tendons after force increments; 
• Calculation of the design compression force ( _Sd 1N ) of phase 1: 

_Sd 1 g2 n g2 n 4N P Pγ β γ β= ⋅ ⋅ + ⋅ ∆⋅  (8) 

• Calculation of the design bending moment ( _Sd 1M ) of phase 1: 

_ _ _     
' 2 ' 2
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• Call routine 3 – Calculation of the resistance to bending of the steel profile, _Rd 1M , resistance to negative ( RdM − ) 

or positive ( RdM + ) bending moment, depending on the value of _Sd 1M ; 
• Call routine 6 – Flexo-compression design: 

_ _

_ _
                  Sd 1 Sd 1
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N 8 M
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+ ≤
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• Calculation of the design shear force ( _Sd 1V ) of phase 1: 

_
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• Call routine 8 – Calculation of the design resistance to shear force ( RdV ) of the steel profile; 

• Verification _Sd 1 RdV V≤ ; 
2.2) Verification in phase 2 – Steel-concrete composite beam, t=0 and a

c

En
E

=  

• Loads: (1) + (2) + (3) + (4) + (5) + (6) + (7) + (8); 
• Call routine 5 – Calculation of increments in prestressing force due to applied loads. Calculates increments due to 

dead loads ( 7P∆ ) and live loads ( 8P∆ ) and verifies maximum stresses on the tendons after the increments; 
• Calculation of the design axial force ( _Sd 2N ) in phase 2: 

_ _Sd 2 Sd 1 g2 n 7 g2 n 8N N P Pγ β γ β= + ⋅ ⋅ ∆ + + ⋅ ⋅ ∆  (12) 

• Calculation of the design bending moment ( _Sd 2M ) of phase 2: 

_ _ _ _

2 2
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• Call routine 7 – Calculation of PNA and design resistance to bending moment ( _Rd 2M ) of the prestressed 
composite section; 

• Call routine 6 – Flexo-Compression verification: 

_

_

2Sd Sd 2
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N 9 M
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+ ≤
⋅

 (14) 

For simplification, it is assumed that only the steel profile resists axial forces. 
• Calculation of the design shear force ( _Sd 2V ) of phase 2: 

_ _
g5 5 v g6 6 v

Sd 2 Sd 1
g L q L

V V
2 2

γ γ⋅ ⋅ ⋅ ⋅
= + +  (15) 

• Verifies if _Sd 2 RdV V≤ ; 
2.3) Verification in phase 03 – Steel-concrete composite beam, t=∞ and a

c

3En
E

=  

• Loads: (1) + (2) + (3) + (4) + (5) + (6) + (7) + (8) + (9); 
• Call routine 1 – Calculation of the ENA of the homogenized section for t=∞ and a

c

3En
E

= ; 

• Calculation of forces due to concrete shrinkage (P9): 

,
c

9 g3 cs c
EP A
3 ∞γ ε= ⋅ ⋅ ⋅  (16) 

,cs ∞ε  is the strain caused by shrinkage. 
• Calculation of the design axial force ( _Sd 3N ) of phase 3: 

_ _Sd 3 Sd 2 9N N  P= +  (17) 
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• Calculation of the design bending moment ( _Sd 3M ) of phase 3: 

_ _
' c

Sd 3 Sd 2 g3 9 tr
tM M   P y
2

γ  = + ⋅ ⋅ − 
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 (18) 

• Flexo-compression verification: 

_

_

Sd 3Sd 3
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N 9 M

⋅
+ ≤

⋅
 (19) 

For simplification, it is assumed that only the steel profile resists axial forces. Also, the design resistance to bending 
of phase 3 is the same as in phase 2. 
3) Call routine 9 – Calculation of deflection. 
4) Design according to Nunziata [18]: 
• Calls design routine 10 by verification of stresses. 

3 EXPERIMENTAL VALIDATION 
To validate the changes proposed to the formulations of ABNT NBR 8800: 2008 [13], two experiments on pre-

tensioned prestressed composite beams were used, one tested by Ayyub et al. [2] and the other tested by Chen and Gu 
[10]. 

3.1 Experiment performed by Ayyub et al. [2] 
The prestressed composite beam tested by Ayyub et al. [2], named Specimen A, Figure 2, consists of a simply 

supported element with a span length of 4.575 m, subjected to concentrated loads of equal magnitude applied at two 
symmetrical points in relation to midspan at a distance of 0.915 m from supports. The cross-section features a steel 
profile W360 x 45 with yf  equal to 345 MPa, a concrete slab with a thickness of 76mm and cjf  equal to 33.4 MPa 
defined by compressive tests of three specimens cured for 90 days. The slab presents a width of 915mm. Prestressing 
was performed via steel tendons of grade 150 DYWIDAG Threadbars of 16mm, with pykf of 910 MPa and ptkf  of 1100 
MPa, at a distance of 57mm from the lower surface of the bottom flange of the steel profile, and a prestressing force of 
98kN applied to each tendon. 

 
Figure 2. Test setup of the 4.575 m span prestressed steel-concrete composite beam. Source: Ayyub et al. [2]. 
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Since prestressing was carried out before concreting the slab, increments in prestressing force were determined 
using the weight of fresh concrete and the experimental load, totaling an increase of 74.92 kN at the end of the test. 
Thus, the prestressing force at the moment of collapse is equal to 270.92 kN. 

The ultimate limit state observed for the beam studied was the crushing of the concrete slab, which occurred for a 
bending moment of 586.51 kN.m. Calculating the characteristic resistance to bending moment according to the 
methodology proposed herein resulted in a value of 515.7 kN.m, 12.07% less than the ultimate load observed 
experimentally, showing that the proposed methodology favors structural safety. 

3.2 Experiment performed by Chen and Gu [10] 

The prestressed composite beam tested by Chen and Gu [10], named BS2, Figure 3, consists of a simply supported 
element with a span of 5 m, subjected to concentrated loads of equal magnitude applied at two symmetrical points in 
relation to midspan at a distance of 1.4 m from supports. The cross-section is composed using steel plates of 120 x 10 
mm for the flanges and 250 x 6 mm for the web, with yf  equal to 367 MPa, a concrete slab with a thickness of 90 mm 
and cjf  equal to 30 MPa defined by compressive tests of three specimens cured for 30 days. The slab presents a width 
of 1100 mm. Prestressing was introduced by two steel tendons with a cross-sectional area of 137.4 mm2, with pykf of 
1680 MPa and ptkf  of 1860 MPa, at a distance of 30 mm from the lower surface of the bottom flange of the steel 
profile, and a prestressing force of 112.6 kN applied to each tendon. 

 
Figure 3. Test setup of the 5 m span prestressed steel-concrete composite beam. Source: Chen and Gu [10]. 

In this test, prestressing was carried out after concreting the slab, therefore only the test load was considered in the 
calculation of the prestressing force, totaling an increase of 72.1 kN at the end of the test, thus obtaining a prestressing 
force at collapse of 297.3 kN. 

The ultimate limit state of the beam studied was the crushing of the concrete slab, which occurred for a bending 
moment of 373.2 kN.m. The characteristic resistance to bending moment, according to the methodology proposed 
herein, was 351.67 kN.m, therefore 5.77% less than the ultimate load verified experimentally, showing that the 
proposed methodology once again favors structural safety. 

4 PARAMETRIC STUDY 

4.1 Parametrization models 

In the parametrized models, the composite beams analyzed feature double or monosymmetric steel profiles with 
smaller top flanges. The profiles are made of structural steel ASTM A572 gr. 50 ( yf  equal to 345 MPa and uf  equal to 
450 MPa). According to ABNT NBR 8800:2008 [13], monosymmetric cross-sections must meet the criteria given in 
Equations 20 and 21. 
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where: ycI  is the moment of inertia of the compressed flange in relation to the axis that crosses the web at mid-thickness; 

ytI  is the moment of inertia of the tensioned flange in relation to the axis that crosses the web at mid-thickness; fsA  is 
the area of the upper flange, wA  is the area of the web and fiA  is the area of the bottom flange of the steel profile. In this 
study, the inverse of the coefficient yα  is called degree of monosymmetry, mα , which may vary from 1 (for doubly 
symmetric sections) to a maximum value of 9. 
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To assess the influence of the degree of monosymmetry, profiles with the same cross-section area, equal to 178.00 
cm2, were selected. The weight of the steel I-beams is chosen as the same for all models on purpose, to allow an analysis 
of which geometric configuration provides the most resistant prestressed composite beam with the same cost. The 
height of the profiles was fixed at 550 mm, the thickness of the web at 12.50 mm and the width of the lower flange at 
300 mm. The other parameters of the profiles were chosen to meet the specified steel area and provide variations in the 
degree of monosymetry ( )mα . 

Values of beam length include 9, 10.5, 12, 13.5, 15 and 17 meters, consequently, the ratios between beam length 
and profile height studied are equal to approximately 16, 19, 22, 25, 27 and 31. The maximum free-span is 3.0 meters, 
equal to the distance between the beams perpendicular to the element under analysis. The distance of the beams adjacent 
to the beam studied is 5.0 meters. 

Three eccentricity values ( )pe  630, 730 and 780 mm, were adopted for the beams as shown in Figure 4. For all 

models, the tendon path, formed by steel tendons CP-190 RB, is straight throughout the entire length of the beam. 

 
Figure 4. Profile scheme. 

In total, one hundred and twenty composite steel and concrete beams were designed by the program, 90 of which 
are prestressed composite beams with eccentricity values of 630, 730 or 780mm. The remaining 30 models do not 
feature prestressing tendons. The models were named according to the presence or absence of prestressing using the 
acronyms VMP and VM, respectively. The prefixes VMP and VM are followed by the eccentricity values of 
prestressing tendons in relation to the top of the concrete slab, in turn followed by span length and the model number. 
Thus, the VMP 730x9x1 model indicates a prestressed composite beam with tendons located at 730mm from the top of 
the concrete slab, beam span equal to 9m and model number 1. 
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4.2 Methodology 
Ultimate limit state verifications related to bending moment and shear force were performed along with checks of 

the serviceability limit state of excessive deformation. The verification of the interaction between axial and flexural 
forces was also performed. Tables 3 and 4 present the necessary checks for each of the aforementioned phases, 
considering the pre-tension method, that is, tendons are prestressed before casting the concrete slab. 

Table 3. Design verifications of prestressed steel-concrete composite beam – ULS. 

Verification phase Loads U.L.S Verification 

1st Phase: Steel 
Beam 

q1 – Weight of the steel beam - Compression ( )Sd1 Rd1N N≤ ; 

P – Prestressing force on tendons - Bending Moment ( )Sd1 Rd1M M≤ ; 

q3 – Weight of the concrete slab - Shear force ( )Sd1 Rd1V V≤ ; 

ΔP4 - Increment of prestressing force due to 
concrete the weight of the concrete slab - Flexure-compression Interaction 

2nd Phase: 
Prestressed steel-

concrete composite 
beam t = 0 

Including 1st phase loads  

q5 – Serviceability dead load - Compression ( )Sd 2 Rd 2N N≤ ; 

q6 – Serviceability live load - Bending Moment ( )  Sd 2 Rd 2M M≤ ; 

ΔP7 - Increment of prestressing force due to 
serviceability dead load 

- Shear force ( )  Sd 2 Rd 2V V≤ ; 

a

c

En
E

=  ΔP8 - Increment of prestressing force due to 
serviceability live load - Flexure-compression Interaction 

3rd Phase: 
Prestressed steel-

concrete composite 
beam t = ∞ 

Including 1st and 2nd phase loads - Compression ( )Sd 3 Rd 3N N≤ ; 

q9 – Concrete slab shrinkage - Bending Moment ( )Sd 3 Rd 3M M≤ ; 

a

c

3En
E

=   - Flexure-compression Interaction 

Table 4. Verification phases of Prestressed steel-concrete composite beam – SLS. 

Verification phase 1st Fase: Steel Beam 
2nd Fase: Prestressed steel-concrete composite beam 

t = 0 and a

c

En
E

=  t = ∞ and a

c

3En
E

=  

Loads 

q1 – Weight of the steel 
beam 

q6 – Serviceability live 
load 

q5 – Serviceability 
dead load 

P – Prestressing force on 
tendons 

ΔP8 - Increment of prestressing 
force due to serviceability live 

load 

ΔP7 - Increment of prestressing 
force due to serviceability dead 

load 

q3 – Weight of the concrete slab 

  ΔP4 - - Increment of prestressing 
force due to the weight of the 

concrete slab 

Verifications S.L.S 
Immediate deflection: ( )1δ  Short term deflection: ( )2δ  Long term deflection: ( )3δ . 

Total deflection: total 1 2 3
L

350δ δ δ δ= + + ≤  
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To proceed with the analysis of the results, the values of applied and resistant bending moment are presented for 
the cross section at the middle of the beams, for phase 2. This is because these forces refer to the methodology from 
ABNT NBR 8800: 2008 [13] which does not address the effects of creep and shrinkage in ULS analyses, only in the 
calculation of deflection. The design stresses acting on the elements are presented for phase 3 because calculations are 
based on Nunziata [18], which considers the effects of shrinkage and creep in ULS verifications. 

5 RESULT ANALYSIS 

5.1 Influence of the ratio between span length and profile height 
Regarding the flexural strength of composite beams without prestressing (VM), the analysis of the graph in Figure 

5 allows us to observe that, when the L d⁄  ratio goes from 16 to 31, there is an increase in the resistance to bending 
moment of 10.9% for doubly symmetric section and approximately 10.1% for the section with a degree of symmetry 
of 2.07 and approximately 9.0% for sections with a degree of symmetry of 2.83, 3.88 and 5.22. This increase in strength 
is a result of the increase in the effective width of the beam, in turn due to a larger span length. 

In Figure 6, the composite steel and concrete beams without prestressing (VM) and the prestressed (VMP) with L d⁄  
ratio equal to approximately 31 did not meet the design criteria for flexural and axial interaction, since the utilization 
index ( )a2i  was greater than 1. For L d⁄  ratios of 16 to 25, the beams met the design criteria with clearance. As such, for 
the studied load type, it is noted that an L d⁄  ratio equal to 27 would be the most advantageous in economic terms, since 
the utilization index ( )a2i  was the closest to 1. 

Regarding the flexural strength of prestressed beams (VMP), it is observed that the ultimate bending moment 
increases practically linearly as the L d⁄  ratio increases from 16 to 27 for all degrees of monosymetry. It is also observed 
that the beams with monosymmetric sections present the highest resistance to bending moment, reaching an increase 
of 35.6% when the L d⁄  ratio grows from 16 to 27 for the sections with a monosymmetry index of 2.83, 3.88 and 5.22; 
38.12% for the section with a degree of monosymmetry equal to 2.07 and 38.75% for the doubly symmetrical section. 
For values of L d⁄  ratio equal to 27 and larger, the increase in resistance to bending moment is small for both 
monosymmetric sections (about 1%) and for the doubly symmetric section (about 3%). 

 
Figure 5. RdM  and SdM  versus /L d  ratio graphs for ep = 730mm. 

The ratio between the resistance to bending moment of the prestressed composite beams and that of the unstressed 
composite beams, /Rd 2 VMP Rd 2 VMM M  shows that the ultimate bending moment of the prestressed composite beams is 
much higher than that of the composite beams without prestressing tendons; 21% and 55% greater for L d⁄  ratios of 16 
and 31, respectively in the case of doubly symmetrical section; and 21% and 49% higher for the L d⁄  ratio equal to 16 
and 31, respectively, in the case of the section with the highest monosymmetry degree. Larger spans have a higher 

/Rd 2 VMP Rd 2 VMM M  ratio because as the span increases, in addition to the increase in the effective width, the value of the 
prestressing force also increases, which contributes to a significant portion of the ultimate bending moment. 

From Figure 5 it should be noted, as expected, that the bending moment acting on the prestressed composite beams 
is much lower than that of the conventional beams, being 35% and 34% lower for L d⁄  ratios equal to 16 and 31 
respectively for doubly symmetrical sections; and 34% and 29% higher for the L d⁄  ratio equal to 16 and 31 respectively 
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for the section with the highest monosymmetry degree. The bending moment resulting from the application of the 
prestressing force reduces the bending moment acting on the prestressed composite beams. The ratio between the 
bending moment of the composite beams with prestressing and that of the composite beams without prestressing was 
almost constant, around 38%, which shows that prestressing considerably reduces bending effects regardless of span 
length. 

Although prestressing presented considerable benefits, reducing the magnitude of bending moments and increasing 
flexural strength, improvements in beam utilization index ( )a2i  is less evident, as seen in Figure 6, because the 
compression force on the profile due to the prestressing force introduces compression stresses that add to the stresses 
arising from bending. Significant improvements in the utilization index only occur for the doubly symmetrical section, 
for all L d⁄  ratios. For sections with a lower degree of monosymmetry (2.07 and 2.83), the benefits of prestressing are 
only observed in smaller spans. In cross-sections with a higher degree of monosymmetry (3.88 and 5.22), prestressing 
was not advantageous, resulting in a lower utilization rate. 

 
Figure 6. ia2 versus L/d ratio for ep = 730mm. 

If NBR 8800: 2008 [13] included the effects of shrinkage and creep in the calculation of design loads, there would 
be an average increase of approximately 4.1% to 10.7% for L d⁄  ratios of 31 to 16, respectively. The ultimate bending 
moment of phase 3 is the same as that of phase 2. 

5.2 Influence of the degree of monosymmetry 

According to Figure 7, the composite beams without prestressing show an increase in the ultimate bending moment 
( )Rd 2M  as the monosymetry index ( )mα  increases from 1.0 to 2.83 (on average 14.4%). Thereafter the resistance to 
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bending moment is practically constant. For each degree of monosymmetry, there is little difference between the values 
of flexural strength for the spans analyzed, with the beam with the largest span being the most resistant. 

 

Figure 7. RdM  and SdM  versus monosymmetry degree graphs for ep = 730mm. 

It is observed that in the prestressed composite beams the ultimate moment also increases if the degree of 
monosymmetry is increased from 1.0 to 2.83 for all beams. There is an increase of approximately 15.4%, 15.1%, 14.9%, 
14.8%, 13.3 and 10.0% in flexural strength for L d⁄  ratios of 16, 19, 22, 25, 27 and 31, respectively. For monosymmetry 
index values larger than 2.83, the flexural strength is practically constant. For each monosymmetry index ( )mα , there is 
a more noticeable difference between the values of flexural strength of the analyzed spans if compared to beams without 
pre-tension. 

The second graph in Figure 7 illustrates the influence of monosymetry index ( )mα  on the value of the design bending 
moment ( )Sd 2M  for an eccentricity ( )pe  of 730mm. Composite beams without prestressing show no dependence between 
internal bending moment and the monosymmetry index ( )mα . As for the prestressed composite beams, there is a slight 
dependence between the design bending moment and the monosymetry index ( )mα  when the latter varies from 1.0 to 
2.83. There is a small increase of 2.2%, 2.7%, 0.37%, 0.40%, 2.3% and 9.3% in design bending moment for L d⁄  ratios 
equal to 16, 19, 22, 25, 27 and 31, respectively, when the monosymetry index increases from 1.0 to 2.83. This is a result 
of the prestressing force taking the properties of the cross section and the span length into account. For monosymmetry 
index values greater than 2.83, (from 2.83 to 5.22) variations in design load are small. 

As shown in Figure 8, the use of monosymmetric profiles is only interesting from an economic point of view for 
composite beams without prestressing, in which a reduction in utilization rate is observed when the monosymetry 
degree increases from 1.0 to 2.83. 
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Figure 8. ia2 versus monosymmetry degree ( mα ) graph for ep = 730mm. 

5.3 Influence of eccentricity 
Figures 9 to 14 present the influence of eccentricity ( pe ) on the design resistance to bending moment ( )Rd 2M  of the 

prestressed beams for /L d  ratios equal to 16, 19, 22, 25, 27 and 31, respectively. 
Figure 9 indicates that, for an /L d  ratio of 16, there are variations in flexural strength if ( pe ) also varies, 

regardless of the degree of monosymmetry ( )mα  of the beam. Regarding the smallest eccentricity value ( pe  = 
630mm), the resistance to bending moment is reduced by an average of 5.20% when eccentricity increases 100 mm 
( pe  =730 mm) and an average of 6.73% when eccentricity increases 150 mm ( pe  = 780 mm) for all monosymmetry 
degree values ( )mα . 

 
Figure 9. Eccentricity influence - /L d  ratio = 16. 
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The design bending moment is slightly influenced by eccentricity. For the smallest value of eccentricity, ( pe  = 
630mm), the design bending moment increases an average of 1.64% when eccentricity increases 100 mm ( pe  =730 
mm) and 2.41% when eccentricity increases 150 mm ( pe  = 780 mm). 

Figures 10, 11 and 12 show that the L d⁄  ratios equal to 19, 22 and 25 present a behavior similar to that of the models 
with  L d⁄ ratios of 16, regarding variations in flexural strength as a function of eccentricity. For the lowest eccentricity 
value ( pe  = 630mm), the ultimate bending moment decreases by an average of 9.09% (Figure 10), 7.66% (Figure 11) 
and 6.72% (Figure 12) when the eccentricity increases 100 mm ( pe  = 730 mm) and decreases on average 10.92% 
(Figure 10), 9.91% (Figure 11) and 9.39% (Figure 12) when the eccentricity increases 150 mm ( pe  = 780 mm). 

 

Figure 10. Eccentricity influence - /L d  ratio = 19. 

Once again, the internal moment suffers little influence from the eccentricity. In relation to the lower eccentricity 
value ( pe  = 630mm), the design bending moment increases on average 2.37% (Figure 10) and 1.6% (Figure 11) and 
decreases on average 2.0% (Figure 12) when the eccentricity increases by 100 mm ( pe  = 730 mm). When the 
eccentricity increases by 150 mm ( pe  = 780 mm), the design bending moment increases on average 3.1% (Figure 10), 
2.28% (Figure 11) and decreases on average 1.39% (Figure 12). 

In short, for L d⁄  ratios equal to 16, 19, 22 and 25, the eccentricity of 630 mm provides the greatest flexural strength 
for all degrees of monosymmetry and, also, the lowest bending moment in most cases, thus this eccentricity would be 
ideal for designs featuring the aforementioned L d⁄  ratios. 
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Figure 11. Eccentricity influence - /L d  ratio = 22. 

 
Figure 12. Eccentricity influence - /L d  ratio = 25. 

Figures 13 and 14, for L d⁄  ratios equal to 27 and 31, respectively, show a quite different behavior from that observed 
in L d⁄  ratios equal to 16, 19, 22 and 25. There is no significant variation of ultimate bending moment when eccentricity 
value changes. More specifically, for the L d⁄  ratio equal to 27, Figure 13, the ultimate bending moment is reducing on 
average 0.62% when the eccentricity increases by 100 mm ( pe = 730 mm) and 3.07% when the eccentricity increases 
by 150 mm ( pe  = 780 mm). The design moment is reduced with the eccentricity, varying from - 7.89% to -12.37% 
when the eccentricity increases by 100 mm ( pe  = 630 mm to pe  = 730 mm), in similar fashion to when the eccentricity 
increases by 150 mm ( pe  = 630 mm for pe  = 780 mm), showing reductions of about -7.43% to -14.14%. 
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Figure 13. Eccentricity influence - /L d  ratio = 27. 

For the L d⁄  ratio equal to 31, Figure 14, in relation to the lowest eccentricity value ( pe  = 630mm), the design 
resistance to bending moment increases on average 0.27% when the eccentricity increases 100 mm ( pe  = 730 mm) and 
increases by an average of 2.94% when the eccentricity increases by 150 mm ( pe  = 780 mm). The design bending 
moment decreases on average 9.30% when the eccentricity increases by 100 mm ( pe  = 730 mm) and decreases on 
average 5.81% when the eccentricity increases by 150 mm ( pe  = 780 mm). 

 
Figure 14. Eccentricity influence - /L d  ratio = 31. 
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In summary, it is concluded that a more comprehensive analysis is necessary to determine the ideal value of design 
eccentricity for prestressed composite beams, since the flexural behavior, in terms of resistant and applied bending 
moment, differs in relation to eccentricity changes according to the selected /L d  ratio. It is important to note that, in 
the methodology used herein, the variation in the eccentricity of the tendon implies a variation in the value of the initial 
prestressing force, according to the flexo-compression interaction equation (Equation 5). Therefore, an increase in 
eccentricity does not always cause an increase in bending resistance, since the initial prestressing force is reduced to 
meet the conditions given in Equation 5. 

5.4 Analysis of stresses 
The stresses were determined considering the interaction of axial forces and bending moment for phase 3, according 

to the methodology of Nunziata [18]. 
Figure 15 shows that the design stresses on the upper flange of the steel profile are smaller than the design yield 

stress of steel ( ydf = 31.4 kN / cm2) in all models studied, except for the composite beams without prestressing with an 
/L d  ratio equal to 31 and prestressed composite beams with an L d⁄  ratio equal to 31 and eccentricity of 630 mm. The 

composite beams without prestressing present compressive stresses on the upper flange that are considerably larger 
than the values observed for prestressed composite beams. It is also observed that the variation in the eccentricity ( )pe  
of the tendon influences the stress distribution on the upper flange of the steel profile. For this graph, the models with 
eccentricity of 780 mm and doubly symmetrical section presented the lowest stress values. 

 
Figure 15. Graph of design stresses on the top flange of the profile. 

From the graph in Figure 16, regarding the stresses on the bottom flange of the steel profile, it is noted that the 
models of composite beams without prestressing do not meet criteria for the design yield stress of steel, except for the 
models with an L d⁄  ratio equal to 16 and in some models with an L d⁄  ratio of 19. Thus, many of the beams without 
prestressing that do not pass the Nunziata methodology [18] meet the criteria of ABNT NBR 8800: 2008 [13]. This is 
due to the former being more conservative since it considers the beginning of yield at a point on the cross-section as 
the failure criteria, while the criteria of ABNT NBR 8800: 2008 [13] considers the plastic hinge formation as the ULS. 

Still concerning stresses on the lower flange of the steel profile, most of the prestressed composite beams meet the 
criterion for yield stress limits, except for models with an L d⁄  ratio equal to 31. According to the graph presented in 
ABNT NBR 8800: 2008 [13], the models with eccentricity of 680 mm and monosymmetry indexes equal to 2.83; 3.88 
and 5.22 present the smallest stresses. 
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Figure 16. Graph of design stresses on the bottom flange of the profile. 

Figure 17 shows the normal design stress on the top surface of the concrete slab as a function of the L d⁄  ratio. It is 
observed that the design stress on the concrete portion of the models without prestressing is less than that of prestressed 
composite beams. No case exceeded the ultimate stress of . cd0 85 f , equal to 1.51 kN / cm2. Input data used to calculate 
each model is given in Table 3. 

 
Figure 17. Graph of stresses on the top surface of the concrete slab. 
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5.5 Analysis of displacements 
The maximum deflection of the prestressed composite beams and of composite beams without prestressing was 

determined by homogenizing the composite section according to the computer routine from which the displacements 
at midspan are obtained. Figure 18 shows the maximum deflection value of the beams for different /L d  ratios. 

 
Figure 18. Maximum deflection of the beams at midspan. 

It is noted that prestressing has a significant influence on the Serviceability Limit State of excessive deformation 
when analyzing the reduction of the midspan deflection of the prestressed composite beam in relation to the non-
prestressed composite beams, percentage-wise [(dVM - dVMP))/dVM, (%)]. According to Figure 18, for an L d⁄  ratio of 31 
and eccentricity of 630 mm, the midspan deflection of the prestressed composite beam (dVMP = 78.92 mm) is less than 
half the value found for the composite beam without prestressing (dVM = 178.42 mm), with a reduction of 56%. The 
midspan deflection reduction reaches 72% for an L d⁄  ratio of 19 and eccentricity of 630 mm, where the deflection is 
reduced from 27.16 mm to 7.69 mm. 

It is also noted that for L d⁄  ratios smaller than 25, there is no significant change in the midspan deflection of 
prestressed beams when the eccentricity value is changed. For /L d  ratios equal to 27 and 31, however, higher values 
of eccentricity of the prestressing force presented smaller displacements. A deflection reduction percentage of 34% is 
achieved between eccentricity values of 730mm and 630mm and 25% between the eccentricities of 730mm and 780 
mm. 

In summary, the analysis of results allowed an assessment of the benefits of applying external prestressing in 
composite beams for controlling both ULS and SLS, since there was an increase in strength and stiffness of the beams. 

6 CONCLUSION 
The main objective of this research was to study the behavior of composite steel and concrete beams with external 

prestressing using the pre-tensioning technique with straight tendons. A computer program was developed to calculate 
design forces and design cross-sections as regions of positive bending moment of the beams following two design 
methodologies: one based on ABNT NBR 8800: 2008 [13] and the other according to Nunziata [18]. In both 
methodologies, the prestressing strength is estimated according to Nunziata [18]. The program checks safety conditions 
for Ultimate Limit States and the Serviceability Limit State of excessive deformation. 

A parametric study, using the computer program developed, was implemented in 120 composite steel and concrete 
beams of different characteristics, 90 of them with external prestressing and 30 of them without prestressing. The 
influence of the following parameters was evaluated: ratio between the length of the beam and the height of the steel 
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profile; monosymmetry degree of the steel profile and eccentricity of the prestressing force. The latter was restricted to 
two different locations for prestressing tendons, above and below the bottom flange of the steel profile. 

Results indicate that the composite beams of steel and concrete without prestressing (VM) and prestressed (VMP) 
with an L d⁄  ratio of approximately 31 do not meet the combined bending-compression design criteria for the load 
applied, 5 kN/m2 of live load, since the utilization rate was larger than 1. For L d⁄  ratios ranging from 16 to 25, the 
beams meet the design criteria with clearance. It should be noted that the L d⁄  ratio equal to 27 would be the most 
advantageous in economic terms since the utilization rate was the closest to 1. 

Although prestressing has generated a considerable improvement in the behavior of the composite beams under 
bending, reducing the design bending moment and increasing the ultimate bending moment, its improvement in the rate 
of utilization of the beam was less noticeable, because the compression force on the steel profile due to the prestressing 
force introduces compressive stresses that are added to stresses arising from bending. Significant improvements in the 
utilization index only occur for the doubly symmetrical section. For sections with a lower monosymmetry (2.07 and 
2.83), the beneficial effects of prestressing are only observed in smaller spans. In cross-sections with a higher 
monosymmetry degree (3.88 and 5.22), prestressing is not advantageous, resulting in smaller utilization rates when 
compared to beams without prestressing. 

It was also concluded that the use of monosymmetric profiles in composite beams is only interesting from an 
economic point of view for beams without prestressing a with monosymmetry index smaller than 2.83. 

For the three cases of tendon eccentricity (630, 730 and 780 mm) studied, it was observed, for L d⁄  ratios equal to 
16, 19, 22 and 25, that the 630 mm eccentricity provides the greatest flexural strength and the smallest design bending 
moment, so this eccentricity would be ideal for the design. For L d⁄  ratios equal to 27 and 31, it was not possible to 
establish the ideal design eccentricity, since the eccentricity that provides the largest bending resistance also provides 
the highest value of design bending moment. 

Finally, it is observed that prestressing has a significant influence on the control of the SLS of excessive 
displacement when analyzing reductions in deflection at the midspan of prestressed composite beams in relation to 
unstressed composite beams. The result analysis allowed the observation of the benefits of applying external 
prestressing in composite beams for controlling ULS and SLS, since there was an increase in both strength and stiffness 
of the beams. 

Although underutilized in Brazil due to little knowledge of the system and its design methods, it is clear that 
prestressed composite steel and concrete beams have great relevance for maintenance projects, recovery of existing 
structures and design of large new structures. International scientific literature presents theoretical and experimental 
studies aimed at understanding the structural behavior of this type of beam, and this research contributed to a greater 
understanding of design methodologies for these structural elements. 
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