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Abstract: The Monte Carlo simulation (MCS) and First-Order Reliability Method (FORM) provide a 
reliability analysis in axisymmetric deep tunnels driven in elastoplastic rocks. The Convergence-Confinement 
method (CV-CF) and Mohr-Coulomb (M-C) criterion are used to model the mechanical interaction between 
the shotcrete lining and ground through deterministic parameters and random variables. Numerical models 
synchronize tunnel analytical models and reliability methods, whereas the limit state functions control the 
failure probability in both ground plastic zone and shotcrete lining. The results showed that a low dispersion 
of random variables affects the plastic zone's reliability analysis in unsupported tunnels. Moreover, the support 
pressure generates a significant reduction in the plastic zone's failure, whereas the increase of shotcrete 
thickness results in great reduction of the lining collapse probability. 
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Resumo: Este trabalho propõe uma análise de confiabilidade em túneis profundos axissimétricos, escavados 
em maciços rochosos elasto-plásticos, utilizando o Método de Confiabilidade de Primeira Ordem e simulações 
de Monte Carlo. O método Convergência-Confinamento (CV-CF) e o critério de Mohr-Coulomb (M-C) são 
utilizados para modelar analiticamente a interação mecânica entre o revestimento de concreto projetado e o 
maciço escavado, através de parâmetros determinísticos e variáveis aleatórias. Modelos numéricos são 
sincronizados com os modelos analíticos de túneis e os métodos de confiabilidade, enquanto as funções 
estado-limite definem a probabilidade de falha na zona plástica do maciço rochoso e no revestimento de 
concreto projetado. Os resultados mostram que uma baixa dispersão das variáveis aleatórias afeta a 
confiabilidade da zona plástica na análise de túneis sem revestimento. Além disso, a pressão de suporte gera 
uma redução significativa na falha da zona plástica, enquanto o aumento da espessura do concreto projetado 
resulta em uma grande redução da probabilidade de colapso do revestimento. 
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Carlo, FORM. 
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1 INTRODUCTION 

Several geotechnical and structural parameters are involved in deep tunnels and underground excavation analysis, 
which induce high or undefined structural risks. The reliability analysis evaluates structural failure probabilities in 
tunnels by applying random and deterministic parameters in analytical solutions or numerical methods. 

The first serious discussions and analyses of tunnel reliability emerged during the 1990s with [1]-[6]. Low and 
Tang [5] focused on identifying and evaluating the reliability and risk parameters through numerical procedures, 
synchronizing reliability codes developed in software like Microsoft Excel, and analytical methods for axisymmetric 
tunnels. This work used the First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS) in the 
reliability study. Low and Tang [7], [8] developed and improved the FORM numerical procedures. Li and Low [9] 
conducted a series of reliability analyses of an axisymmetric tunnel, considering normal and non-normal random 
variables of the rock mass and the Low and Tang [5] FORM algorithm. The internal pressure produces a reduction of 
risk; moreover, the authors checked the reliability results using MCS. Lü and Low [10] and Song et al. [11] studied the 
reliability of axisymmetric tunnels through the FORM and Second-Order Reliability Method (SORM), synchronizing 
these methods with analytical solutions based on Mohr-Coulomb (M-C) and Hoek Brown criteria. 

Bjureland et al. [12] applied the MCS associated with the Convergence-Confinement method (CV-CF method) to 
analyze the failure probability in a shotcrete lining of a circular tunnel. The M-C criterion describes the plasticity 
behavior for the excavated rock mass, and the Observational method checks the failure results, verifying the necessity 
of putting into action security measures. 

The present paper analyses the reliability methods impact on analytical tunneling methods, examining two different 
tunnels with statistical and deterministic distinct parameters. This study aims to investigate the reliability results of the 
plastic zone excavation and the shotcrete lining for both tunnels, establishing interesting comparisons between them. 
For this, the reliability procedures associate the use of the FORM Low and Tang method, developed in Low and 
Tang [5], and the MCS. The reliability algorithms, developed in VBA and MATLAB codes, employ two analytical 
methodologies for axisymmetric tunnels: the M-C plasticity criterion for excavated rock masses and the CV-CF method 
to analyze the interaction between the shotcrete lining and rock mass. 

2 RELIABILITY CONCEPTS 

2.1 Reliability Index: The Low and Tang FORM Interpretation 

Hasofer and Lind [13] defined the second-moment reliability index β as a better approach in civil engineering design 
in comparison with usual safety factors [7]. Equation 1, proposed by Low and Tang [7], represents the matrix 
formulation of the Hasofer-Lind reliability index for correlated normal variables: 
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where ix  is the set of random variables of the vector x, iµ  is the set of mean values of the vector μ , and iσ  is the set 
of standard deviations of the vector σ . The domain F represents the failure regions, whereas [𝐑𝐑] is the correlation 
matrix, expressed by [14]: 
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where i, jρ  is the correlation coefficient between two random variables ix  and jx  ( )i   j≠ . 
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For the non-normal distributions, the basic idea is to calculate the equivalent normal mean Nμ  and equivalent 
standard deviation Nσ , which replaces the values of μ  and σ  in Equation 1. The Rackwitz-Fiessler transformation 
defines the following analytical solution for Nμ  and Nσ  [15]: 

( )1ΦN Nx F xµ σ −  = −    (3) 

( ){ }
( )

1Φ
N

F x

f x

φ
σ

−   
=  (4) 

In Equation 3, 1Φ− ⋅    is the inverse of the cumulative distribution function (CDF) (standard normal), and ( )F x  is 
the original non-normal CDF, evaluated for x. In Equation 4, {}φ ⋅  is the probability density function (pdf) of the 
standard normal distribution, whereas ( )f x  is the original non-normal pdf, evaluated for x. 

In a classical explanation, β  is the smallest distance from the mean value point to the limit state surface in units of 
directional standard deviations [7]. Low and Tang [5], [7] proposed an alternative interpretation of the reliability 
index β , which is a simple method of defining the index, in the original space of the random variables, through the 
perspective of an expanding ellipsoid. Figure 1 shows this interpretation. 

 
Figure 1. Equivalent dispersion ellipsoids illustrated in the plane [8]. 

As shown in Figure 1, the design point is a tangency point of the expanding dispersion ellipsoid with the limit state 
surface, which separates safe values from unsafe values (failure domain). The reliability index β  is the axis ratio /R r  
of the ellipse that touches the limit state surface [8]. The dispersion ellipsoid expands from the mean-value point 
according to the following probability density function of a multivariate normal distribution [8]: 

( ) 2

0.52

1 1exp
2

(2 )
nf x

C

β

π

 = −  
 (5) 

where to minimize β , defined by Equation 1, is to maximize the value of the probability density function defined by 
Equation 5. Hence, it is possible to define the smallest dispersion ellipsoid tangent to the limit state surface (see 
Figure 1) and the most probable failure point (design point). 
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Low and Tang [5] described that if each axis of the ( )1 σ−  dispersion ellipsoid, in Figure 1, is parallel to the 
coordinate axis, the random variables are uncorrelated. So, in correlated normal random variables, each axis of the 
( )1 σ−  dispersion ellipsoid is inclined about the coordinate axis. 

The index β  is particularly useful in evaluating the failure probability through the application of the CDF of β , 
( )Φ β , and considering standard normal variables [9]: 

( )f 1 Φp β≈ −  (6) 

Low and Tang [8] performed a new efficient algorithm using FORM, where the first and third terms under the 
square root in Equation 1 are equivalent standard vectors n   . Thus, Equation 1 is defined as: 

1min T

x F
n nβ −

∈
=           R  (7) 

The optimization routine Solver of Microsoft Excel solves Equation 7. Autonomously, the routine changes the 
values of components in  (computing the parameters Nμ  and Nσ , when necessary) and subjecting the limit state 
function to a zero-value restriction. The components in the original space, ix , are program-calculated from: 

( )1
i iΦx F n−  =    (8) 

2.2 Monte Carlo Simulation 
The Monte Carlo Simulation (MCS) consists of developing an analytical and numerical model and using many 

simulations or cycles to check the real behavior of a system. Each cycle provides output variables (results) based on 
random input variables, using statistical methods and probability distributions [16]. 

Considering a random variable X, with a CDF ( )iXF x , to generate sample ix  values included in X, the MCS code needs 
to accomplish some steps. First, MATLAB numerical procedures generate a sample value of iu  between 0 and 1 for a random 
variable with uniform distribution. Next, the inverse of XF  computes a sample value of ix  ( ( )1

i iXx F u−= ). 

For two correlated normal random variables, the numerical procedure generates two random numbers 1u  and 2u , 
used to compute the random variables x and y from the following equations [17]: 

1 22ln cos(2 )X Xx u uµ σ π= + −  (9) 

| | 1 22 ln sin(2 )Y X Y Xy u uµ σ π= + −  (10) 

where the mean and standard deviation of the variable y, which are dependent on x value, are evaluated through the 
following equations: 
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Each MCS cycle consists of introducing random input variables in an appropriated mathematical model: the limit 
state or performance functions ( )1 2 n, , , 0Z g x x x= … = . A negative performance function implies random variables located 
in a failure domain. After the implementation of all cycles, the following relation, between the total failure cycles fN  
and the total cycles of MCS N, checks the failure probability fp  [15]: 

f
f

Np
N

=  (13) 

Figure 2 shows a flowchart with the steps of the MCS numerical procedure developed in MATLAB. In summary, the 
numerical procedure considers a predefined number of cycles and checking the failure cycles, fN . Equation 14 checks the 
failure probability estimation error through a normal distribution approximation, with a reliability interval of 95%. 

( ) f
f

1% 200 pe
N p

 −
= ×  × 

 (14) 

 

Figure 2. Flowchart of the MCS procedure. 

3 ANALYTICAL FRAMEWORK FOR ELASTOPLASTIC DEFORMATION IN AXISYMMETRIC 
TUNNELS 

3.1 Elastoplastic fields in the surrounding rock mass 

Figure 3 shows the axisymmetric tunnel characteristics, excavated in a homogeneous elastic-plastic rock mass and 
with a radius iR . The cylindrical coordinate system re , eθ , and ze  represents the stress and displacement components. 
The stresses ( )rr rσ  and ( )θθ rσ  are the in-plane normal components of the rock stress tensor σ , whereas P∞  and iP  is 
the far-field pressure and uniform support pressure into the excavation. It is assumed that the stress component ( )zz rσ  
does not vary, which implicitly amounts to disregarding the confinement losses along the z-axis direction. 
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Figure 3. Cross-section of an axisymmetric tunnel within an elastic-plastic rock mass. 

In the fully elastic regime, the radial displacement ( )ieu r  at any a point of the rock mass located at distance r from 
the center of the excavation is given by ([18], [19]): 

( ) ( )
2

ie
1 i

i
Ru r P P

E r
ν

∞
+ = − − 

 
 (15) 

where ν  and E  are the Poisson's rate and Young's modulus, respectively. 
In the elastoplastic regime, the mechanical analysis of the tunnel deformation indicates that two regions should be 

distinguished, as illustrated in Figure 4: the elastoplastic region i pR r R≤ ≤  undergoing irreversible strains, and the elastic behavior 
region pr R≥ . The plastic radius pr R=  defines the limit between the elastic and elastoplastic regions of the rock mass. 

 
Figure 4. Axisymmetric tunnel within an elastoplastic rock mass. 

The analytical methods use the M-C criterion concepts for the elastoplastic behavior, defined according to 
Salençon [18] and Corbetta [19]. The plastic radius pR  is: 
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where: 

p
1 sin
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K ϕ
ϕ
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−
 (17) 
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ϕ

=  (18) 

in which c is the cohesion and ϕ  is the friction angle. The limit pressure limP  defines a rock mass pressure when pr R=  
as follows: 
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 (19) 

Referring to Figure 4, the radial displacement ipu  in the elastoplastic region i pR r R≤ ≤  is defined by: 
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 (20) 

where Equation 21 defines the dilatancy coefficient bK , ψ  representing the dilatancy angle, whereas Equations 22, 23 
and 24 characterize the parameters A, B, and C. 
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3.2 Convergence-confinement method 
The CV-CF method allows modeling in a simplified manner the evolution of normalized radial displacement iU  of 

the rock mass and support, or the convergence at the tunnel wall, associated with the internal pressure iP  in a specific 
cross-section of the tunnel wall. The convergence iU  is given by: 

( )i i
i

i

u r R
U

R

=
=  (25) 
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where ( )i iu r R=  is the radial displacement at the tunnel wall, defined by Equation 15 (elastic behavior) or Equation 20 
(elastoplastic behavior). The principle of the CV-CF method is schematized in Figure 5. 

 
Figure 5. Schematized description of the Convergence-confinement method for a specific cross-section of a tunnel. 

Figure 5 shows the Ground response curve, or Convergence curve (CV), which describes only the mechanical 
behavior of the unsupported excavation wall, while the Support curve, or Confinement curve (CF), describes the 
mechanical behavior of the elastic shotcrete lining. 

When the excavation front is close to a specific cross-section, changes occur in the ground stress state. At some 
distance, before the excavation reaches the cross-section, there are small changes of the stress state, and elastic 
convergence ieU  occurs as iP  decreases. The internal pressure iP  continues to decrease where, eventually, the 
decrement of stresses in the rock mass will reach a limit limP , and the stresses cause plastic behavior of the ground in a 
zone with a radius pR  surrounding the tunnel periphery [12]. Thus, considering an interval i limP P P∞ ≥ ≥ , the CV curve 
shows an elastic behavior (blue curve in Figure 5), and for the interval lim i 0P P≥ ≥ , the CV curve shows an elastoplastic 
behavior. Equations 16 and 19 defines pR  and lim.P  

The CF curve avoids the ground confinement loss, which causes normalized radial displacements of the rock mass. 
According to the red curve in Figure 5, a ground confinement loss generates a growing internal pressure iP  and 
convergence iU  on the cross-section lining. Moreover, numerical or analytical approaches estimate the convergence 

0U  at the beginning of the support installation. Panet and Guenot [20] proposed an analytical approximation for 0U : 

2
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 (26) 

where i,U ∞  is the convergence for elastoplastic behavior, at a larger distance between the excavation face and the cross-
section (Equation 25 with i 0P = ). 

The pressure at the shotcrete lining is evaluated as [21]: 

( )i s i,s 0P K U U= −  (27) 

In Equation 27, i,sU  is the shotcrete convergence (determined when iP  varies between 0 and maxP  in Equation 27), 
and sK  is the support stiffness coefficient, calculated according to the relation i s/R t  ([22], [23]): 
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where st  is the shotcrete lining thickness, while sE  and sν  are the Young modulus and the Poisson Coefficient of the 
support, respectively. The maximum support pressure maxP  is defined by the following Equation: 
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 (29) 

sσ  standing for the uniaxial compressive strength of the support lining. 
The maximum convergence maxU  is evaluated by setting i maxP P=  into Equation 27. Referring to Figure 5, the 

equilibrium state of the structure ( i eqU U=  and i eqP P= ) is defined as the intersection point between the CV and CF 
curves. The design value eqP  can be computed combining Equations 16, 20 and 27: 
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 (30) 

By using Equation 16 one can calculate pR  with i eqP P= . Then Equation 30 is solved numerically by the bisection 
method inside the MCS MATLAB code. 

4 PERFORMANCE FUNCTIONS AND ADOPTED PARAMETERS 
The limit state function, or performance function, ( )1g x  refers to the plastic zone's reliability analyses, whereas 
( )2g x  refers to the shotcrete lining reliability. The functions ( )1g x  and ( )2g x  consider the relationship between an 

accepted resistance and a demand (loading), according to the equations below ([9], [13]): 
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 (32) 

The ratios L and maxU  are the allowed largest values (resistances) for the following demands (loadings): plastic zone 
ratio ( p i/R R ) and design convergence ratio ( eqU ). Equation 31 evaluates p i/R R  using Equation 16, while Equation 32 
evaluates maxU  by fixing i,s maxU U=  in Equation 27, with i maxP P= . When ( )1g x  takes a negative value, an unacceptable 
large plastic zone occurs, and it exceeds the L ratio. If ( )2g x  takes a negative value, the radial displacement eqU  exceeds 
the largest support displacement maxU . 
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The geotechnical random variables were obtained in the research of Hoek [6] (tunnel A) and Brantmark [24] 
(tunnel B). Tables 1 and 2 show the geotechnical statistical parameters for tunnels A and B. 

Table 1. Geotechnical statistical parameters for tunnel A [6]. 

Geotechnical parameter Mean ( µ ) Standard Deviation (σ ) Coefficient of Variation ( δ ) 

Friction angle (ϕ ) 22.85° 1.31° 0.06 
Cohesion (c) 0.230 MPa 0.068 MPa 0.30 

Deformation modulus (E) 373 MPa 48 MPa 0.13 
Far field stress ( P∞ ) 2.50 MPa 0.25 MPa 0.10 

Table 2: Geotechnical statistical parameters for tunnel B [24]. 

Geotechnical parameter Mean ( μ ) Standard Deviation ( σ ) Coefficient of Variation ( δ ) 

Friction angle (ϕ ) 35.00° 0.50° 0.01 
Cohesion (c) 1.30 MPa 0.13 MPa 0.10 

Deformation modulus (E) 5000 MPa 500 MPa 0.10 
Far field stress ( P∞ ) 8.00 MPa 0.80 MPa 0.10 

All statistical parameters described in Tab. 1 and 2 are normally distributed. However, it is considered a negative 
correlation between c and ϕ , with the following correlation coefficients: , 0.5c ϕρ = −  for tunnel A and , 0.9c ϕρ = −  for 
tunnel B. It should be emphasized that the correlation between some of the design parameters significantly affects the 
reliability predictions. In that respect, the assumption of negatively correlated shear strength parameters was found to 
be conservative with respect to uncorrelated variables [25]. The analysis developed, for instance, in Laso et al. [4] has 
included the correlation between some of the relevant problem parameters, such as correlation between the ground 
Young modulus and ground density, shotcrete average resistance and shotcrete layer thickness, as well as between 
tunnel radius and shotcrete layer thickness. Although the subject of correlation is not fully addressed in the present 
reliability study, this important issue will be foreseen in the continuation line of this research. 

The rock mass failure criterion features a non-associated flow rule in both tunnels, with the following deterministic 
parameters: 0ψ =  and b 1K =  (Equation 21) for tunnel A; 20ψ = °  and b 2.04K =  for tunnel B. The Poisson coefficients 
are 0.30v = , and 0.25,v =  for tunnels A and B, respectively. For both tunnels, a radius of i 4.5mR =  is adopted. 

Table 3 shows the statistical parameters for the shotcrete lining. Both tunnels use the same parameters, which are 
statistically independent and normally distributed. The Poisson coefficient is c 0.25ν = . 

Table 3. Statistical parameters of shotcrete support [24]. 

Shotcrete parameter Mean ( µ ) Standard Deviation (σ ) Coefficient of Variation ( δ ) 

Deformation modulus ( sE ) 16,000 MPa 800 MPa 0.05 

Uniaxial compressive strength ( sσ ) 30 MPa 1.5 MPa 0.05 

Li and Low [9] suggested applying the lognormal or beta distribution instead of the normal distribution when the 
coefficient of variation a random variable (ratio between standard deviation and mean) is 0.25 or higher. This is 
necessary to avoid negative geotechnical parameters, which is irrational. All coefficients of variation are smaller than 
0.25 in tunnels A and B, except for the cohesion c in tunnel A, where, alternatively, the cohesion is constrained to be 
greater than zero. 
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5 RELIABILITY ANALYSIS REGARDING THE EXTENT OF PLASTIC ZONE 
This section analyzes the reliability of tunnels A and B, contemplating the performance function of Equation 31. 

The first reliability analysis performs the characterization of the fixed resistances in ( )1g x  regarding unsupported 
tunnels, whereas the second analysis of the reliability methods will contemplate the shotcrete lining. The 2007 FORM 
algorithm of Low and Tang and MCS compute the reliability indexes and failure probabilities, employing the analytical 
theories explained in section 2. 

In summary, the Low and Tang algorithm is a code developed in Visual Basic (VBA) language and Microsoft Excel. 
A constrained optimization routine, denominated Solver, assists in the FORM procedure development, where the 
equations and parameters described in sections 2.1 and 4 have been employed directly in the Excel worksheets. Low 
and Tang [7], [8], and Li and Low [9] give more details about the FORM algorithm of Low and Tang. 

First, it is necessary to verify the results obtained by FORM and MCS to check the algorithms' proper operation. 
Li and Low [9] analyzed the plastic zone reliability, employing the FORM Low and Tang code, the performance 
function ( )1g x , and tunnel A parameters. Thus, Table 4 shows a comparison between results of this work and Li and 
Low [9], with the following deterministic values: the parameters of tunnel A, 2.50MPaP∞ = , 3.00L = , i0 0.30MPaP≤ ≤  
and 5E+06 Monte Carlo simulations, which generates an error between 0.15% 3.92%e≤ ≤  when i0 0.30MPaP≤ ≤ . 

Table 4: Failure probabilities results fp  considering tunnel A.  

 Results of this work Li and Low [9] 

( )i   MPaP  FORM Low and Tang MCS FORM Low and Tang 

0 (unsupported tunnel) 24.30% 24.68% 24.40% 
0.10 6.26% 6.42% 6.31% 
0.20 0.87% 0.89% 0.88% 
0.30 0.06% 0.05% 0.06% 

The failure probabilities evaluated in Tab. 4 have shown a good agreement with the Li and Low [9] results, considering 
both FORM and MCS results of this work. Thus, considering random variables with normal distribution, the reliability 
algorithms used in this work have shown efficiency when applied in unsupported and supported tunnels analysis. 

The first analysis intends to verify the influence of resistance L in the reliability index β , on the plastic zone 
reliability in tunnels A and B. Figure 6 shows the β  values evaluated for the statistical parameters of unsupported 
tunnels A and B, employing FORM Low and Tang algorithm, and varying the resistance L, in Equation 31, considering 
the following intervals: 2.30 3.00L≤ ≤  for tunnel A and 1.10 1.70L≤ ≤  for tunnel B. 

 
Figure 6. Reliability index results with the variation of the resistance L, regarding unsupported tunnels A and B ( i 0P = ). 
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Comparing the curves in Figure 6, a great sensibility on the β  variation with the increase of L occurs for tunnel B 
(red curve). For example, the index in tunnel B increases from 0.88β =  to 2.74β =  if the resistance increases from 

1.40L =  to 1.50L = . On the other hand, tunnel A (blue curve) does not show a considerable increase in β , i.e., the index 
increases from 0.14β =  to 0.32β =  when L  increases from 2.70L =  to 2.80L = . Table 5 illustrates the values of β  and 

fp  according to the curves of Figure 6. 

Table 5. Reliability index and failure probabilities of the plastic zone.  

TUNNEL A TUNNEL B 
L β pf (%) L β pf (%) 

2.70 0.14 44.45 1.40 0.88 18.85 
2.80 0.32 37.30 1.50 2.74 0.31 
2.90 0.50 31.12 1.60 4.35 6.82E-4 
3.00 0.65 25.86 1.70 5.64 8.57E-7 

The results of Tab. 5 highlight the fp  reduction in both studies. In tunnel A, fp  decreases from 44.45% to 25.86% 
between 2.70L =  and 3.00L = , while in tunnel B fp  decreases from 18.85% to 8.57E-07% between 1.40L =  and 1.70L = . 
In contrast, the reliability index β  increases from 0.14 to 0.65 for tunnel A and from 0.88 to 5.64 for tunnel B, with L 
variation. The greater variation of reliability results in tunnel B is a consequence of the correlation between the random 
variables and the plastic zone results p i/R R , performed by MCS. 

Figure 7 illustrates the correlation between the random variables and p i/R R  through dispersion charts, using 30E+03 
Monte Carlo simulations. The number of simulations was varied to assess the accuracy of the MCS results. The errors 
in estimating the failure probability were 1.28% and 2.40%, checked through Equation 14, using the parameters of 
unsupported tunnels A and B ( i 0P = ). 

There is a strong correlation between the plastic zone and the parameters ( c , ϕ  and )P∞  in tunnel B (Figures 7b). 
It does not occur with tunnel A parameters, which are more dispersed than tunnel B parameters (Figures 7a). About 
these figures, when the resistance L is close to the plastic zone average, 

p i/ 2.70,R RL µ≈ ≈  the p i/R R  results are more 
dispersed in the failure zone ( 2.70)L > . Due to this, the reliability results of tunnel A, in Figure 6 and Table 5, shows a 
low variation when adopting 2.30 3.00L≤ ≤ . In contrast, when 

p i/ 1.40R RL µ≈ ≈  for tunnel B, the strong correlation causes 
a little p i/R R  dispersion in the failure zone ( 1.40)L > , and a great variation in reliability results when adopting 
1.10 1.70.L≤ ≤  

In an overall analysis, these results say that the designers must be careful when adopting elevated values for L, in 
reliability analysis that involves highly correlated parameters. For this purpose, this study adopted the average resistance 
values in the performance function ( )1g x : 1.40L =  for tunnel B, and, for comparison purposes, 2.70L =  for tunnel A. 

Turning now to the shotcrete lining tunnels, the Low and Tang FORM algorithm and MCS estimates the plastic 
zone reliability through Equation 31. Tables 6 and 7 summarizes the β  and fp  results of the plastic zone. The following 
interval constraints the shotcrete lining pressure iP : 0.10 MPa 0.50 MPaiP≤ ≤ . The MCS results for i 0.1P =  and 0.2 MPa  
consider 30E+03 simulations in both tunnels, whereas the MCS results for i 0.3P =  and 0.4 MPa  consider 20E+06 
simulations in both tunnels. Regarding i 0.5 MPaP = , the MCS results refer to 10E+07 simulations for tunnel A and 
20E+06 simulations for tunnel B. The number of simulations increases with iP  to keep the error below 10%. 

The results in Tables 6 and 7 show that fp  is greater in tunnel A than in tunnel B, when the support pressure 

i 0.3 MPaP ≤ , whereas the opposite occurs when i 0.4 MPaP ≥ . This shows the importance of adopting an appropriate 
lining for tunnel safe. The fp  and β  results obtained by the Low and Tang Algorithm and MCS show good 
concordance. The iP  variation in both tunnels reported reductions of fp  and increases in β . 
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Figure 7. Dispersion results of the plastic zone ( p i/R R ) regarding cohesion (c), friction angle (ϕ ), and far-field stress ( P∞ ):  

(a) Tunnel A; (b) Tunnel B. 

Table 6. Reliability results for the performance function ( )1g x  of tunnel A.  

Support Pressure ( iP ) (MPa) 
Low and Tang Algorithm MCS 

β  fp  (%) fp  (%) e  (%) 

0 (unsupported) 0.14 44.27 44.75 1.28 
0.10 0.95 17.09 17.40 2.52 
0.20 1.76 3.90 3.94 5.68 
0.30 2.58 0.50 0.51 0.63 
0.40 3.39 0.04 0.03 2.56 
0.50 4.19 1.38E-03 7.90E-04 7.12 

Table 7. Reliability results for the performance function ( )1g x  of tunnel B.  

Support Pressure ( iP ) (MPa) 
Low and Tang Algorithm MCS 

β  fp  (%) fp  (%) e  (%) 

0 (unsupported) 0.88 18.85 18.75 2.40 
0.10 1.46 7.22 7.21 4.14 
0.20 2.05 2.04 2.04 7.99 
0.30 2.64 0.41 0.43 0.68 
0.40 3.25 0.06 0.06 1.81 
0.50 3.86 5.58E-03 5.80E-03 5.88 
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The MCS code provides the plastic zone histograms in Figures 8a and 8b, where the MATLAB application 
Distribution Fitter adjusts probability distribution functions with these histograms. 

 
Figure 8. Probability Distribution Functions (PDF) of the plastic zone through Monte Carlo simulations: (a) Tunnel A; (b) Tunnel B. 

The plastic zone intervals of PDF curves of Tunnel B (Figure 8b) is smaller than the intervals of tunnel A (Figure 8a). It 
occurs because the standard deviations ( )p i/R Rσ  for tunnel B are smaller than the 

p i/R Rσ  values of tunnel A. Also, the mean 

values ( )p i/R Rµ  of tunnel B are smaller than 
p i/R Rµ  of tunnel A, due to the higher geotechnical parameters of tunnel B. 

Figures 8a and 8b emphasize the histogram distribution types. Tunnel A fits the Lognormal distribution for all 
histograms, whereas tunnel B fits the Normal distribution for all histograms. 

All PDF curves exhibit reductions in the statistical parameters when iP  increases. In Figure 8a, the mean and 
standard deviation reduces from 

p i/ 2.78R Rµ =  and 
p i/ 0.21R Rσ =  ( )i 0P =  to 

p i/ 1.59R Rµ =  and 
p i/ 0.14R Rσ =  ( )i 0.5 MPaP = , 

whereas in Figure 8b, the parameters reduce from 
p i/ 1.36R Rµ =  and 

p i/ 0.05R Rσ =  ( )iP 0=  to 
p i/ 1.24R Rµ =  and 

p i/ 0.04R Rσ =  

( )i 0.5 MPaP = . To summarize, the iP  increasing causes the reliability index increasing and failure probability reduction 
during the reliability analyses. 

6 RELIABILITY ANALYSIS REGARDING THE TUNNEL CONVERGENCE 
In this section, the reliability analysis evaluates the probability of eqP  and eqU  exceeding the allowed parameters 

max  P and maxU . The MCS employs the CV-CF method linked with the performance function ( )2g x  (Equation 32). The 
shotcrete lining parameters are those described in section 4 and Table 3. 

As evaluated in the previous section, Equation 14 checks the MCS accuracy considering some number of 
simulations and a shotcrete lining thickness c 10 cmt = . This work adopts 5E+06 simulations, which generate the 
following results for tunnels A and B: f 4.06%p =  with an error of 0.43% and f 19.21%p =  with an error of 0.18%. 
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Figure 9 shows the variation of the failure probability ( )fp  with the increase of ct . The results were obtained using 
5E+06 MCS cycles for each ct , where in tunnel A the error varies between 0.43% 6.02%e≤ ≤  regarding c10cm 13cmt≤ ≤ , 
and in tunnel B the error varies between 0.18% 3.32%e≤ ≤  regarding c10cm 20cmt≤ ≤ . The increase of ct  produces a 
considerable fp  reduction in tunnel A. The increase of just one centimeter in ct  of tunnel A reduces fp  from 4.06% 
( )c 10 cmt =  to 0.93% ( )c 11 cmt = , fp  arrives at 0.02% when c 13 cmt = . With the tunnel B parameters, Figure 9 shows a 
reduction from f 19.21%p =  ( )10 cmct =  to f 1.15%p =  ( )c 16 cmt = , fp  arrives at 0.08% when c 20 cmt = . These results say 
that tunnel B needs more shotcrete than tunnel A to get acceptable reliability levels due to the far-field pressure in 
tunnel B is much higher than in tunnel A. 

 
Figure 9. Failure probability reduction with the increasing of ct , concerning the performance function ( )2g x . 

Table 8 exhibits the design and maximum support parameters, considering c 13 cmt =  for tunnel A and c 20 cmt =  for 
tunnel B, which keep an adequate structural safety level for the support f( 0.10%)p < . The convergences eqU  and maxU  
have been calculated using the convergence 0U  of the support installation as the origin, whereas the radial displacements 

equ  and maxu  have been calculated through Equation 25, i.e., eq eq iu U R= ×  and max max iu U R= × . 

Table 8. Statistical design parameters for the shotcrete support.  

 
Peq (MPa) Pmax (MPa) Ueq (%) Umax (%) ueq (mm) umax (mm) 
μ σ μ σ μ σ μ σ μ σ μ σ 

Tunnel A 0.53 0.11 0.87 0.04 0.11 0.02 0.18 0.01 4.70 1.00 7.93 0.56 
Tunnel B 0.91 0.11 1.33 0.07 0.12 0.01 0.18 0.01 5.40 0.64 7.93 0.56 

The results in Table 8 reveal a difference of 72% between the eqP  mean values for tunnels A and B, whereas the 
difference between the eqU  mean values is only 9%. Concerning maxP  and maxU , the thickness ct  controls the support 
resistance, which increases the stiffness value ( )cK  and maxP , but does not change maxU  in both tunnels. 

Figures 10a and 10b illustrate the failure probability through the equ  and maxu  histograms obtained with the 
parameters of Table 8. 

The histograms in Figures 10a and 10b show the support failure region, between 6.00 and 7.00 mm approximately, 
where ( )2 0g x < . The area of this region is proportional to the failure probability, fp . From Figure 9, it can be seen that 

fp  on c 13 cmt =  (tunnel A) and c 20 cmt =  (tunnel B) have close values. This occurs due to equ  standard deviations since 
the equ  histogram in Figure 10a is sparser than the corresponding histogram in Figure 10b. As well as in Figure 10, it 
is easy to evaluate the failure probability through ( )2g x , according to Figures 11a and 11b. 
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Figure 10. Demand and resistance histograms, generated using 5E+06 Monte Carlo simulations: (a) Tunnel A; (b) Tunnel B. 

 
Figure 11. Histograms of performance function ( )2g x , generated using Monte Carlo simulations: (a) Tunnel A; (b) Tunnel B. 
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The negative values of ( )2g x , located on the left side of the dashed line in Figures 11a and 11b represents a failure 
point of the shotcrete lining. That is to say that the area below the histograms and on the left side of the dashed line (in 
Figure 11) has the same value of the failure probability, fp . It is possible to see in Figures 11a and 11b, that this area 
reduces with the increase of ct , and, therefore, also reduces fp . Similar to earlier findings, the standard deviation in 
tunnel A is greater than tunnel B in histograms of Figure 11. 

Figures 12a and 12b show an analysis through the CV-CF method, using the mean values of tunnels A and B to 
verify the accordance with the results defined in Table 8. In these cases, it has been considered c 13 cmt =  and c 20 cmt =  
for tunnels A and B, respectively. The results in Figure 12 must be interpreted with caution due to eqU  referring to the 
shotcrete lining displacement, which starts from the displacement 0U . 

 
Figure 12. CV-CF method analysis with mean values of: (a) tunnel A; (b) tunnel B. 

There are similarities between the design parameters defined in Figures 12a and 12b and the design parameters of 
Table 8, where it can be seen that the interaction between the Convergence and Confinement curves has been 
influencing the reliability analysis. The Confinement curve of tunnel A tends to perform better than tunnel B due to the 
internal pressure iP  being higher in tunnel B. 

These results suggest that the shotcrete lining of tunnel A, considering c 13 cmt = , produces acceptable stiffness 
results sK , which increases the inclination of the Convergence curve in Figure 12. Tunnel B, likewise, produces 
acceptable sK  results using c 20 cmt = . The designer must consider adopting support parameters higher than the before 
adopted, aiming to increase sK , thus keeping the failure probability low. 

7 SUMMARY AND CONCLUSIONS 

This study performed a reliability analysis in deep axisymmetric tunnels, integrating FORM and MCS methods with 
tunnel analytical methodologies. VBA and MATLAB codes verified the reliability in rock masses and shotcrete lining, 
examining two different tunnels. 
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The first aim was to check the plastic zone reliability through VBA FORM and MATLAB MCS algorithms. The 
reliability results verification has shown an excellent agreement between the reliability indexes and failure probabilities, 
obtained by both algorithms, and with the Li and Low [9] results. 

The reliability study of the variation in the resistance L, considering unsupported tunnels, suggests that, in general, 
it is necessary to pay attention to the adopted L value in rock masses with low dispersion. This work recommends 
adopting a resistance value L around the mean value to avoid higher fp  values. 

The increase of internal pressure iP  produces great changes in the plastic zone reliability. Both tunnels develop 
significant fp  reductions when i 0.3MPaP = : fp  reduces 43.80% in tunnel A and 18.40% in tunnel B. The support 
pressure i 0.3MPaP =  maintains reliability percentages above 99% in both tunnels; moreover, for i 0.3MPaP ≥ , fp  results 
are close to 0%. 

The MCS code used the CV-CF method equations to provide the convergence reliability. A shotcrete thickness 
c 11 cmt =  results f 0.93%p =  in tunnel A, whereas c 16 cmt =  results f 1.15%p =  in tunnel B. When ct  increases for 13 cm 

in tunnel A, the failure probability reduces to f 0.02%p = ; whereas for tunnel B, fp  reduces to 0.02% when ct  increases 
to 20 cm. These findings suggest that tunnel A must have a shotcrete thickness between c 11 cmt =  and c 13 cmt = . 
Tunnel B must have a shotcrete thickness between c 16 cmt =  and c 20 cmt = . In summary, the failure probabilities are 
smaller than 0.1%, considering c 13 cmt =  in tunnel A and c 20 cmt =  for tunnel B. Moreover, the internal design pressure 

eqP  for these thicknesses is greater than 0.3MPa , which keeps plastic zone failures close to zero. 
This paper contributes to check safety or failure probabilities in tunnel design stages. The reliability codes provided 

statistical data for different rock mass parameters. So, designers and engineers can use these methodologies to ensure 
security in underground design. 

A natural progression of this work is to link two-dimensional and three-dimensional numerical models with the 
reliability codes. Moreover, this study suggests using reliability analysis in different cross-section geometries and 
supports (steel lining, precast concrete lining, bolts). 
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