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Abstract: This work aims to investigate the ultimate capacity of reinforced concrete elements in terms of 
cracking and stiffness loss. Nonlinear finite element analysis (NLFEA) was performed in the ATENA 
software and compared with a proposed numerical simulation of nonlinear static analysis (NLSA), where 
material cracking is evaluated based on the loss of tangent stiffness of the elements. The analysis was 
applied to a low-rise reinforced concrete frame with constant axial loads in the columns, and monotonic 
lateral load applied at the top beam level. Both methodologies showed good agreement regarding the 
capacity curve and crack patterns, and the numerical simulation NLSA allowed the identification of the 
sequence of elements' stiffness loss. The results indicated a substantial similarity between the numerical 
simulation NLFEA and NLSA and the experimental test, indicating a high potential in predicting the 
nonlinear behavior of reinforced concrete. 
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Resumo: Este trabalho tem como objetivo investigar a capacidade última de elementos em concreto 
armado em termos de fissuração e perda de rigidez. Uma análise não linear via método dos elementos 
finitos (MEF) foi realizada no programa ATENA e comparada com uma simulação numérica de análise 
estática não linear (AENL), onde a fissuração do material é avaliada com base na perda de rigidez tangente 
dos elementos. As análises foram aplicadas a um pórtico em concreto armado com cargas axiais constantes 
nos pilares, e carga lateral monotônica aplicada na viga superior. Ambas as metodologias mostraram boa 
concordância em relação à curva de capacidade e panorama de fissuração, e a simulação numérica AENL 
permitiu identificar a sequência de perda de rigidez dos elementos. Os resultados indicaram grande 
semelhança entre a simulação numérica FEM e AENL e ensaio experimental, indicando um alto potencial 
para prever o comportamento não linear do concreto armado. 

Palavras-chave: concreto armado, pórticos, análise não-linear, fissuração. 

How to cite: I. R. I. Palomo, J. J. Martínez, C. A. Benedetty, L. C. Almeida, L. M. Trautwein, and P. A. Krahl, “Prediction of the ultimate 
capacity of reinforced concrete elements using nonlinear analysis methodologies,” Rev. IBRACON Estrut. Mater., vol. 17, no. 2, e17210, 2024, 
https://doi.org/10.1590/S1983-41952024000200010 

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4517-0076
https://orcid.org/0000-0002-5181-9572
https://orcid.org/0000-0001-7885-0572
https://orcid.org/0000-0001-8431-8929
https://orcid.org/0000-0002-4631-9290
https://orcid.org/0000-0002-6172-5481


I. R. I. Palomo, J. J. Martínez, C. A. Benedetty, L. C. Almeida, L. M. Trautwein, and P. A. Krahl 

Rev. IBRACON Estrut. Mater., vol. 17, no. 2, e17210, 2024 2/19 

1 INTRODUCTION 
The prediction of the behavior and ultimate capacity of reinforced concrete (RC) structures has shown significant 

advances in the last decades due to the evolution of technology that allows the use of computers with a higher processing 
capacity to analyze nonlinear phenomena, such as plastification and fracture. However, these phenomena can be complex 
to be reproduced in numerical simulation of quasi-brittle materials such as concrete. Depending on the type of problems 
analyzed, models can have many degrees of freedom, reducing the processing capacity and simulation feasibility. 
Commercial software can be used for the nonlinear analysis of reinforced concrete structures, which implement the 
Finite Element Method (FEM). Some examples are: ABAQUS [1], ANSYS [2], ATENA [3], and DIANA [4]. 

FEM is especially suitable for studying the cracking behavior and plastic hinges, which are considered the leading 
sources of nonlinearity in structures. Based on this approach, the Extended Finite Element Method (X-FEM) proposed 
by Belytschko and Black [5], can simulate the cracking and localized deformations of specimens with simple and 
complex geometries, being an advantage of the independence of the discretization of the mesh. However, a major 
drawback is the necessity to generate a variable number of degrees of freedom in each node [6], [7]. The Finite Elements 
Method with Embedded Strong Discontinuities (ED-FEM) also allows the modeling of the failure zones discretely 
without the re-meshing through a static condensation of the global system of equations with the same number of nodal 
displacements (or degrees of freedom) as the initial problem (without the discontinuity). 

The method of zero-thickness interface elements initially proposed by Goodman et al. [8] is capable of representing 
the cracking behavior of quasi-brittle materials (e.g., concrete), where the interface elements are connected with the 
continuum elements through constitutive laws that are governed by normal and tangential components of the stress and 
their relative displacements [8]–[10]. The main advantage of it is the capacity to solve problems that involve material 
interfaces or discontinuities. However, Dhadse et al. [11] describe the implementation of a thin-layer interface as a 
drawback. Authors such as Manzoli et al. [12], [13] presented a new technique to model interfaces through solid finite 
elements (three-node triangular finite element), e.g., elements with a very high aspect ratio, where the smallest 
dimension corresponds to the thickness of the interface. Due to its high aspect ratio, this method does not depend on 
mesh size in the interface region. 

Regarding numerical simulations with Nonlinear Finite Element Analysis (NLFEA), Alfarah et al. [14] developed 
a methodology applied to damage models in the ABAQUS software based on the formulations of Lubliner et al. [15] 
and Lee and Fenves [16] to analyze reinforced concrete frames with monotonic behavior. This methodology enabled 
the establishment of the tension–compression damage of the material in function of the strains. Additionally, Guner [17] 
restructured and verified the analytical algorithm of the VecTor5 program, used for the nonlinear analysis of frames 
based on MCFT [18], to capture the shear mechanisms and bending effects in the elements. Besides enhancing the 
original monotonic analysis, this algorithm also allows the analysis of frames subject to cyclic load, dynamic load, 
impact load, blast, etc. The author applied the algorithm with and without geometrical nonlinearity in the structure, 
with the latter overestimating the ultimate capacity of the frame. 

In nonlinear problems, the load can be applied by a force or incremental displacement steps that cause variation in 
the stiffness of the structure, requiring the reassembly of the stiffness matrices and higher computational cost [19]. 
However, dividing the structure into undamaged (elastic) and damaged (nonlinear) substructures helps decrease 
computational effort. In the first case, the matrix formulation is developed before the nonlinear analysis, while in the 
second case, the stiffness is variable for each load increment and numerical iteration [19], [20]. 

Caglar et al. [21] stated that concrete cracking affects the behavior of reinforced concrete elements by reducing their 
flexural and shear stiffness. Thus, the linear elastic analysis of RC elements without considering the cracking effect 
does not represent the real behavior. Furthermore, Chan et al. [22] concluded that the cracking effect in a reinforced 
concrete frame is generally considered through the reduced inertia moments of the elements. The same authors proposed 
a general probability-based effective stiffness model that determines the relationship between flexural stiffness 
reductions and moments caused by the load applied. The methodology was developed through iterative algorithms, 
which can also be used for elements subjected to various types of loads. The advantage of this method was the ability 
to estimate the lateral deflection and stiffness of tall reinforced concrete frames under service loads. They obtained 
good results when compared with experimental data tests and observed that the flexural stiffness reduction caused by 
the cracking significantly influences the load-deformation curve of the structures. 

In addition, Ng et al. [19] developed a nonlinear multilevel analysis method for RC frames, which divided the 
elements into subelements to evaluate stiffness degradation and strength deterioration. In this process, the stiffness of 
subelements is estimated from the moment-curvature relations, where the curvature is assessed based on the transverse 
displacements and section rotations. In this work, the authors only considered the boundary degrees of freedom 
associated with the boundary nodes, obtaining an ultimate load capacity 7% lower than the experimental value. 
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Subsequently, Guner and Vecchio [23] studied the analytical method developed by the same authors [24], which analyzed 
the nonlinear behavior of reinforced concrete frame structures composed of beams, columns, and shear walls under monotonic 
and pushover loading. The method uses a nonlinear sectional analysis within a stiffness-based linear-elastic frame analysis 
algorithm through an unbalanced force approach, which allows capturing shear mechanisms through modeling based on the 
Disturbed Stress Field Model (DSFM). The authors observed excellent convergence and numerical stability characteristics in 
the results with little demanding computational time (around 1 and 6 minutes for beams and frames, respectively). 

Recently, Hippola et al. [25] developed a new force-base line element formulation based on the formulation 
proposed by Rajapakse et al. [26] to predict the axial-force-moment interaction and, therefore, the response of 
reinforced concrete frames and walls. The relationship between element nodal forces and section forces is known, 
causing a reduction of the number of degrees of freedom in the numerical model compared to displacement-based 
formulations. Additionally, the authors employed the tangent stiffness matrices to improve convergence speed and the 
constitutive relationship of the DSFM instead of the Modified Compression Field Theory (MCFT). The results allowed 
identifying shear critical members in large frame structures and estimating the distribution of internal forces, crack 
patterns, capacity load, and failure modes. However, the methodology was unable to predict the strength degradation 
displacements for the shear-compression and the diagonal-tension failure modes. 

As a contribution to the study of the nonlinearity behavior of the concrete, this work proposes to combine a 
Nonlinear Finite Element Analysis (NLFEA) with a new Nonlinear Static Analysis (NLSA) to assess the ultimate 
capacity, cracking sequence and stiffness loss of a two-way, one-level reinforced concrete frame structure, which was 
part of an experimental campaign developed by Vecchio and Emara [27], in order to verify the influence of shear strains 
on structure design and behavior. For this, a numerical simulation of NLFEA was carried out in the ATENA software, 
and a numerical simulation involving an optimized NLSA with stiffness degradation. One of the best advantages of the 
new optimized numerical simulation NLSA is that elements discretization does not increase the system degree of 
freedom, simplifying the calculation of the displacements and forces of the structure. 

2 EXPERIMENTAL TEST 
Vecchio and Emara [27] conducted an experimental study at the University of Toronto addressing low-rise reinforced 

concrete frame to investigate the shear effects in the ultimate capacity and strains of the structure. The frame had two 
levels of 1800 mm and 1600 mm and a 3100 mm span. Beams had a 300×400 mm transversal section, whereas columns 
had a 400×300 mm section and were subjected to a strongly reinforced base of 5700×800×400 mm (Figure 1). 

B1 and B2 refer to first and second-level beams, while C1-C3 and C2-C4 are the left and right columns of the frame, 
respectively. Beams and columns were longitudinally reinforced by eight bars of 20 mm diameter, four bars in the 
upper face, and four bars in the bottom face. Transversal reinforcement was performed by 10 mm stirrups positioned 
at a 125 mm spacing. The reinforced concrete base includes 21 bars of 20 mm diameter and stirrups placed at each 
250 mm. A 700 kN vertical load was applied to each column, representing the upper floor loads. The monotonic lateral 
load was applied at the top level of the B2 beam. 

 
Figure 1. Geometry of the frame [27]. 
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3 NUMERICAL SIMULATION – NLFEA 

3.1 Material constitutive model 

3.1.1 Concrete 
The ATENA software [3] allows nonlinear finite element analysis (NLFEA) of reinforced concrete structures using the 

finite element method. Cracking can be represented numerically in finite elements through the crack band approach [15]. 
This approach assumes that the fracture processes occur along a band that coincides with the position of the crack. 

Concrete behavior is simulated through the fracture-plastic constitutive model [28], which considers the phenomena 
of cracking and plasticity and adopts strains decomposition by adding the elastic (𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 ), plastic (𝜀𝜀𝑖𝑖𝑖𝑖

𝑝𝑝 ), and fracture (𝜀𝜀𝑖𝑖𝑖𝑖
𝑓𝑓 ) 

given by Equation 1: 

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 + 𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝜀𝜀𝑖𝑖𝑖𝑖

𝑓𝑓  (1)  

This approach enables strains separation according to their magnitude while establishing specific behavioral 
patterns. The material can be either in a softening or hardening regime, depending on the level and state of applied 
stresses. When concrete exceeds the elastic limit due to compressive stresses, for example, the stress-strain relationship 
suffers hardening, according to the model shown in Figure 2a, where 𝑓𝑓𝑡𝑡′ is the tensile strength, and 𝐸𝐸 is the young 
modulus. In the pre-peak behavior, the ATENA software assumes the hardening curve proposed by Červenka et al. [3] 
as follows in Equation 2: 

𝜎𝜎 = 𝑓𝑓𝑐𝑐0 + (𝑓𝑓𝑐𝑐′ − 𝑓𝑓𝑐𝑐0)�1 − �𝜀𝜀𝑐𝑐𝑐𝑐−𝜀𝜀
𝜀𝜀
�
2
 (2) 

where 𝑓𝑓𝑐𝑐′ is the compressive strength, 𝑓𝑓𝑐𝑐0 is the compressive stress when the plasticity phenomenon begins, and 𝜀𝜀𝑐𝑐𝑝𝑝 is 
the plastic strain. 

The crack band approach allows compressive and tensile strains in the post-peak regime to be transformed into 
nonlinear fracture mechanics model parameters. For example, the equivalent plastic strains (𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝 ) and fracture strains 
(𝜀𝜀𝑖𝑖𝑖𝑖
𝑓𝑓 ) are transformed into plastic displacements (𝑊𝑊𝑑𝑑) and crack openings (𝑤𝑤) through the crack band size parameters 

𝐿𝐿𝑐𝑐 and 𝐿𝐿𝑡𝑡, respectively. The crack band size depends on the size of the finite element and the orientation of the crack 
within it. In general, the crack band size for 𝐿𝐿𝑐𝑐 is calculated from the size of the element projected into the direction 
parallel to the crack and for 𝐿𝐿𝑡𝑡 into the direction perpendicular to the crack. The concrete behavior after reaching 
compressive strength is described by the downline shown in Figure 2b, whose area under the line represents the energy 
dissipated during compression failure. Additionally, a scheme of how the compression band size is determined is also 
shown. The plastic displacement that governs the brittleness of the concrete after the peak is reached can be determined 
by the product of 𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝  and 𝐿𝐿𝑐𝑐. According to experimental studies developed by Van Mier [29], this parameter may be 
assigned as 0.5 mm for concretes with normal strength. 

 
Figure 2. Compression models: a) hardening and b) softening. 
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Concrete compressive failure is conditioned by the triaxial failure criterion proposed by Menetrey and Willam [30]. 
It is represented geometrically by an envelope that defines the concrete compressive strength limit under the 
confinement effect. Figure 3a shows the axes σ1, σ2, and σ3 corresponding to the principal compressive stresses. The 
failure surface around the hydrostatic axis (σ1=σ2=σ3) is also presented. The parameters σ0 and τ0 associated with 
vectors contained in the hydrostatic axis and the deviatoric plane correspond to the hydrostatic compression stress and 
the deviatoric shear stress, respectively. Failure occurs when, for a given confinement level σ0, the deviatoric shear 
stress τ0 reaches the failure surface [31]. 

 
Figure 3. (a) Menétrey-Willam failure surface and (b) eccentricity [30]. 

The failure criterion proposed by Menetrey and William [30] incorporated into the ATENA material model is 
governed by Equation 3: 

𝐹𝐹(𝜉𝜉,𝜌𝜌,𝜃𝜃) = �√1.5 𝜌𝜌
𝑓𝑓𝑐𝑐′
�
2

+ 𝑚𝑚 � 𝜌𝜌
√6𝑓𝑓𝑐𝑐′

𝑟𝑟(𝜃𝜃, 𝑒𝑒) + 𝜉𝜉
√3𝑓𝑓𝑐𝑐′

� − 𝑐𝑐 = 0 (3) 

where 𝜉𝜉 and 𝜌𝜌 are the hydrostatic and deviatoric stress invariants, respectively; 𝜃𝜃 is the deviatoric polar angle, and 𝑓𝑓𝑐𝑐′ 
the axial compressive strength. Additionally, 𝑐𝑐 and 𝑚𝑚 are the friction and cohesion parameters of the material. 
The dimensionless parameter 𝑒𝑒 in the elliptic function 𝑟𝑟(𝜃𝜃, 𝑒𝑒) proposed by Klisinski [32] is known as eccentricity, and 
it allows the adjustment of the geometry of the surface (Figure 3b), being able to vary from a triangular (𝑒𝑒=0.5) to a 
circular shape (𝑒𝑒=1). 

Tensile behavior is described by the Hordijk softening function [33]. Figure 4 shows the dissipated energy once the 
material reaches maximum tensile strength, whereby the area under the curve is known as the fracture energy (𝐺𝐺𝐹𝐹). 
The curve is described by Equation 4: 

𝜎𝜎
𝑓𝑓𝑡𝑡

= �1 + �𝑐𝑐1
𝑤𝑤
𝑤𝑤𝑐𝑐
�
3
� exp �−𝑐𝑐2

𝑤𝑤
𝑤𝑤𝑐𝑐
� − 𝑤𝑤

𝑤𝑤𝑐𝑐
(1 + 𝑐𝑐13)exp (−𝑐𝑐2) (4) 

where 𝜎𝜎 is the normal tensile stress at the crack band, 𝑓𝑓𝑡𝑡 is the tensile strength, 𝑤𝑤 is the crack opening, and 𝑤𝑤𝑐𝑐 is the 
crack opening once energy has been completely dissipated. 

The 𝑐𝑐1 and 𝑐𝑐2 parameters are experimentally validated adjustment coefficients whose values are equal to 3 and 6.93, 
respectively. The value of 𝑤𝑤𝑐𝑐 can be estimated by Equation 5: 

𝑤𝑤𝑐𝑐 = 5.14 𝐺𝐺𝐹𝐹
𝑓𝑓𝑡𝑡

 (5) 
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Figure 4. Tensile softening model according to Hordijk [33]. 

The shear stiffness (𝐾𝐾𝑠𝑠) developed along the crack faces due to aggregate interlocking is considered by ATENA. 
It is calculated using Equation 6, where the normal stiffness of the crack plane (𝐾𝐾𝑤𝑤) is multiplied by a parameter known 
as the shear factor (𝑆𝑆𝐹𝐹). The shear factor relates the simultaneous action of the fracture on mode I (opening) and mode II 
(sliding). Based on a fit of experimental data, the ATENA software [3] recommends a value of 20 for conventional 
concrete. However, the shear stiffness can be influenced by aspects such as the type of aggregate, aggregate size, and 
the roughness of the crack faces. Therefore, values different from the recommended one may be used depending on the 
properties of the simulated concrete. 

𝐾𝐾𝑠𝑠 = 𝑆𝑆𝐹𝐹𝐾𝐾𝑤𝑤 (6) 

3.1.2 Reinforcement 

The constitutive model of concrete reinforcement followed a multilinear stress-strain relationship, whereby the 
behavior of steel bars is defined according to points of the tensile curve, where 𝑓𝑓1 is the yield strength, 𝑓𝑓2 and 𝑓𝑓3 are the 
hardening strength, and 𝑓𝑓4 is the ultimate stress of the steel, as shown in Figure 5. The function is also valid for bars 
subjected to compressive stress. Depending on these points, the model may also consider steel yielding and plastic 
hardening. For determining the behavior of steel bars, at least three parameters must be set, namely: elastic modulus 
(𝐸𝐸𝑠𝑠), yield stress (𝑓𝑓𝑦𝑦) and the failure point coordinates. 

 
Figure 5. Multilinear stress-strain relationship. 

The reinforcement was modeled with a discrete approach using truss elements incorporated into the concrete mesh. 
This element type only admits tensile and axial compression stresses, disregarding flexural and shear stiffness. 
However, the reinforcement slip caused by the debonding is considered by means of the fictitious interface composed 
of bond-link elements that connect the nodes of the truss and the concrete. When the maximum bond strength is 
reached, a relative slip is generated between the truss nodes and the concrete, and automatically a new nodal 
displacement is calculated for the reinforcement. In ATENA, it is possible to define a bond-slip function based on 
the CEB-FIP Model Code [34]. 
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3.2 Problem setup 
The numerical simulation of the reinforced concrete frame consisted of a bidimensional (2D) model. The model 

showed a closer capacity load with the real behavior when adopting a shear factor (𝑆𝑆𝑓𝑓) of 50, and a value of fracture 
energy (𝐺𝐺𝑓𝑓) close value to that expressed in the CEB-FIP Model Code [35]. Plastic strain at the compressive strength �𝜀𝜀𝑐𝑐

𝑝𝑝� 
and bond-slip curve (good bond with 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 10 MPa) were determined according to the CEB-FIP Model Code 90 [34]. 
Default values were used, such as reduction factor for compressive strength and strength at the onset of nonlinear behavior 
(𝑓𝑓𝑐𝑐𝑐𝑐) in the ATENA software [3]. Table 1 presents the variables used in the numerical simulation-NLFEA. 

Table 1. Mechanical properties of concrete and steel 

Parameter Concrete Long. Steel Transv. Steel Reference 
Elastic Modulus - 𝐸𝐸 23674 MPa 192500 MPa 200000 MPa [27] 

Hardening modulus - 𝐸𝐸𝑠𝑠ℎ / 3100 MPa 3100 MPa [27] 
Fracture energy - 𝐺𝐺𝑓𝑓 90 N/m / / [35] 

Shear factor - 𝑆𝑆𝑓𝑓 50 / / adopted 
Compression strength - 𝑓𝑓𝑐𝑐 30 MPa / / [27] 

Tensile strength - 𝑓𝑓𝑡𝑡 1.81 MPa / / [27] 
Strength at onset of nonlinear behavior - 𝑓𝑓𝑐𝑐𝑐𝑐 3.6 MPa / / [3] 
Plastic strain at compressive strength - 𝜀𝜀𝑐𝑐

𝑝𝑝
 
  0.00185 / / [34] 

Reduction factor of the compressive strength 0.8 / / [3] 
Yield strength - 𝑓𝑓𝑦𝑦 / 418 MPa 596 MPa [27] 

Ultimate strength - 𝑓𝑓𝑢𝑢 / 454 MPa 640 MPa [27] 
Yield strain - 𝜀𝜀𝑠𝑠 / 0.00217 0.00298 [27] 

Strain hardening - 𝜀𝜀𝑠𝑠ℎ / 0.0095 0.0095 [27] 
Ultimate strain - 𝜀𝜀𝑢𝑢 / 0.0669 0.0695 [27] 

Two load stages were used to perform numerical simulations under the same experimental conditions. In the first stage, 
a 700 kN vertical load was applied to 40 mm steel plates located in the upper face of C3 and C4 through force-controlled 
static analysis. In the second stage, a 140 mm horizontal displacement with 0.8 mm increments was applied to fixed steel 
plates connected to the C3 sideline through displacement-controlled quasi-static analysis, while the vertical forces of 700 kN 
applied in the first stage remained constant (Figure 6). The base of the structure was vertically and horizontally fixed. Iterative 
procedures were performed according to the modified Newton-Raphson method. The convergence criteria were as follows: 
1% for displacement error, residual force, and absolute residual force, and 0.1% for energy error. 

 
Figure 6. Boundary conditions scheme used in the numerical simulation. 
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Concrete was simulated with the 2D-NonlinearCementitious2 material model, using the four-node quadrilateral 
linear finite element with four integration points. In turn, longitudinal and transversal steel were simulated with the 
CCReinforcement material model using the two-node truss finite element with one integration point. Steel plates for 
vertical load and lateral displacement were simulated with CC3DElastIsotropic using the four-node quadrilateral linear 
finite element with four integration points. 

Three simulations with coarse, medium and fine mesh were performed to evaluate the finite element mesh 
sensibility, investigating the option that best approximates the experimental results. The coarse mesh model used 
100×100 mm elements, corresponding to 824 quadrilateral elements, 994 linear elements, and 2186 nodes. The medium 
mesh employed an 80×80 mm element size, resulting in 1262 quadrilateral elements, 994 linear elements, and 
2670 nodes. Finally, the fine mesh model employed 50×50 mm elements, which correspond to 3272 quadrilateral 
elements, 994 linear elements, and 4845 nodes, as shown in Figure 7. 

 
Figure 7. Discretization of finite element model with a) coarse mesh (824 quadrilateral elements, 994 linear elements, and 2186 nodes), 

b) medium mesh (1262 quadrilateral elements, 994 linear elements, and 2670 nodes), and c) fine mesh (3272 quadrilateral elements, 
994 linear elements, and 4845 nodes). 

4 NUMERICAL SIMULATION – NLSA 
The nonlinear static analysis is based on consecutive static analyses (F = KU) in which the forces and displacements 

are accumulated and the stiffnesses of the beam’s and column’s segments are updated. This work considers only the 
stiffness loss due to bending moment, disregarding cracks due to shear stress. 

The nonlinear static analysis is conformed by two main contributions: optimized frame finite element stiffness 
matrix and the axial-force-moment-curvature relationship. Unlike the frame finite element stiffness matrix, the 
optimized frame finite element stiffness matrix allows splitting beams and columns into segments without increasing 
the number of degrees of freedom of the system. The segmentation of beams and columns makes it possible to represent 
the stiffness loss of the structure more adequately and, consequently, its nonlinear behavior. This work uses a new 
expression for determining the stiffness matrix of a frame finite element of variable stiffness named optimized frame 
finite element stiffness matrix, shown in Equations 7-13. This way, the different levels of cracking (different stiffnesses) 
in an element are considered without adding degrees of freedom along the same elements. Further details and 
mathematical formulations of the method can be found in Martínez [36]. 
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𝐸𝐸𝑖𝑖𝐴𝐴𝑖𝑖

𝑛𝑛
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𝐶𝐶6 = 𝑙𝑙2

2
∑ 1

𝐸𝐸𝑖𝑖𝐼𝐼𝑖𝑖
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𝐶𝐶 = 𝐶𝐶2𝐶𝐶6 − 𝐶𝐶3𝐶𝐶5 (13)  

where 𝐾𝐾 is the optimized frame finite element stiffness matrix, 𝑙𝑙 is the segment’s length, 𝑛𝑛 is the number of segments 
of each beam or column, 𝐸𝐸𝑖𝑖 is the elastic modulus of segment 𝑖𝑖, 𝐼𝐼𝑖𝑖 is the moment of inertia of segment 𝑖𝑖, and 𝐴𝐴𝑖𝑖 is the 
cross-sectional area of segment 𝑖𝑖. 

On the other hand, the slope of the axial-force-moment-curvature diagram corresponds to the tangent stiffness (𝐸𝐸𝐼𝐼) 
of the section. It is used to update the stiffness of each segment in each new load application according to the 
accumulated axial force and bending moment. In the same way, the axial force-moment-curvature relationship of each 
section of the structure is updated in each new load application according to the accumulated axial force in each element. 
Several works related to the calculus of the moment-curvature relationship of a reinforced concrete section have been 
published [37]–[44]. 

In this work was used the model of Bazant and Oh [40], which suggests concrete with nonzero tension capacity and 
is represented by a stress-strain relationship that considers the progressive micro-cracking due to strain softening 
(Figure 8). In the model, a succession of 𝜀𝜀𝑐𝑐𝑚𝑚 values increasing in small increments is considered to calculate the 
moment-curvature diagram of an axial force. For each of them, depth 𝑘𝑘𝑘𝑘 to the neutral axis is obtained from 
Equation 14. Then, the bending moment and curvature are calculated as follows in Equations 15 and 16, respectively: 

𝑁𝑁 = 𝑘𝑘1𝑓𝑓𝑐𝑐′𝑏𝑏𝑘𝑘𝑘𝑘 + ∑ 𝜎𝜎𝑠𝑠𝑖𝑖𝐴𝐴𝑠𝑠𝑖𝑖 − 𝑘𝑘3𝑓𝑓𝑡𝑡′𝑏𝑏(ℎ − 𝑘𝑘𝑘𝑘)2
𝑖𝑖=1  (14) 

𝑀𝑀 = 𝑘𝑘1𝑓𝑓𝑐𝑐′𝑏𝑏𝑘𝑘𝑘𝑘 �
ℎ
2
− 𝑘𝑘2𝑘𝑘𝑘𝑘� + ∑ 𝜎𝜎𝑠𝑠𝑖𝑖𝐴𝐴𝑠𝑠𝑖𝑖 �

ℎ
2
− 𝑘𝑘𝑖𝑖� + 𝑘𝑘3𝑓𝑓𝑡𝑡′𝑏𝑏(ℎ − 𝑘𝑘𝑘𝑘) �ℎ

2
− 𝑘𝑘4(ℎ − 𝑘𝑘𝑘𝑘)�2

𝑖𝑖=1  (15) 

𝑘𝑘 = 𝜀𝜀𝑐𝑐𝑐𝑐
𝑘𝑘𝑑𝑑

 (16) 

where 𝑘𝑘1,𝑘𝑘2 are compressive stress parameters (see ref [40]); 𝑘𝑘3,𝑘𝑘4 are tensile stress parameters (see ref [40]); 𝑓𝑓𝑐𝑐′ is 
the compression strength of concrete; 𝑓𝑓𝑡𝑡′ is the direct tensile strength of concrete; 𝜀𝜀𝑐𝑐𝑚𝑚 is the strain of concrete at the 
compression face; 𝑏𝑏 is the cross-section width; 𝑘𝑘𝑘𝑘 is the depth to the neutral axis; 𝑘𝑘 is the depth to tensile reinforcement; 
𝜎𝜎𝑠𝑠𝑖𝑖;𝜎𝜎𝑠𝑠𝑖𝑖 are the stresses of compression and tension reinforcement; and 𝐴𝐴𝑠𝑠1,𝐴𝐴𝑠𝑠2 are the areas of compression and tension 
reinforcement. 
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Figure 8. Uniaxial stress-strain relations for concrete in (a) tension and (b) compression, (c) for steel, and (d) stress-strain 

distributions in the beam cross-section [40]. 

As discussed above, the slope of the axial-force-moment-curvature diagram corresponds to the tangent stiffness 
(𝐸𝐸𝐼𝐼) of the section. Therefore, the algorithm developed in this work considers the axial-force-moment-curvature 
relationship previously calculated at each new load application and creates a bending moment vs percentage of the 
initial stiffness table, as shown in the schematic of Figure 9. The algorithm uses the table to assign the corresponding 
EI value to each segment to generate the stiffness matrix of each element and consecutively the structure's stiffness 
matrix, following the equation 𝐹𝐹 = 𝐾𝐾𝐾𝐾. F refers to external forces applied to the structure, K is the global stiffness 
matrix of the structure, and U are the degrees of freedom of the structure. In this way, the mechanical and geometric 
properties of the reinforced concrete sections (concrete and steel) are considered when is updated the tangent stiffness 
𝐸𝐸𝐼𝐼 of each segment in the coefficients 𝐶𝐶1 − 𝐶𝐶6 (Equations 8-12) of the element’s stiffness matrix. 

This process is repeated until the accumulated moment in any segment of the structure exceeds the maximum 
moment of its axial force-moment-curvature relationship, as shown in Figure 10. 

 
Figure 9. Scheme of a) moment-curvature, b) initial stiffness variation-moment. 

 
Figure 10. Scheme of the numerical simulation using NLSA. 
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In the numerical simulation NLSA, when the structure was discretized with more than 60 segments, there were no 
significant differences in the results; therefore, the beams and columns were discretized in 14 and 16 segments, 
respectively (Figure 11). The methodology used 0.8 kN increments. 

 
Figure 11. Discretization of beams and columns (60 segments). 

5 VALIDATION OF RESULTS AND DISCUSSIONS 

5.1 Numerical simulation NLFEA, numerical simulation NLSA, and experimental test 

Table 2 presents the capacity load values of experimental and numerical simulation NLFEA with fine, 
medium, and coarse mesh for a horizontal displacement of 7.8 cm. In contrast, Figure 12 presents the cracking 
panoramas of each model NLFEA. Although the three simulations have shown cracks in the same regions, it is 
possible to observe that the parameters presented and a fine mesh model in the ATENA program allowed the 
capacity load closest to the experimental value since the stiffness and capacity load increased as the finite 
element size increased. 

Table 2. Ultimate load for experimental and numerical analysis. 

Model Mesh size Ultimate load [kN] Error [%] 
Experimental test  332 --- 

Coarse mesh 100 mm 345.1 3.8 
Medium mesh 80 mm 340.9 2.6 

Fine mesh 50 mm 332.8 0.24 
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Figure 12. Crack patterns of the frame for (a) fine, (b) medium, and (c) coarse mesh, with a 7.8 cm lateral displacement. 

Figures 13 and 14 show the comparison of cracking of the beam-column joint (B2-C3) and C1 column base with 
the experimental test, respectively. The fine mesh model presented a higher concentration of cracks due to the greater 
discretization of the mesh. However, all the models showed similarities with the cracking experimental. Thus, further 
comparisons with NLSA were performed using the fine mesh model. 

 
Figure 13. Crack patterns of the beam-column joint (B2-C3) for (a) fine, (b) medium, and (c) coarse mesh, with a 7.8 cm 

lateral displacement. 
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Figure 14. Crushing in the base of C1 column for (a) fine, (b) medium, and (c) coarse mesh, with a 7.8 cm lateral displacement. 

The ultimate load in the experimental analysis occurred at 332 kN. The load was equal to 332.8 kN and 344 kN in the 
numerical simulation using NLFEA and NLSA, respectively, corresponding to differences of 0.24% and 3.6% (Table 2). 
As shown in Figure 15, the numerical simulation with NLFEA and NLSA presented closer results when compared with 
the experimental test; however, the NLFEA showed a better agreement. Future analysis in the numerical simulation NLSA 
considering the role of geometrical nonlinearity could be developed to analyze its contribution to the calibration of the 
capacity curve. The results obtained in this study were compared with those of other authors [14], [17]. 

The numerical simulation using NLFEA and NLSA presented continuous stiffness loss and cracking in the elements, 
as evidenced in the experimental test. The NLSA finished with 430 load steps, reaching the maximum moment in the 
C2 base. Figure 16 illustrates all elements with 100% stiffness (without load applied). Table 3 shows the results obtained 
in the concrete beams and columns, while Table 4 presents the values achieved in the longitudinal bars. 

 
Figure 15. Capacity curve comparison (experimental, numerical simulation NLFEA (Atena) and NLSA, and other authors) [14], [17]. 



I. R. I. Palomo, J. J. Martínez, C. A. Benedetty, L. C. Almeida, L. M. Trautwein, and P. A. Krahl 

Rev. IBRACON Estrut. Mater., vol. 17, no. 2, e17210, 2024 14/19 

 
Figure 16. Discretization of the frame with 100% stiffness (without stiffness loss) [36]. 

Table 3. Comparison of results obtained in the concrete beams and columns. 

Element Numerical result -NLFEA Numerical result -NLSA Experimental result 
Flexural cracks in the beam B1 59.4 kN (Figure 17a) 61.6 kN – elements 1 and 14, 

stiffness: 41% (Figure 17b) 52.5 kN 

Flexural cracks at the base of 
the columns 152.8 kN (Figure 18a) 

145 kN – element 1, column C1, 
stiffness: 43% 

145 kN 
145 kN – element 1, column C2, 

stiffness: 50% (Figure 18b) 

Table 4. Comparison of results obtained in the longitudinal bars. 

Element Numerical result -
NLFEA Numerical result -NLSA Experimental result 

Yielding in the longitudinal 
reinforcement of beam B1 281.5 kN (Figure 19a) 

302.4 kN – element 1, stiffness: 0.75% 264 kN (top) 

302.4 kN – element 14, stiffness: 0.85% 
(Figure 19b) 287 kN (bottom) 

Yielding in the longitudinal 
reinforcement of column 326.1 kN (Figure 20a) 

320 kN – element 1, column C1, stiffness: 
0.81% 

323 kN 
335.2 kN – element 1, column C2, stiffness: 

2.7% (Figure 20b) 

Yielding in the longitudinal 
reinforcement of beam B2 326.1 kN (Figure 20a) 

340.8 kN – element 1, stiffness: 1.0% 
329 kN 

340.8 kN – element 14, stiffness: 0.75% 
(Figure 21) 
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Figure 17. Flexural cracks at the B1 beam according to the (a) numerical simulation at a 59.4 kN load and (b) the percentage of 

stiffness at a 61.6 kN load. 

 
Figure 18. Flexural cracks at the base of columns according to (a) numerical simulation at a 152.8 kN load and (b) the percentage 

of stiffness at a 145 kN load. 

 
Figure 19. Longitudinal steel yielding at the B1 beam ends: (a) numerical simulation at a 281.5 kN load and (b) the percentage of 

stiffness at a 302.4 kN load. 
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Figure 20. Longitudinal steel yielding at columns base: (a) numerical simulation at a 326.1 kN load and (b) the percentage of 

stiffness at a 335.2 kN load. 

 
Figure 21. Percentage of stiffness at a 340.8 kN load. 

The NLSA allows the determination of the stiffness loss history in all structure elements for each load step (Figure 22). 
The results showed that B1 beam was the most critical for stiffness loss, followed by B2 beam and C1 and C2 columns, 
while C3 and C4 columns presented less structural damage. These results are consistent with the behavior obtained in the 
numerical simulation NLFEA and experimental test, demonstrating the expression to determine the stiffness matrix 
proposed is adequate to represent the stiffness loss and ultimate capacity load of reinforced concrete elements. 
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Figure 22. Stiffness loss sequence. 

6 CONCLUSIONS 
In this study, nonlinear methodologies for studying the structural behavior of a reinforced concrete frame subjected 

to monotonic load were analyzed through a numerical simulation with nonlinear finite element analysis (NLFEA) and 
a numerical simulation with optimized nonlinear static analysis (NLSA). Equations for determining the optimized frame 
finite element stiffness matrix in the NLSA were presented. Based on the results of the validation, this study allows us 
to infer that: 
• The ultimate loads obtained in the fine-mesh numerical simulation NLFEA and NLSA were close to those obtained 

in the experimental test. The numerical simulation NLFEA showed good accuracy regarding crack patterns and 
longitudinal steel yielding due to adequate parameters and mesh discretization. These findings indicate that both 
analyses could be employed to study reinforced concrete elements cracking. 

• The numerical simulation NLSA with stiffness degradation allowed the analysis of the nonlinear behavior of 
reinforced concrete elements with monotonic lateral and constant vertical loads. The stiffness loss observed in the 
numerical simulation NLSA showed the same sequence as those verified in the experimental test and numerical 
simulations by finite elements. 

• The model proposed by Bazant and Oh [40] for determining the moment–curvature diagram in the numerical 
simulation NLSA showed a higher ultimate load for the capacity curve than the experimental test. 

• When applied to the reinforced concrete, the numerical simulation NLSA indicated the low-stiffness regions 
(cracked zones) and ultimate load in the structure – important parameters for the structural design. The most critical 
section in the frame was the B1 beam, showing the first cracks and stiffness loss. 

• The numerical simulation with NLFEA can reproduce the nonlinearity behavior of structural elements using 
material nonlinearity, bonding properties, and boundary conditions. However, it is worth highlighting that it requires 
a high computational cost. 

• The numerical simulation NLSA allows discretizing beams and columns in segments without increasing degrees of 
freedom along the element through the utilization of an optimized frame finite element stiffness matrix, simplifying 
the calculation of the results in the structure. 

• Future research, including geometrical nonlinearity in the numerical simulation with NLSA is recommended to be 
developed to compare its influence on the results. 
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