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Introduction

Gastrointestinal nematodes (GINs) are a worldwide health 
problem for animals. In livestock, parasitic diseases constitute 
one of the biggest barriers to animal production, directly 
affecting productivity and leading to high economic losses 

(GRISI et al., 2014). The increasing nematode resistance to 
commercially available drugs, in addition to the presence of 
residues from these drugs in the environment and in foods of 
animal origin (SALGADO & SANTOS, 2016), which may 
affect consumer health, has encouraged research to develop 
alternative methods for control. Based on this scenario, it 
remains an important challenge to find biologically active 
compounds that are effective and at the same time less harmful 
to the environment.
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Abstract

Gastrointestinal nematode infection is an important cause of high economic losses in livestock production. 
Nematode control based on a synthetic chemical approach is considered unsustainable due to the increasing incidence 
of anthelmintic resistance. Control alternatives such as the use of natural products are therefore becoming relevant from 
an environmental and economic point of view. Proteins are macromolecules with various properties that can be obtained 
from a wide range of organisms, including plants and fungi. Proteins belonging to different classes have shown great 
potential for the control of nematodes. The action of proteins can occur at specific stages of the nematode life cycle, 
depending on the composition of the external layers of the nematode body and the active site of the protein. Advances 
in biotechnology have resulted in the emergence of numerous protein and peptide therapeutics; however, few have been 
discussed with a focus on the control of animal nematodes. Here, we discuss the use of exogenous proteins and peptides 
in the control of gastrointestinal.

Keywords: Bioactive proteins, protease, chitinase, lectin, peptides.

Resumo

A infecção por nematoides gastrintestinais é uma importante causa de grandes perdas econômicas na pecuária. 
O controle de nematoides com compostos químicos sintéticos é considerado insustentável devido ao aumento da 
resistência anti-helmíntica. Alternativas de controle, como o uso de produtos naturais, estão se tornando relevantes do 
ponto de vista ambiental e econômico. As proteínas são macromoléculas com várias propriedades que podem ser obtidas 
de uma ampla gama de organismos, incluindo plantas e fungos. Proteínas pertencentes a diferentes classes têm mostrado 
grande potencial para o controle de nematoides. A ação das proteínas pode ocorrer em estágios específicos do ciclo de 
vida do nematoide, dependendo da composição das camadas externas do parasito e do sítio ativo da proteína. Avanços na 
biotecnologia resultaram no surgimento de numerosas terapias de proteínas e peptídeos; no entanto, pouco foi discutido 
com foco no controle de nematoides parasitos de animais. Na presente revisão foi discutido o uso de proteínas exógenas 
e peptídeos no controle de nematoides gastrintestinais, os mecanismos sugeridos de ação, e os desafios e perspectivas 
para o uso dessas biomoléculas como uma classe de anti-helmínticos.
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An alternative is to exploit naturally occurring compounds 
that exist in fungi and plants (BEHNKE et al., 2008; LIU et al., 
2016). Currently, there is increasing progress in the exploration of 
biomolecules for controlling parasites, mostly regarding compounds 
of plant origin with satisfactory results. However, most studies on 
the use of anthelmintic plant and fungi compounds against GINs 
are carried out with non-protein-based low-molecular-weight 
compounds. Proteins, the most abundant macromolecules in 
living beings, perform various functions, including the formation 
of structure and the regulation of metabolism and defense 
(MOHANTY  et  al., 2014). Among a wide range of natural 
products, proteins have emerged as promising molecules due 
to their high pharmacological and biotechnological potential 
(DIMITROV, 2012).

Advances in biotechnology have resulted in the emergence of 
numerous protein and peptide therapeutics. In the last 10 years, 
the number of papers published about therapeutic proteins has 
increased by 88%. The numbers of therapeutic proteins approved 
and under clinical trials in humans are increasing exponentially 
(PATEL et al., 2014). The use of genetic engineering and drug 
delivery to produce and distribute therapeutic proteins have also 
undergone development. However, few studies have explored 
the use of proteins against GINs. This review discusses the use of 
proteins from plants and fungi as a potential alternative tool for 
the control of GINs in animals.

Plant and Fungal Proteins

Plants possess a wide spectrum of defenses against infections, 
including phytonematodes. These plant proteins are called 
pathogenesis-related (PR) proteins. PR proteins, such as protease 
(Hydrolase), lipase (Hydrolase), and collagenase (metalloproteinases) 
are capable of causing harmful effects on the cuticle structure 
of phytonematodes, leading to death or decreasing motility 
(MILLER & SANDS, 1977). The effectiveness of PR proteins 
in plant defense is already well known, and it has been proven 
that PR proteins can also be effective in the control of parasites 
and pathogens in other living beings.

Similar to plants, fungi can also be sources of bioactive proteins. 
Nematophagous fungi are natural enemies of free-living nematodes 
and gastrointestinal helminth parasites. They can be found in 
diverse environments and have been shown to be effective as 
biocontrol agents (KERRY & HIDALGO, 2004; ARAUJO et al., 
2013). Secreted proteins play important roles in fungus-host and 
fungus-environment interactions as well as in fungal pathogenicity. 
Acid phosphatases, chitinases, chitosanases, lipases and serine 
proteases are hydrolases produced by nematophagous species. 
These enzymes are crucial in the infection process (SEGERS et al., 
1994; WANG et al., 2006; CRUZ et al., 2009; MI et al., 2010; 
ARANDA-MARTINEZ et al., 2016; ESCUDERO et al., 2016). 
These enzymes are responsible for the physical and physiological 
destabilization of the nematode cuticle and may interfere with its 
life cycle and/or lead to death (BRAGA et al., 2011; LIN et al., 
2018). The penetration of the nematode cuticle by the fungi has 
been assumed to be due to a combination of physical activity and 
hydrolytic enzymes including phosphatases (WANG et al., 2006). 

Although the use of proteins derived from fungi with anthelmintic 
activity is extremely promising, few papers address this subject, 
thus having little information on extraction, purification or 
laboratory/industrial scale protein production for use as anthelmintic.

Proteins Targeting Gastrointestinal 
Nematodes

The action of proteins can occur at specific stages of the nematode 
life cycle, depending on the composition of the external layers of 
the nematode and the active site of the protein. However, further 
studies are needed to evaluate the biochemical properties of these 
effects. For instance, although the cuticle substrates for proteases 
are still unknown, they are strong potential candidates for novel 
targets of much-needed new drugs or vaccines (PAGE et al., 2014).

The egg membrane is formed by different layers: a basal layer 
composed of lipids and proteins; a chitin medial layer; and an outer 
vitelline layer (MANSFIELD et al., 1992). Thus, the cuticle and 
the egg membrane can be targets for attack by proteins such as 
proteases, lectins, chitinases, lipases and collagenases. The activity 
of plant proteins against Haemonchus contortus eggs has recently 
been suggested (SALLES et al., 2014; SOARES et al., 2015a), 
indicating a new direction for research aiming to develop new 
anthelmintic products.

It has been suggested that some proteins are nematode 
cuticle-degrading enzymes or act on the egg membrane. The cuticle 
is an outer covering essential for the growth, movement and survival 
of the nematodes. This structure may differ among nematode 
species and even among life stages of the same species; however, 
it presents a basic structural form consisting essentially of proteins 
with small amounts of lipids and carbohydrates. The cuticle has 
layers with different compositions: the basal and medial layers, 
consisting of collagen; the epicuticular and outer cortical regions, 
consisting of other noncollagenous proteins; and nonstructural 
proteins associated with the external surface as glycoproteins (BIRD 
& BIRD, 1991; FETTERER & RHOADS, 1993).

The third- and fourth-stage larvae (L3 and L4, respectively) and 
the adult stages of H. contortus each express a unique, restricted set 
of surface proteins. In the adult nematode, 80% or more of the 
cuticle is composed of collagens. In addition to the quantitative 
increases in cuticular collagens during development, qualitative 
differences have also been observed. Some adult surface proteins are 
glycosylated and show a strong affinity for wheat germ agglutinin 
(FETTERER & RHOADS, 1993; PAGE et al., 2014).

Anthelmintic Proteins

Plant extracts or latex, which is rich in proteins, have 
been used for the treatment of worm infections by the native 
inhabitants of Central and South America since over a century 
ago (LEVECKE et al., 2014; LIEN & LOWMAN, 2003). Indeed, 
European doctors used proteases such as papain and papaya latex 
for the treatment of worms in the 19th century (LIU et al., 2011; 
LUO et al., 2013).
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Proteases

Proteases can be classified as acidic (pH from 2.0 to 6.0), neutral 
(pH of 6.0 to 8.0) or alkaline (pH 8.0 to 13.0) according to the 
optimum pH for activity (LIU & KOKARE, 2017). The optimum 
pH of a protein has a practical use in gastrointestinal nematode 
control because the pH of the digestive organs varies. Thus, the 
strength of the effect of some proteins against nematodes can 
depend on their habitat. Some proteases require additional chemical 
components to be active, such as metal ions or complex organic 
molecules named coenzymes.

Plant latex, which is normally rich in proteases, has traditionally 
been used to treat parasitic infections in humans (HANSSON et al., 
1986) and animals (CALDWELL & CALDWELL, 1929; 
SATRIJA et al., 1994), but one of the first reports of the protein 
nature of the anthelmintic activity was made by Robbins (1930), 
who identified a cysteine protease named ficin, from Ficus spp., 
capable of degrading the cuticle of Ascaris suum. A similar effect 
was observed when A. suum and H. contortus were treated in vitro 
with bromelain from Ananas comosus (BERGER & ASENJO, 
1939; DOMINGUES et al., 2013) and pure crystalline papain 
from Carica papaya (BERGER & ASENJO, 1940). These proteins 
quickly led to in vitro ulcerations in the cuticle of the nematode, 
followed by digestion. However, in vivo evaluation of bromelain 
on sheep did not reduce H. contortus (DOMINGUES et al., 2013)

Cysteine proteases produced by plants play a crucial role not 
only in the regulation of metabolism but also, predominantly, in 
defense, exhibiting direct action on herbivores, pathogens and 
nematodes (WANG  et  al., 2014). It is believed that GINs in 
the parasitic life cycle does not express defenses against cysteine 
proteases because mammals do not secrete these enzymes in the 
digestive tract (BEHNKE et al, 2008). Thus, cysteine proteases 
are under investigation in bioassays in vitro and in vivo against 
nematode parasites in animals.

Cysteine proteases from papaya latex (C. papaya) are effective in 
controlling infection by Trichuris suis in pigs with low (inoculation 
of 300 eggs) and high (inoculation of 3,000 eggs) levels of infection. 
A single dose of 450 µmol of this protease had higher efficacy 
than a single dose of 400 mg albendazole. The animals showed 
a reduction in the fecal egg count and worm burden, with an 
efficiency higher than 97% (LEVECKE et al., 2014).

The anthelmintic action of cysteine proteases was evaluated for 
parasites of different regions of the digestive tract in experiments 
using small rodent nematodes as a model. Different plant cysteine 
proteases were shown to be potent in vivo against the nematodes 
Heligmosomoides bakeri (small intestine parasite) and Trichuris 
muris (large intestine parasite). Therefore, the cysteine proteases 
remained active and resistant to hydrolysis while passing through 
the entire gastrointestinal tract. However, anthelmintic action 
against Protospirura muricola (stomach parasite) was observed 
only when the acidity of the host’s stomach was neutralized before 
the administration of proteases, indicating that enzymes can be 
effective when administered appropriately (STEPEK et al., 2006; 
2007a, b).

Although papain and papaya latex were used for the treatment 
of worms in the 19th century, the enzymatic basis was more recently 
discovered (BEHNKE et al., 2008). In vitro nematicide activity 

against H. bakeri, T. muris and P. muricola was observed, and the 
mechanism of action of these proteases was proposed. Both the 
crude extract and the purified enzymes of papaya latex (C. papaya), 
fig (Ficus benjamina and Ficus carica), pineapple (A. comosus) and 
Asclepias sinaica were effective against female and male adults of 
the nematode H. bakeri. The purified proteases showed higher 
efficiency than crude extracts, and the anthelmintic action of the 
crude extracts was completely inhibited by a cysteine protease 
inhibitor (E-64) (STEPEK  et  al., 2005). Additionally, it was 
observed that the action of papain on H. bakeri is independent of 
host sex and worm load (LUOGA et al., 2015). The same crude 
extracts that showed efficacy against H. bakeri were also active 
against T. muris and P. muricola. The authors suggest that cysteine 
proteases attack the nematode cuticles, reducing motility. This 
attack weakens the cuticle, and the hydrostatic pressure inside 
the body leads to parasite disintegration (STEPEK et al., 2006, 
2007a). However, actinidain, a protease obtained from a fruit 
juice, did not damage the cuticle of nematodes, suggesting that 
the efficacy depends on the protease type and the nematode target 
(STEPEK et al, 2006, 2007a, b).

The sequence of events of nematode-trapping fungi infection occur 
by a combination of physical activity and hydrolytic enzymes including 
proteases as subtilisin-like serine protease family and collagenase, 
a metalloprotease (JANSSON & NORDBRING-HERTZ, 1988; 
WANG  et  al., 2006). A subtilisin-like serine protease from 
Arthrobotrys oligospora fungus (produced in heterologous system 
Pichia pastoris) exhibits anthelmintic action against Caenorhabditis 
elegans and H. contortus. The recombinant protein displayed 
biological activity to immobilize the nematodes by degrading 
their cuticles, inducing death (JUNWEI et al., 2013). The fungus 
Duddingtonia flagrans produces a serine protease capable of 
reducing by 58% the third-stage larvae (L3) of the cyathostome 
(Nematoda-Cyathostominae) (BRAGA et al., 2012). This class 
of protease is involved in the infection process carried out by 
D. flagrans and can change according to which nematode are 
infect as showed by Cruz et al. (2015) in trichostrongylides and 
free-living nematodes. However, it is believed that nematodes have 
defenses against this protease class since they are abundant in the 
gut of mammals (ZANG & MAIZELS, 2001).

Collagenases are proteases that catalyze the hydrolysis of 
collagen, a component of the cuticle of nematodes. However, to 
the best of our knowledge, there are no reports on the application 
of these enzymes in the control of GINs. The proteins of the 
egg membrane of H. contortus are not degraded by collagenase, 
probably because collagen plays no important role in maintaining 
this structure (MANSFIELD et al., 1992).

Chitinases

These enzymes are widely distributed in nature and are 
found in many living organisms, where they play roles related to 
nutrition, defense, nutrition and parasitism. In plants, chitinases 
are produced mainly for defense against insects and several stages 
of nematodes, such as eggs (JAVED et al., 2013). Recently, plant 
chitinases have also been associated with activity that reduces GIN 
egg hatching (SOARES et al., 2015a).
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It is well known that chitinase plays an essential role in the success 
of nematicidal fungi (TIKHONOV et al., 2002). The treatment 
of nematode eggs with chitinase causes the formation of large 
vacuoles in the chitin layer and loss of integrity in the vitelline 
layer. Chitinases from the nematophagous fungi D. flagrans and 
P. chlamydosporia presented anthelmintic properties against the 
larvae of Strongyloides westeri, a small intestine parasite from horses 
(BRAGA et al., 2014). However, depending on the chitinase source, 
different effects on hatchability can be observed. For instance, 
fungal chitinase reduced Meloidogyne javanica egg hatching, 
while bacterial chitinase increased egg hatching (KHAN et al., 
2004). It is known that chitinases are able to degrade the cuticle 
of H. contortus eggs (MANSFIELD et al., 1992) and the effect 
of variables to in vitro chitinases production by nematophagous 
fungi are already determined (SOARES et al., 2015b). However, 
to the best of our knowledge, the potential of this enzyme against 
GINs is poorly studied.

Lectins

The toxicity of lectins is related to their binding capacity on 
the target organisms (BUTSCHI et al., 2010). Lectin binding 
on the intestinal epithelium surface of C. elegans inhibits larval 
development and may lead to death of the nematode (BUTSCHI et al., 
2010). Despite the specificity of lectins for certain carbohydrates, 
these proteins can affect nematodes that possess similar glycan 
structures. For instance, the free-living nematode C. elegans has 
similar glycan structures to those of H. contortus (PASCHINGER 
& WILSON, 2015). The larval development of H. contortus is 
affected by low amounts of four different fungal lectins that bind 
to the larval gut and interact with gastrodermal glycans of adult 
tissue (HEIM et al., 2015).

Different lectins (phytohemagglutinin, wheat germ agglutinin 
and concanavalin A) inhibit the larval feeding of GINs of sheep 
and goats in vitro: Teladorsagia circumcincta, Trichostrongylus 
colubriformis and H. contortus (RIOS-DE-ALVAREZ et al., 2012a). 
Although the mechanism of action of these lectins was not well 
elucidated in this study, the authors observed that wheat germ 
agglutinin causes damage to the cuticle of T. circumcincta. Previous 
studies indicated that ConA, soybean agglutinin (SBA) and WGA 
inhibit the migration of Strongyloides ratti larvae by binding to 
chemical sensors around the mouth or inner labial sensilla of the 
nematode (TOBATA-KUDO et al., 2005).

Orally administered plant lectins reduce the fecal egg count 
of sheep infected with T. circumcincta and T. colubriformis 
(RIOS-DE-ÁLVAREZ et al., 2012b). It is suggested that lectin 
directly reduces fertility or indirectly stimulates the immune 
system, since infected and lectin-supplemented animals showed 
higher numbers of eosinophils and a tendency toward increased 
numbers of helper T cells.

Additionally, the lectin of Marasmius oreades fungus has 
a Ca++-dependent domain with enzymatic activity. The nematicidal 
activity of M. oreades depends on lectin binding to glycosphingolipids, 
but the proteolytic activity plays a key role in the toxicity mediated 
by this fungus (WOHLSCHLAGER et al., 2011).

Formulation of Protein Drugs

Although plant non-protein based low molecular weight 
compounds have dominated the study of natural products, several 
proteins are the subject of studies, including research on drug 
development for oral administration (BARSBY, 2006; MORISHITA 
& PEPPAS, 2006; NAGANO & TSUTSUMI, 2016).

The selection of optimal methods of administration and 
formulation presents a major challenge to the use of proteins as 
a new anthelmintic class against GIN in livestock. Therefore, it 
should take into account the physicochemical characteristics and 
mechanism of action of the proteins and the parasite habitat. 
Despite the difficulties inherent in administration, increasing 
biotechnological advances have been achieved, and various 
proteins are under study, including drug development for direct 
oral administration (MORISHITA & PEPPAS, 2006).

The activity of a protein is strictly dependent on its 
physicochemical structure. External factors such as temperature, 
pH, some metals and oxidizing and denaturant agents may cause 
physical and/or chemical instability in the protein structure. This 
instability can be reversible or irreversible and can lead to loss of 
function (NELSON & COX, 2006).

Another important fact to consider regarding the use of proteins 
as anthelmintic is their possible degradation by proteases that 
are abundant in the gastrointestinal tract, including in ruminal 
fermentations and depending on the local environmental conditions 
(e.g., pH). Thus, stability and protection from degradation are 
of outmost importance, since they determine the viability of the 
production of potential anthelmintic proteins. In this context, the 
formulation is a crucial step in the development of protein drugs 
for oral delivery because it aims to protect and promote higher 
availability of the protein in nematode habitat organs.

Much of what is known about the formulation and delivery of 
protein drugs comes from studies with therapeutic proteins used 
in the treatment of human physiological disorders. Currently, 
there are many protein-based drugs in the pharmaceutical market 
and various strategies and formulations to protect molecules. 
For instance, emulsions protect the molecule from acidity and 
intestinal proteases, increasing intestinal permeability; microspheres 
prevent proteolytic degradation in the stomach and in the upper 
small intestine and restrict the release of proteins to a more favorable 
region of the gastrointestinal tract; liposomes improve physical 
stability and increase the permeability of the cell membrane; 
and nanoparticles prevent enzymatic degradation and enhance 
the absorption of the intestinal epithelium. In addition, other 
approaches, such as hydrophobization, amino acid modification, 
absorption enhancers and mucoadhesive polymeric systems, can 
promote the protection, stability and absorption of the protein 
and allow it to reach the site of action (SHAJI & PATOLE, 2008; 
DIMITROV, 2012).

The incorporation of proteins into a chitosan and alginate matrix 
is an encapsulation method that has shown positive results for 
the protection of these biomolecules (GEORGE & ABRAHAM, 
2006). The combination of alginate and chitosan protects the 
protein bovine serum albumin (BSA) from proteolytic enzymes 
in the fish Sparus aurata. A higher release of the protein into the 
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fish lumen was also verified, indicating efficient encapsulation 
(SAEZ et al., 2015).

Therefore, it is possible to note that beyond baseline prospective 
research, efforts have been made to elucidate the mechanism of 
action involved in the anthelmintic capacity of proteins. From 
this perspective, the use of proteins as drugs has become an 
increasingly viable reality.

Therapeutic proteins are one of the fastest growing segments in 
the pharmaceutical market, and their study has undergone several 
generations of development to achieve increasingly viable products 
from a commercial point of view. The commercial advantages 
of these proteins include simplicity of production at relatively 
low cost, reduced risk of side effects and high bioavailability 
(MARTIN, 2006).

Final Considerations

It is necessary to conduct systematic tests and develop appropriate 
formulations with plant and fungal proteins, taking into account 
the particularities of each region of the digestive tract, for oral 
delivery systems. Although there are many techniques for the 
formulation of protein-based drugs and the possibility of obtaining 
proteins on an industrial scale by recombinant DNA techniques, 
most studies are directed to the treatment of human diseases.

Although orally administered proteins have presented nematicidal 
effects during in vivo experiments with infected animals, some 
difficulties may occur due to the harsh conditions of the digestive 
tract, such as the intense proteolysis and low pH in the stomach, 
conditions not supported by certain types of proteins. In the 
current context, the use of preparations enriched in proteins that 
have nematicidal properties administered in the form of food 
additives may be a viable solution for use in the field.

At present, taking into account that several studies carried out 
experiments with enzyme-containing extracts, while only a few 
experiments have used purified proteins against gastrointestinal 
nematodes in small ruminants, it seems that proteases, chitinases, 
lectins and other proteins have the potential to be introduced in the 
market in the medium term if some points can be clearly elucidated: 
(I) the chemical characteristics of the proteins; (II) the mode of 
action and safety; (III) doses; (IV) tolerability; (V) anthelmintic 
resistance; (VI) increased in vivo performance by combination with 
other enzymes or treatments; and (VII) large-scale production by 
molecular biology techniques.
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