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Abstract
This study aimed to chemically characterize the essential oils (EOs) of Cinnamomum zeylanicum (cinnamon) 
and Eremanthus erythropappus (candeia) and evaluate their acaricidal activity, together with that of their major 
compounds and cinnamyl acetate derivative, against Rhipicephalus microplus. Essential oil compounds were 
identified through gas chromatography. The larval packet test (LPT) at concentrations ranging from 0.31 to 
10.0 mg/mL and the adult immersion test (AIT) at concentrations between 2.5 and 60.0 mg/mL were performed. 
(E)-cinnamaldehyde and α-bisabolol were the major compounds in cinnamon (86.93%) and candeia (78.41%) EOs, 
respectively. In the LPT, the EOs of cinnamon and candeia and the compounds (E)-cinnamaldehyde, α-bisabolol and 
cinnamyl acetate resulted in 100% mortality at concentrations of 2.5, 2.5, 5.0, 10.0 and 10.0 mg/mL respectively. 
In the AIT, percentage control values > 95% were observed for cinnamon and candeia EOs, (E)-cinnamaldehyde 
and α-bisabolol at the concentrations of 5.0, 60.0, 20.0, and 20.0 mg/mL, respectively, whereas cinnamyl acetate 
showed low activity. We conclude that EOs and their compounds showed high acaricidal activity, whereas the 
acetylated derivative of (E)-cinnamaldehyde presented less acaricidal activity on R. microplus engorged females.

Keywords: Cattle tick, cinnamon, candeia, (E)-cinnamaldehyde, α-bisabolol.

Resumo
Este estudo teve como objetivo caracterizar quimicamente os óleos essenciais (OE) de Cinnamomum zeylanicum 
(canela) e Eremanthus erythropappus (candeia) e avaliar sua atividade acaricida, juntamente com a de seus 
principais compostos e do derivado de acetato de cinamila, sobre Rhipicephalus microplus. Os compostos do óleo 
essencial foram identificados por cromatografia gasosa. Foram realizados o Teste de Pacote de Larvas (TPL), em 
concentrações variando de 0,31 a 10,0 mg/mL, e o Teste de Imersão de Adultos (TIA), em concentrações entre 2,5 e 
60,0 mg/mL. (E)-cinnamaldeído e α-bisabolol foram os principais compostos nos OE da canela (86,93%) e da candeia 
(78,41%), respectivamente. No TPL, os OEs de canela e candeia, e os compostos (E)-cinnamaldeído, α-bisabolol e 
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acetato de cinamila resultaram em 100% de mortalidade nas concentrações de 2,5, 2,5, 5,0, 10,0 e 10,0 mg/mL, 
respectivamente. No TIA, valores percentuais de controle >95% foram observados para OE de canela e candeia, 
(E)-cinnamaldeído e α-bisabolol nas concentrações de 5,0, 60,0, 20,0 e 20,0 mg/mL, respectivamente, enquanto 
o acetato de cinamila apresentou baixa atividade. Conclui-se que os OEs e seus compostos apresentaram alta 
atividade acaricida, enquanto o derivado acetilado do (E)-cinnamaldeído apresentou menor atividade acaricida 
em fêmeas ingurgitadas de R. microplus.

Palavras-chave: Carrapatos dos bovinos, canela, candeia, (E)-cinamaldeído, (α)-bisabolol.

Introduction
Rhipicephalus microplus (Canestrini, 1888), also known as the cattle tick, can cause several types of harm 

to livestock. In addition, this species is a limiting factor for the productive success of cattle raising (Labruna & 
Machado, 2006; Furlong et al., 2007). The annual economic losses caused by this ectoparasite in Brazil can reach 
US$ 3.24 billion (Grisi et al., 2014), while the annual losses estimated worldwide range from US$ 22 to 30 billion 
(Lew-Tabor & Rodriguez Valle, 2016).

Currently, the main tick control method consists of use of synthetic acaricides. These provide relatively fast 
and cost-effective suppression of populations and are easily available on the market (Abbas et al., 2014). However, 
continuous use of these products can lead to issues such as environmental contamination, residues in milk and 
meat, and development of resistant tick populations (Graf et al., 2004). These issues have motivated the development 
of new tick control technologies (Zaman et al., 2012).

Studies have shown that essential oils (EOs) extracted from aromatic plants are an ecologically sustainable 
(eco-friendly) alternative with potential for use in tick control. Among the characteristics of EOs that favor their 
use, it is worth emphasizing the fact that they derive from renewable resources, delay the selection of resistant 
populations because they present a complex mixture of compounds, and present lower risk of environmental 
and animal harm because of their high biodegradability rates and low toxicity in mammals (Borges et al., 2011; 
Madzimure et al., 2011; Liu et al., 2017).

Species of the Asteraceae and Lauraceae families are among the plants from which EOs with potential for tick 
control can be extracted. Cinnamomum zeylanicum Blume (cinnamon) (synonym - Cinnamomum verum) is a plant 
of the Lauraceae family from which the essential oil has been successfully tested for biological activity against 
bacteria (Mishra et al., 2008), fungi (Carmo et al., 2008), insects (Yang et al., 2005) and ticks (Monteiro et al., 2017; 
Jyoti et al., 2019; Nwanade et al., 2021). (E)-cinnamaldehyde is the main constituent in the essential oil extracted 
from C. zeylanicum bark. This phenylpropanoid presents activity against bacteria and arthropods (Shen et al., 2012; 
Senra et al., 2013; Novato et al., 2015).

Eremanthus erythropappus (DC.) MacLeish (candeia) (synonym - Vanillosmopsis erythropappa) is a Brazilian native 
tree species of the Asteraceae family whose essential oil presents biological activity against fungi (Teixeira et al., 
2015). However, no reports on its acaricidal activity are known. E. erythropappus essential oil is the main source of 
α-bisabolol, which is a sesquiterpene that presents activity against bacteria (Kamatou & Viljoen, 2010), inflammatory 
diseases (Leite et al., 2011) and cancer (Kamatou & Viljoen, 2010).

Studies focused on investigating structural modifications in substances extracted from EOs, based on changes 
in functional groups, have been conducted in order to enhance the biological activity or increase the biosafety of 
these compounds (Kim et al., 2015). These changes include the acetylation process based on introduction of an 
acetate group. This process, which replaces the hydroxyl group (-OH) with the acetate group, provides molecules 
with greater cuticular permeability, thus facilitating absorption into the arthropod (Lanusse & Prichard, 1993). In 
addition, it is less toxic to mammals (André et al., 2016, 2017), which makes its acaricidal use safer both for animals 
and for the environment. According to some studies, the acetylation process can increase the activity of these 
compounds on bacteria, insects and ticks (Mathela et al., 2010; Scotti et al., 2014, Ramírez et al., 2016).

The aims of the present study were to chemically characterize the EOs extracted from E. erythropappus stems 
and C. zeylanicum bark; and to evaluate the acaricidal activity of these oils, their major compounds and the (E)-
cinnamaldehyde acetylated derivative (= cinnamyl acetate) against unfed larvae and engorged females of R. microplus.
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Chemical analysis of essential oils

The EOs were subjected to qualitative analysis of their chemical composition through gas chromatography 
coupled with mass spectrometry (GC/MS) using the Shimadzu GC-2010 device (quadrupole) with the following 
characteristics: electron impact at 70 eV; RTX-5MS methylpolysiloxane column (30 m x 0.25 mm x 0.25 μm; Restek®); 
1:100 split injection mode; helium carrier gas flow rate of 1.00 mL/min; and the following temperatures: injector 
250 °C, transfer line 250 °C and ion source 230 °C. The gas chromatography oven was programmed as follows: 
initial temperature of 70 °C; heating ramp of 4 °C/min up to 180 °C; and temperature increase rate of 10 °C/min 
up to 250 °C at the end of the run (34.5 min).

The quantitative analysis applied to the chemical composition of the EOs was performed through gas 
chromatography coupled to flame ionization detection (CG/FID) using a Shimadzu GC-2010 Plus spectrometer set 
up as follows: RTX-5 methylpolysiloxane column (30 m × 0.25 mm × 0.25 μm); split injection mode (1:30); nitrogen 
carrier gas flow rate of 1.00 mL/min; injector temperature 250 °C; and detector temperature 280 °C. The gas 
chromatography oven was programed as in the GC/MS analysis. 

Percentages of the chemical constituents of the EOs were calculated based on the integral area of their respective 
peaks, in comparison with the total area of all sample constituents. Several essential oil constituents were identified 
by visually comparing their mass spectra with those reported in the literature (Bohlmann et al., 1998; Adams, 2009) 
and with the spectra provided by the equipment database (NIST08), as well as by making comparisons with the 
retention indices available in the literature (Adams, 2009; El-Sayed, 2018). An n-alkane standard solution (C7-C30) 
was injected under the same chromatographic conditions as that of the sample, in order to find retention rates, 
as described by van Den Dool & Kratz (1963).

Materials and Methods

Essential oils and compounds
Eremanthus erythropappus essential oil, obtained by means of steam distillation from the stem of this plant 

species cultivated in the state of Minas Gerais (MG), was kindly supplied by Atina - Ativos Natural - Ltda (Pouso 
Alegre, MG, Brazil). C. zeylanicum essential oil was acquired commercially from Laszlo® (Belo Horizonte, MG, 
Brazil); the oil of this plant, which originates from Sri Lanka, was obtained by steam distillation of the plant bark. 
The α-bisabolol (95% purity) was kindly provided by Citróleo Indústria e Comercio Ltda (Torrinha, SP, Brazil), while 
(E)-cinnamaldehyde and cinnamyl alcohol (98% purity) (used for production of cinnamyl acetate) (Figure 1) were 
purchased from Sigma-Aldrich (St Louis, MO, USA).

Figure 1. Chemical structure of (E)-cinnamaldehyde (A), cinnamyl alcohol (B) and cinnamyl acetate (C).
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Acetylated derivative preparation
The (E)-cinnamaldehyde acetylation process was performed at the Natural Products Laboratory of the Federal 

Rural University of Rio de Janeiro (UFRRJ), based on the descriptions of Oliveira et al. (1999). To this end, cinnamyl 
alcohol (4.44 g), acetic anhydride (8.88 mL) and pyridine (6.66 mL) were added to a 25 mL flask. Reagents were 
placed under stirring with the aid of a magnetic stirrer equipped with a stirring plate, for 24 h. The product from 
the reaction was added with chloroform. The residual solution was washed with hydrochloric acid (10%) until all 
pyridine had been removed from the system through soluble salt formation.

Acetylation product confirmation
Nuclear magnetic resonance (NMR) (1D) spectrum analyses were performed using a Bruker AVANCE II 11.5 T 

spectrometer (500 MHz for 1H and 125 MHz for 13C) at the analytical center of the Chemistry Institute, Federal Rural 
University of Rio de Janeiro for product confirmation purposes. Tetramethylsilane (TMS) was used as the internal 
standard for chemical shift reference. Chemical shifts (δ) were expressed in parts per million (ppm), while coupling 
constants (J) were expressed in Hertz (Hz). Deuterated chloroform (CDCl3) was used as the solvent in the NMR analysis.

Ticks
Ticks were collected from naturally infested cattle on farms in Minas Gerais, Brazil, and were provided by the 

Laboratório de Parasitologia da Empresa Brasileira de Pesquisa Agropecuária (Embrapa Gado de Leite), located 
in the municipality of Juiz de Fora, state of Minas Gerais, Brazil.

Half of the R. microplus engorged females were used to perform the adult immersion test (AIT), while the other 
fraction was stored in a climatized chamber with controlled temperature and relative humidity (27 ± 1 °C and RH 
of 80 ± 10%) for 15 days until oviposition. After this stage, the egg mass was weighed into 200 mg aliquots and 
packed into syringes with a closed distal end, which were sealed using cotton wool. These eggs were then kept 
under the same aforementioned temperature and humidity conditions. Between 15 and 21 days after hatching, 
the larvae were used to perform LPT. The same tick population was used for the AIT and LPT tests on the same 
oil or compound.

Larval Packet Test (LPT)
For the LPT, the EOs, major compounds and cinnamyl acetate were diluted in 70% ethanol (water-ethanol, v/v) 

and α-bisabolol was diluted in 50% ethanol (water-ethanol v/v) at the concentrations of 0.31, 0.62, 1.25, 2.0, 2.5, 
5.0 and 10.0 mg/mL. These concentrations and solvents were determined from studies on EOs in the literature 
(Senra et al., 2013; Diniz, 2014).

The LPT proposed by Stone & Haydock (1962) and adapted by Monteiro et al. (2012) was used to assess the 
activity of the EOs and their major compounds. Approximately 100 unfed larvae were placed in the center of a 
filter paper (6 cm x 6 cm; Whatman no. 1), which was then folded in half and closed at the sides using binder clips. 
Next, each side of the filter paper was moistened with 90 µL of test solutions (180 µL in total). A control group was 
also formed (70% or 50% ethanol), and 10 replications were performed for each group.

The packets were then stored in a B.O.D. incubator at 27 ± 1 °C and RH of 80 ± 10% for 24 h. After this period, 
the living and dead larvae were counted.

Adult Immersion Test (AIT)
For the AIT, groups of 10 engorged females (each female = 1 experimental unit) presenting homogeneous 

weights (p > 0.05) were immersed at concentrations of 2.5, 5.0, 10.0, 20.0, 40.0 and 60.0 mg/mL (10 per 
concentration) for 5 min. Concentrations were selected through preliminary tests and dimethyl sulfoxide (DMSO) 
at 3% (water + DMSO, v/v) was used as the solvent. After immersion, each female was weighed individually and 
placed on a Petri dish (6 x 6 cm) for oviposition. The groups were kept in a climate-controlled chamber under 
the aforementioned conditions for reproductive biology assessment. The following biological parameters were 
evaluated: female weight before oviposition (soon after treatment), egg mass weight (15 days after treatment) 
and larval hatching (21 days after egg mass weighing). From these values, the percentage control was calculated 
as described by Drummond et al. (1973).
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Statistical analysis
The statistical analyses conducted on both tests were carried out using the Biostat 5.3 software (Ayres et al., 

2007). Treatments were compared by means of analysis of variance (ANOVA) followed by Tukey’s test. Non-normally 
distributed data were subjected to the Kruskal-Wallis test followed by the Student-Newman-Keuls test. Probit analysis 
was performed using the R software (version 3.5.3, 2019) to enable calculation of the lethal concentration 50 (LC50).

Results

Chemical composition of essential oils
The essential oil extracted from C. zeylanicum bark showed predominance of phenylpropanoids (94.06%), with 

(E)-cinnamaldehyde (86.93%) as the major compound. In the chemical analysis on E. erythropappus stem essential oil, 
oxygenated sesquiterpenes (82.19%) and sesquiterpene hydrocarbons (13.17%) were identified, and sesquiterpene 
α-bisabolol was the major compound (78.41%) (Table 1).

Table 1. Chemical composition, calculated Kovats index (KIC), Kovats index obtained from the literature (KILit) (Bohlmann et al., 
1998; Adams, 2009), percentages of identified compounds and chemical classes (%) in the essential oils of Cinnamomum zeylanicum 
bark and Eremanthus erythropappus stem.

Components Cinnamomum zeylanicum Eremanthus erythropappus

KIC KILit (%) KIC KILit (%)

Aromatic aldehyde 3.71 - - -

Benzaldehyde 966 960 3.71 - - -

Phenylpropanoids 94.06 - - -

(E)-Cinamaldehyde 1280 1270 86.93 - - -

(E) -o-Methoxy 
cinnamaldehyde

1537 1528 7.13 - - -

Saturated fatty acid - - - 1.10

Isovaleric acid - - - 849 835 1.10

Sesquiterpene Hydrocarbons 13.17

γ-curcumin - - - 1483 1482 0.61

β-selinene - - - 1486 1490 0.25

α-selinene - - - 1496 1498 0.27

(Z)-α-bisabolene - - - 1505 1504 3.36

β-bisabolene - - - 1513 1505 1.86

(E)-γ-bisabolene - - - 1517 1531 0.95

(E)-α-bisabolene - - - 1547 1547 5.87

Oxygenated Sesquiterpenes 82.19

2, (7Z)-bisaboladien-4-ol - - - 1627 1619 0.29

α-bisabolol B oxide - - - 1664 1658 1.72

(E)-bisabol-11-ol - - - 1675 1668 1.77

α-bisabolol - - - 1700 1685 78.41

Total Identified 97.77 96.46
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Larval packet test

The essential oil extracted from C. zeylanicum bark at the concentration of 1.25 mg/mL resulted in a 64.0% 
tick mortality rate, with a difference (p < 0.05) in comparison with control groups (0.0%). The mortality rate 
was > 95% from the concentration of 2.0 mg/mL and reached 100.0% at the concentration of 2.5 mg/mL (Table 2). 
(E)-cinnamaldehyde resulted in mortality of larvae with differences (p < 0.05) in relation to the control groups, starting 
from the concentration of 1.25 mg/mL (29.2%). Larval mortality > 95% was observed from the concentration of 
2.5 mg/mL. However, only the highest concentration (5.0 mg/mL) resulted in a 100.0% larval mortality rate. Cinnamyl 
acetate at the concentration of 2.0 mg/mL led to 44.0% larval mortality, which was different from the mortality 
rate observed for the control groups (p < 0.05). At the highest concentrations (5.0 and 10.0 mg/mL), mortality was 
99.0 and 100.0%, respectively (Table 2).

Eremanthus erythropappus essential oil resulted in mortality > 90% from the concentration of 2.0 mg/mL and 
reached 100.0% larval mortality at the concentration of 2.5 mg/mL, with differences (p < 0.05) in comparison with 
the control groups (0.0%). The α-bisabolol at the concentration of 2.0 mg/mL led to a larval mortality rate of 32.1%, 
which was different (p < 0.05) from that observed in the control groups. Mortality rates > 95% were observed 
starting from the concentration of 5.0 mg/mL (96.7% mortality), and reached 100.0% mortality at the concentration 
of 10.0 mg/mL (Table 2).

The LC50 values for C. zeylanicum, (E)-cinnamaldehyde, cinnamyl acetate, E. erythropappus and α-bisabolol used 
against R. microplus larvae were 0.94, 1.38, 2.31, 1.61 and 2.20 mg/mL, respectively. Confidence interval overlaps 
were observed between (E)-cinnamaldehyde and E. erythropappus essential oil, as well as between cinnamyl acetate 
and α-bisabolol (Table 3).

Acetylation confirmation
The hydrogen (1H NMR) and carbon-13 (13C NMR) nuclear magnetic resonance (NMR) spectra that were used 

to confirm the acetylated product are shown in Figure 2. The final product was weighed and presented a mass of 
5.25 g, with 90% yield.

Figure 2. RMN 13C spectrum (125 MHz; CDCl3) of cinnamyl acetate.
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Adult immersion test
For C. zeylanicum EO, female weight before oviposition did not differ between treatments (p > 0.05). This EO 

did not result in differences (p > 0.05) in egg mass weight between treatments and the control group. The larval 
hatching rate for the treatment with the lowest concentration (2.5 mg/mL) was 16.6 ± 10.1% (p < 0.05), whereas in 
the control group, larval hatching was 85.4 ± 7.5%. At the highest concentrations (40.0 and 60.0 mg/mL), no larvae 
hatched. The percentage control was > 90% starting from the 5.0 mg/mL concentration and reached 99 and 100% 
in the treatments with 10.0 and 40.0 mg/mL, respectively (Table 4).

Table 2. Percentage of mean mortality of Rhipicephalus microplus unfed larvae treated with different concentrations of 
Cinnamomum zeylanicum, (E)-cinnamaldehyde, cinnamyl acetate, Eremanthus erythropappus and α-bisabolol under laboratory 
conditions (27 ± 1 °C and RH 80 ± 10%) (Mean ± standard deviation).

Treatments Cinnamomum 
zeylanicum

(E)-
cinnamaldehyde Cinnamyl acetate Eremanthus 

erythropappus α-bisabolol

Control - H2O 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0

Control -Solvent* 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0

0.31 mg/mL 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0

0.62 mg/mL 21.0a ± 4.5 15.9ab ± 18.9 0.0a ± 0.0 0.0a ± 0.0 0.0a ± 0.0

1.25 mg/mL 64.0b ± 6.4 29.2bc ± 7.2 6.0b ± 8.9 4.0a ± 4.66 0.0a ± 0.0

2.0 mg/mL 99.0c ± 2.9 63.7c ± 6.2 44.0bc ± 22.9 92.6b ± 6.31 32.1bc ± 25.3

2.5 mg/mL 100.0c ± 0.0 95.3cd ± 3.4 47.0bc ± 11.3 100.0b ± 0.0 80.4cd ± 13.1

5.0 mg/mL 100.0c ± 0.0 100.0d ± 0.0 99.0c ± 2.8 100.0b ± 0.0 96.7d ± 5.2

10.0 mg/mL ... ... 100.0c ± 0.0 ... 100.0d ± 0.0

Different letters in the same column mean significant differences at the level of 5%.
*Control Cinnamomum zeylanicum; Eremanthus erythropappus; (E)-cinnamaldehyde and Cinnamyl acetate = 70% ethanol. Control α-bisabolol = 
50% ethanol; … = Concentration not tested.

Table 3. Lethal concentrations (LC50) of Cinnamomum zeylanicum, (E)-cinnamaldehyde, cinnamyl acetate, Eremanthus erythropappus 
and α-bisabolol in Rhipicephalus microplus.

LC50 (mg/mL) Confidence interval (CI) p value

Unengorged larvae

Cinnamomum zeylanicum 0.94 0.50-1.05 <0.01

(E)-cinnamaldehyde 1.38 1.21-1.58 <0.01

Cinnamyl acetate 2.31 2.02-2.65 <0.01

Eremanthus erythropappus 1.61 1.47-1.77 <0.01

α-bisabolol 2.20 1.92-2.53 <0.01

Engorged females

Cinnamomum zeylanicum 0.57 0.10-3.25 <0.01

(E)-cinnamaldehyde 1.50 0.58-3.86 <0.01

Cinnamyl acetate … … ...

Eremanthus erythropappus 1.93 1.0-3.53 <0.01

α-bisabolol 6.99 6.06-8.05 <0.01

CI = Confidence interval (95%); ... = not calculated.
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Table 4. Values for mean weight of females before laying (mg), weight of egg mass of engorged females and larval hatching and percent 
control of Rhipicephalus microplus, treated with different concentrations of Cinnamomum zeylanicum, (E)-cinnamaldehyde, cinnamyl 
acetate, Eremanthus erythropappus and α-bisabolol, in laboratory conditions (27 ± 1 °C and RH 80 ± 10%) (Mean ± standard deviation).

EO or compounds Treatments Female weight 
before laying (mg)

Egg mass 
weight (mg) Larval hatching (%) Percent control (%)

Control 221.9a ± 17.8 81.0a ± 18.7 85.4a ± 7.5

(n) (10) (10) (10)

Cinnamomum zeylanicum
2.5 mg/mL 222.2a ± 31.1 50.8a ± 54.1 16.6b ± 10.1

88.9
(n) (10) (10) (6)

5.0 mg/mL 222.6a ± 20.7 33.2a ± 33.7 4.4b ± 2.8
97.8

(n) (10) (10) (7)

10.0 mg/mL 222.0a ± 15.9 32.2a ± 41.4 1.4b ± 1.9
99.3

(n) (10) (10) (7)

20.0 mg/mL 222.9a ± 18.4 38.3a ± 40.2 0.3b ± 0.8
99.8

(n) (10) (10) (6)

40.0 mg/mL 222.5a ± 14.2 33.5a ± 45.4 0
100

(n) (10) (10) (4)

60.0 mg/mL 222.4a ± 20.7 36.6a ± 39.0 0
100

(n) (10) (10) (5)

Control 251.4a ± 26.5 145.0a ± 13.7 96.3a ± 2.4

(n) (10) (10) (10)

(E)-cinnamaldehyde
2.5 mg/mL 251.8a ± 35.6 101.1b ± 42.4 28.5b ± 24.7

73.4
(n) (10) (10) (10)

5.0 mg/mL 251.9a ± 30.3 95.3bc ± 40.9 35.7b ± 27.1
68.6

(n) (10) (10) (10)

10.0 mg/mL 251.4a ± 26.6 58.0c ± 41.6 9.4b ± 1.8
94.9

(n) (10) (10) (7)

20.0 mg/mL 251.5a ± 33.9 0 ....
100

(n) (10) (10) (0)

40.0 mg/mL 251.8a ± 24.1 0 ....
100

(n) (10) (10) (0)

60.0 mg/mL 251.3a ± 21.7 0 ....
100

(n) (10) (10) (0)

Control 226.3a ± 11.8 132.4a ± 18.2 80.1a ± 9.4

(n) (10) (10) (10)

Cinnamyl acetate
2.5 mg/mL 226.7a ± 17.9 129.8a ± 12.3 77.0a ± 11.1

1.4
(n) (10) (10) (10)

5.0 mg/mL 227.2a ± 19.9 115.3a ± 44.2 74.4ab ± 13.7
16

(n) (10) (10) (9)

10.0 mg/mL 226.2a ± 7.5 127.5a ± 6.8 68.0ab ± 8.8
14.8

(n) (10) (10) (10)

20.0 mg/mL 227.6a ± 13.6 101.0a ± 54.8 58.1b ± 28.6
42.6

(n) (10) (10) (8)

40.0 mg/mL 226.9a ± 22.3 113.4a ± 43.3 58.0b ± 25.1
35.5

(n) (10) (10) (9)

Different letters in the same column mean significant differences at the level of 5% for the same EO or same compound. n = Sample size; 
Control = DMSO 3%.
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EO or compounds Treatments Female weight 
before laying (mg)

Egg mass 
weight (mg) Larval hatching (%) Percent control (%)

60.0 mg/mL 225.5a ± 16.6 112.7a ± 41.3 56.6b ± 8.2
36.2

(n) (10) (10) (9)

Control 201.8a ± 12.8 67.7a ± 22.2 84.2a ± 12.3

(n) (10) (10) (10)

Eremanthus erythropappus
2.5 mg/mL 202.0a ± 22.3 49.2ab ± 37.3 55.2a ± 36.3

52.4
(n) (10) (10) (8)

5.0 mg/mL 201.0a ± 11.0 41.2ab ± 39.9 39.7b ± 32.0
71.1

(n) (10) (10) (8)

10.0 mg/mL 201.1a ± 12.7 21.4bc ± 26.2 37.5ab ± 29.9
85.9

(n) (10) (10) (6)

20.0 mg/mL 201.9a ± 18.9 58.3a ± 30.6 16.5bc ± 19.7
83.1

(n) (10) (10) (8)

40.0 mg/mL 202.4a ± 21.7 23.4bc ± 23.4 11.7b ± 15.2
89.9

(n) (10) (10) (7)

60.0 mg/mL 202.6a ± 17.5 2.0c ± 6.3 0
100

(n) (10) (10) (1)

Control 251.4a ± 26.5 145.0a ± 13.7 96.3a ± 2.4

(n) (10) (10) (10)

α-bisabolol
2.5 mg/mL 251.7a ± 20.7 136.0a ± 14.7 74.5ab ± 16.9

3.2
(n) (10) (10) (10)

5.0 mg/mL 251.6a ± 26.4 94.6ab ± 54.6 47.3b ± 33.1
45.6

(n) (10) (10) (9)

10.0 mg/mL 251.6a ± 26.6 76.1b ± 58.4 47.5b ± 23.7
51.7

(n) (10) (10) (7)

20.0 mg/mL 251.6a ± 17.9 5.5b ± 22.9 0
100

(n) (10) (10) (2)

40.0 mg/mL 251.3a ± 26.3 0.0 b ± 0.0 ....
100

(n) (10) (10) (0)

60.0 mg/mL 251.3a ± 24.6 0.0 b ± 0.0 ....
100

(n) (10) (10) (0)

Different letters in the same column mean significant differences at the level of 5% for the same EO or same compound. n = Sample size; 
Control = DMSO 3%.

Table 4. Continued...

The egg mass weight of the groups treated with (E)-cinnamaldehyde ranged from 101.1 ± 7.5 to 0.0 mg, which 
was different (p < 0.05) from the value recorded for the control group (145.0 ± 13.7 mg). Similarly, larval hatching 
ranged from 28.5 ± 24.7 to 9.4 ± 1.8% in the treated groups (p < 0.05) and was 96.3 ± 2.4% in the control group. The 
percentage control was 73.4% at the lowest concentration (2.5 mg/mL) and reached 100.0% at the concentration 
of 20.0 mg/mL (Table 4).

No difference in mean egg mass weight was observed between engorged females in the control and groups 
treated with cinnamyl acetate (p > 0.05). With regard to larval hatching, only the three highest concentrations 
(20.0, 40.0 and 60.0 mg/mL) resulted in values lower (58.1 ± 28.6, 58.0 ± 25.1 and 56.6 ± 8.2%; p < 0.05) than that 
observed in the control group (80.1 ± 9.4%). None of the treatments resulted in percentage control > 50%, such 
that this reached a maximum of 42.6% at the concentration of 20.0 mg/mL (Table 4).



Braz J Vet Parasitol 2021; 30(3): e009221 10/14

Botanical compounds against ticks

For E. erythropappus EO, starting from the concentration of 10.0 mg/mL, a reduction (p < 0.05) in egg mass 
weight (21.4 ± 26.2 mg) was observed, in comparison with the control group (67.7 ± 22.2 mg). Regarding larval 
hatching, there was a difference (p < 0.05) between the control (84.2 ± 12.3%) and treated groups, starting from the 
concentration of 5.0 mg/mL, with values ranging from 39.7 ± 32.0 to 0.0%. The percentage control at the 2.5 mg/mL 
concentration was 52.4%, and reached 100.0% at the highest concentration (60.0 mg/mL) (Table 4).

Egg mass weight presented differences (p < 0.05) at α-bisabolol concentrations ≥ 10.0 mg/mL (76.1 ± 58.4 mg), 
while the control group showed egg mass weight equal to 145.0 ± 13.7 mg. The α-bisabolol concentration of 
5.0 mg/mL resulted in 47.3 ± 33.1% larval hatching, which was different (p < 0.05) from the percentage recorded for 
the control group (96.3 ± 2.4%). The percentage control reached 100.0% at α-bisabolol concentrations ≥ 20.0 mg/mL 
(Table 4).

The LC50 values for C. zeylanicum and E. erythropappus EOs, (E)-cinnamaldehyde and α-bisabolol used against 
R. microplus engorged females were 0.57, 1.93, 1.50 and 6.99 mg/mL, respectively. This analysis was not applied 
to cinnamyl acetate, since the observed control percentage did not reach 50% (Table 3).

Discussion
The essential oil extracted from cinnamon bark that was investigated in the present study resulted in LC50 of 

0.94 mg/mL against larvae. A similar result was observed by Jyoti et al. (2019), who evaluated the activity of the 
essential oil of C. zeylanicum bark (with 64.4% (E)-cinnamaldehyde) on R. microplus larvae, and observed LC50 of 
0.86 mg/mL. The small differences found may be related to the chemotype of the plant, unequal percentages and 
chemical constituents, and to different strains of R. microplus.

For engorged females, the present study found a percentage control of 99.8% at the concentration of 
20.0 mg/mL. No reports on the activity of cinnamon bark essential oil against R. microplus engorged females 
were found in the literature. However, Monteiro et al. (2017) reported a percentage control of 27.3% against 
R. microplus engorged females that were treated with essential oil (with 4.0% (E)-cinnamaldehyde) extracted from 
C. zeylanicum leaves at the concentration of 25.0 mg/mL. Santos et al. (2017) reported 100.0% effectiveness among 
R. microplus engorged females exposed to commercial cinnamon essential oil (with 41.27% (E)-cinnamaldehyde) at 
the concentration of 100.0 mg/mL. Thus, both the data from the present study and the data in the literature indicated 
that the percentage of this phenylpropanoid in the chemical composition of cinnamon EO had significant influence 
on its acaricidal activity. This is emphasized by the results regarding activity in the tests with (E)-cinnamaldehyde 
alone, which showed LC50 of 1.38 and 1.50 mg/mL for larvae and engorged females, respectively. In the present 
study, we observed a mortality of 95.3% of the larvae treated at a concentration of 2.5 mg/mL of (E)-cinnamaldehyde, 
corroborating the results found by Senra et al. (2013), which in the same concentration observed a mortality 
of 99.2%. In future studies on cinnamon oil for tick control, samples extracted from bark, which is rich in this 
phenylpropanoid, should be prioritized.

R. microplus larvae treated with E. erythropappus EO (with 78.41% α-bisabolol) at the concentration of 2.0 mg/mL 
presented a mortality rate > 90.0% in the present study. Diniz (2014) evaluated the activity of four Siparuna guianensis 
EOs and observed that two samples containing the sesquiterpene α-bisabolol (> 62.6%) presented higher activity 
against R. microplus unfed larvae and engorged females than two samples that did not have this compound in their 
chemical composition. El-Moneim et al. (2012) evaluated the action of Chamomilla recutita (L.) Rauscher essential 
oil, which is rich in α-bisabolol (35.2%), on Tetranychus urticae mites and observed a 100.0% mortality rate at 4.0% 
concentration. These results indicate that the presence of the sesquiterpene α-bisabolol is a major factor for 
the high acaricidal activity observed in these EOs. According to Paluch et al. (2009), sesquiterpenes produced by 
different plant families can be used to affect the behavior of some arthropods and even kill them. The action of 
sesquiterpene-rich EOs against ticks has previously been recorded in relation to plants belonging to the families 
Araucariaceae, Cupressaceae (Lebouvier et al., 2013), Asteraceae (Ribeiro et al., 2011; Lage et al., 2014), Lamiaceae 
(Facey et al., 2005) and Winteraceae (Ribeiro et al., 2008).

The activity of pure α-bisabolol against R. microplus unfed larvae and engorged females was first demonstrated 
in a study conducted by Diniz (2014), whose results showed a larval mortality rate of 98.9% at the concentration of 
5.0 mg/mL and a percentage control of 98.1% among engorged females treated at the concentration of 40.0 mg/mL 
(Diniz, 2014). The present study recorded larval mortality of 96.7% for the pure α-bisabolol concentration of 
5.0 mg/mL, and this sesquiterpene resulted in percentage control of 100.0% at the concentration of 20.0 mg/mL 
against engorged females. The different results observed in relation to engorged females may be associated with 
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the solvent used. Diniz (2014) used Tween80 as the solvent, whereas DMSO was used in the present study. Studies 
have shown that certain types of solvent can enhance the effect of EOs (Daemon et al., 2012), and there are data 
in the literature demonstrating that certain surfactants can reduce the activity of essential oils (Li et al., 2017). In 
that regard, some studies have shown that DMSO, being hydrophilic, is capable of penetrating cell membranes 
and carrying the toxic agent with it (Gorman & Dordick, 1992; Du et al., 2004).

A comparison between the LC50 values of the EOs and their major compounds (cinnamon essential oil vs. 
(E)-cinnamaldehyde and candeia essential oil vs. α-bisabolol) demonstrated that these EOs showed higher activity 
against R. microplus unfed larvae than their major compounds alone. The candeia essential oil also showed 
higher activity against engorged females, in comparison with α-bisabolol. The higher activity of EOs may be due to 
synergistic or additive effects resulting from the association between major compounds and other molecules found 
in the cinnamon and candeia EOs, which can enhance their acaricidal activity. Monteiro et al. (2017) evaluated a 
chemotype of the EO of C. verum and its major component, benzyl benzoate, against R. microplus larvae and also 
observed that the EO showed better activity. Costa-Júnior et al. (2016) observed the activity of the EO of Lippia 
gracilis Schauer and the monoterpene thymol against two strains of R. microplus (unfed larvae) and observed that, 
in both strains, the EO resulted in greater activity than the monoterpene thymol.

The (E)-cinnamaldehyde used in the present study showed higher activity than α-bisabolol; therefore, only this 
phenylpropanoid was used to produce the acetylated derivative (cinnamyl acetate). Cinnamyl acetate presented 
lower acaricidal activity than (E)-cinnamaldehyde in tests conducted using unfed larvae, with LC50 of 2.31 and 
1.38 mg/mL for the larvae. The difference in acaricidal activity was higher in tests conducted using engorged females, 
since the highest cinnamyl acetate concentration (60.0 mg/mL) resulted in percentage control of only 36%, while 
(E)-cinnamaldehyde at a concentration of 20.0 mg/ml resulted in percentage control of 100.0%. Lee et al. (2019) 
compared the acaricidal activity of cinnamon bark essential oil with that of (E)-cinnamaldehyde and cinnamyl acetate 
against Dermanyssus gallinae (De Geer) and found that cinnamyl acetate was the only substance that did not have 
repellent and acaricidal effects on these mites. Novato et al. (2018) observed that carvacrol, thymol and eugenol 
presented higher activity against R. microplus unfed larvae than their acetylated derivatives. However, there is 
controversy about the enhancement of acetylated compounds for application to ticks. According to Ramírez et al. 
(2016), carvacrol showed lower activity against R. microplus unfed larvae and engorged females than its acetylated 
derivative (carvacrol acetate).

All the compounds analyzed in this study significantly reduced the viability of eggs of R. microplus engorged 
females. Other studies evaluated the activity of different phytochemicals on engorged females and also reported 
significant reductions of egg viability. Marchesini et al. (2020) observed that Jambu extract and spilanthol reduced 
the egg viability of R. microplus, and the same was observed for Baccharis dracunculifolia EO and nerolidol (major 
compound) (Lage et al., 2014) and Lippia triplinervis EO rich in thymol and carvacrol (Lage et al., 2013), against cattle 
tick. This reduction in egg viability may be related to action by this EO and its compounds alone, in organs related 
to the reproductive biology of engorged females, such as the ovaries and Gené’s organ. Studies have shown that 
use of pure constituents of EOs such as thymol and semi-synthetic compound acetylcarvacrol led to a number 
of morphophysiological changes in engorged females’ oocytes, with damage to the nucleus and germinal vesicle, 
cytoplasm vacuolation, membrane rupture and deformation, and a reduced number of yolk granules (Matos et al., 
2014; Konig et al., 2019). In addition, a recent study found that the monoterpene thymol had deleterious action 
on Gené’s organ (Matos et al., 2020). Future studies focused on investigating the action of cinnamon and candeia 
EOs, as well as the action of (E)-cinnamaldehyde and α-bisabolol on these organs, based on use of morphological 
analysis tools, could assist in achieving better understanding of the mechanisms capable of reducing the viability 
of the eggs of engorged females.

We conclude that C. zeylanicum and E. erythropappus EOs, as well as their major compounds, showed acaricidal 
activity on R. microplus unfed larvae and engorged females, while cinnamyl acetate showed low acaricidal activity. 
In addition, the EOs showed greater activity than their major compounds. The results suggest that some plant 
compounds are candidates for use as pesticides against green ticks. Further studies to assist in better understanding 
the possible modes of action of these EOs and their major compounds against R. microplus, as well as tests to 
assess efficacy against ticks and clinical safety for cattle, are necessary.
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