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Abstract 
Reproductive efficiency is critically dependent on embryo survival, establishment of a successful 
pregnancy and placental development. Recent advances in gene editing technology have enabled 
investigators to use gene knockdown and knockout approaches to better understand the role of hormone 
signaling in placental function and fetal growth and development. In this review, an overview of ruminant 
placentation will be provided, including recent data highlighting the role of histone lysine demethylase 1A 
and androgen signaling in ruminant placenta and pregnancy. Studies in ruminant placenta establish a role 
for histone lysine demethylase 1A in controlling genetic networks necessary for important cellular events 
such as cell proliferation and angiogenesis, as well as androgen receptor signaling during early 
placentation. 
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Introduction 

Profitability in livestock industry is directly related to the ability of the dam to produce healthy 
offspring in the shortest possible time. Establishment of pregnancy at a younger age, they 
produce milk sooner, have shorter calving intervals and generate more replacements. The main 
reason cows are removed from the production herd is the inability to conceive or maintain 
pregnancy. Pregnancy loss has been reported to vary from 3% to 42% in beef and dairy cattle 
(Gatea et al., 2018). Reproductive efficiency in livestock is critically dependent on fertility and 
embryo survival. In ruminants, fertilization itself is generally high (~90%), however embryonic 
losses can be quite significant and as high as 40% for heifers or 60% for high-producing dairy 
cows (Diskin and Morris, 2008). Establishment of pregnancy is dependent on early signals from 
the embryo to the mother and formation of a placenta. In fact, miscommunication between the 
growing embryo and the endometrium is thought to be mainly responsible for many early 
embryo and fetal loses, and a failure to maintain pregnancy (Spencer, 2013). 

In cows and sheep, the embryo elongates dramatically prior to attachment to the uterine 
wall and secretes interferon tau (IFNT), and placental development soon commences 
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(reviewed in Spencer et al., 2004; Spencer, 2013). IFNT, the signal for maternal recognition of 
pregnancy, is critical to prevent prostaglandin F2 alpha (PGF2α) secretion from the 
endometrium and thus luteolysis, thereby maintaining the corpus luteum and continued 
progesterone and estradiol secretion. Steroid hormones play an essential role in the 
maintenance and progression of pregnancy, fetal development and growth, and parturition. 
Although the placenta itself is recognized as an endocrine organ, most notably by its 
secretion of progesterone, androgens and estrogens, it is also a target of these steroid 
hormones which play an important role in placental development and function. Therefore, 
regulation of sex steroid signaling is critical for placental cell development and 
differentiation. Recently, histone lysine demethylase 1A (KDM1A) has emerged as a critical 
regulator of gene expression and function in trophoblast cells by interacting with and 
controlling steroid hormone signaling. In this review, an overview is provided on the role of 
KDM1A and androgen receptor (AR) in placental development by controlling trophoblast cell 
differentiation, with a focus on ruminant placentation. 

Early placental development in ruminants (ewe and cow) 

Placentation in mammals can be classified by morphology (i.e., diffuse, zonary, discoid, 
cotyledonary), or physiologically more relevant by histological structure and organization of 
the layers separating maternal and fetal circulation (i.e., epitheliochorial, syndesmochorial, 
endotheliochorial, hemochorial) (reviewed in Chavatte-Palmer and Tarrade, 2016). Ruminant 
placenta is classified by morphology as cotyledonary, and histologically as epitheliochorial, 
syndesmochorial. 

In the ewe, the developing embryo enters the uterus at day 4 as a morula, developing 
into a blastocyst by day 6 (Spencer et al., 2004). By day 8, the blastocyst hatches from the 
zona pellucida and is located in the ipsilateral uterine horn (Spencer et al., 2004; Rowson 
and Moor, 1966). It undergoes a period of rapid cell proliferation and elongation, growing 
into the contralateral horn by day 13 in a singleton pregnancy (Rowson and Moor, 1966). 
During this period of elongation the extra-embryonic membranes (chorion and yolk sac) 
form prior to implantation (Spencer et al., 2004; Renfree, 1982; Guillomot et al., 1993; 
Carson et al., 2000). Rapid elongation of the ovine conceptus continues until day 16, 
when it adheres to the uterine epithelium (Spencer et al., 2004; Rowson and Moor, 1966; 
Grazul-Bilska et al., 2011). 

Early placentation in ruminants starts when elongated embryos attach at discrete 
sites to the uterine wall called caruncles, which are aglandular sites along the uterine 
epithelium. Some comparative characteristics between sheep and cow embryos and 
placentation are highlighted in Table 1. Between days 14 and 16 in sheep, when the 
conceptus is rapidly elongating and beginning to adhere to the endometrial luminal 
epithelium, binucleate trophoblast (BNC) cells begin to differentiate from the 
mononuclear trophoblast cells through consecutive nuclear divisions without cytokinesis 
(Spencer et al., 2004). At around gestational day 16, the sheep embryo has developed 
into a ~25cm long structure due to extensive proliferation of the trophectoderm. 
In ruminants, the placentome consists of a fetal cotyledon containing the chorion 
(trophoblast cells) and a maternal caruncle originating from the endometrium. In the 
cow, placentomes form a convex structure, while in the sheep they appear concave 
(Figure 1). BNC fusion with uterine luminal epithelial cells leads to formation of a 
multinucleated syncytiotrophoblast layer. More recently in sheep it has been proposed 
that mononuclear trophoblast cells can also form multinucleated trophoblast giant cells 
(TGC) (Seo et al., 2019), which are believed to remove uterine luminal epithelial cells, and 
fuse to form the syncytial trophoblast layer. Syncytial plaques develop specifically within 
the placentome, covering the surface of caruncles for nutrient and gas exchange 
(Spencer et al., 2004). 
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Table 1. Comparison between cow and sheep placentation. 
 Bovine Ovine 

Gestation Length 279-287 Days 144-152 Days 
Placentome Shape Cotelydonary, convex Cotelydonary, concave 

Average Placentome Amount 75-125 75-125 
Blastocyst Hatching Days 7-10 Days 7-8 

Conceptus Growth Day 15: 1-2 mm 
Days 18-19: 10-20 cm 

Day 12: 10-22 mm 
Day 14: 10 cm 
Day 17: 25 cm 

Implantation Attachment Time Beginning Day: 22 
Completion Day: 40 

Beginning Day: 15-16 
Completion Day: 22-28 

Total Placentome Weight 

• Rate of increase decreases 
with time, with a significant 
increase between 60-190 
days after conception 
• Up to 5000 g 

Increases throughout pregnancy up to 579.4 g 

Average Placentome Weight (g) 50 g 7.91 
Total Caruncular Weight (g)  101.6 

Total Cotyledonary Weight (g)  291.5 

Luteal Progesterone Required throughout 
gestation 

Placenta takes over production around 
day 50-60 

Binucleate Trophoblast Cells 

• Formed from mitotic 
divisions of mononucleate 
cells that do not undergo 
cytokinesis 
• Produce bovine placental 
lactogen 

• Formed from mitotic divisions of 
mononucleate cells that do not undergo 
cytokinesis between days 14-16 
• Produce ovine placental lactogen 
• Express placental lactogens and pregnancy-
associated glycoproteins 

Trophoblast Giant 
Cells/Multinucleated 

Trophoblast Cells 

• Involved in syncytialization 
• Formed through 
mononuclear trophoblast 
cell fusion 
• Migrate and fuse with 
uterine epithelium forming 
syncytium 
• Function in gas and 
nutrient exchange and 
hormone production  

• Involved in syncytialization 
• Formed through mononuclear trophoblast 
cell fusion 
• Insert between the uterine epithelial cells 
that are simultaneously undergoing apoptosis 
• Fuse with each other to form trophoblast 
syncytial layer 
• Function in gas and nutrient exchange and 
hormone production 

 
Figure 1. Schematic illustrating cow (A) and sheep (B) placentomes. 

These early events are critical for the development of a proper functioning placenta and 
establishment of pregnancy. The development of novel approaches to study gene function 
specifically in the placenta has allowed for new insight into the molecular events underlying 
placental development. 
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Studying gene function in the ruminant placenta 

The ability to specifically target gene expression in the trophoblast layer (trophectoderm) was first 
described in mice (Georgiades et al., 2007). In this study, Georgiades and colleagues demonstrated that 
short-term transduction of mouse blastocysts with a green fluorescent protein (GFP) transgene led to 
expression of GFP only in the trophectoderm, and subsequently in the whole placenta, but not in the 
embryo or fetus. This technology has now successfully been used to study several genes in sheep 
placenta, including PRR15 (Proline-Rich 15) (Purcell et al., 2009), CSH (Chorionic somatomammotropin 
hormone) (Baker et al., 2016), and LIN28 (Ali et al., 2020). The general approach to edit gene function 
specifically in the trophectoderm (Figure 2) involves collecting day 8-9 hatched blastocysts. At this time, 
the trophoblast layer is directly exposed to the virus, and before loss of the Rauber’s layer which covers 
and shields the epiblast (Van Leeuwen et al., 2020). The blastocysts are transduced with lentivirus 
expressing shRNA target constructs for 4-5 hours. Single transduced embryos are then transferred to 
recipient ewes, and day 16 blastocysts can be collected before attaching to the endometrium to assess 
trophoblast gene function to study embryo elongation. Near term, fetuses and placenta can be collected 
to elucidate effects on placental development and function and fetal growth and development. 
Combined with the continued advances in gene editing tools such as CRISPR-cas9, unique opportunities 
now exist to study gene function (knock-out, knock-down, knock-in, overexpression, etc.) and hormone 
signaling specifically in ruminant placentas. Not only could this benefit the livestock industry by providing 
much needed insight into the factors necessary for early pregnancy establishment and maintenance, 
but also be of great value to human biomedicine with the development of large animal models to study 
human pregnancy. In fact, sheep have been used extensively as animal models to study human 
pregnancy complications (Barry and Anthony, 2008). 

 
Figure 2. Illustration of a trophectoderm specific gene editing approach used to study gene function in 
sheep placenta. 
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Androgens during pregnancy in livestock 

Although the placenta is a well-recognized endocrine organ, the role of steroid hormones, 
particularly androgens, in placental development or function are less clear. This is surprising 
considering maternal serum level of testosterone increases during normal pregnancy 
(Figure 3). Transcripts of HSD3b, CYP11A1, and CYP17 are all present in ruminant placentomes 
(Vanselow et al., 2004) and synthesis of androgens are localized to cotyledonary trophoblast 
cells (Nguyen et al., 2012). In cow and sheep placentomes, AR is present in trophoblast cells, 
cotyledonary stromal cells, and caruncular epithelial and stromal cells (Khatri et al., 2013; 
Cleys et al., 2015). In cows, prior to gestational day 272 AR appeared to only localize to invasive 
TGCs and fetal-maternal hybrid cells, formed by fusion of invasive TGCs with caruncular 
epithelial cells (Khatri et al., 2013). 

 
Figure 3. Serum testosterone levels in maternal sheep blood during pregnancy. GD: gestational day. *P < 0.05. 

Very little is known about the role of androgens in placental abnormalities and pregnancy 
disorders in ruminants. In humans, abnormal maternal serum testosterone concentration is 
associated with metabolic and placental disorders, such as IUGR, which negatively impacts fetal 
development and leads to embryo losses. Sheep have been used extensively as a model to 
study polycystic ovarian syndrome (PCOS). Female sheep fetuses exposed to testosterone 
during early to mid-gestation exhibited ovarian dysfunction and reproductive changes in the 
hypothalamus-hypophysis-gonadal axis after puberty (Forsdike et al., 2007). These ewes 
experienced metabolic characteristics similar to PCOS in women. Furthermore, gestational 
testosterone treatment in sheep induces distinct changes in the placental milieu. Pregnant 
ewes treated with testosterone starting at gestational day 30 developed placental lipotoxicity 
and collagen deposition. This suggests that androgen-induced lipid accumulation can lead to 
tissue damage and fibrosis as well as impaired placental function. This study also 
demonstrated that an increase in collagen deposition due to excess androgen levels offers a 
potential mechanism for development of fibrotic lesions in conditions of placental deficiency 
(Kelley et al., 2019). 

Prenatal testosterone treatment increases placental expression of vascular endothelial 
growth factor A (VEGFA), which is secreted in response to tissue hypoxia and endothelial 
damage. This coincides with several studies demonstrate that an increase in plasma 
testosterone is implicated in placental vasculopathies, possibly due to the increased vascular 
tone of spiral arteries (Maliqueo et al., 2016; Kumar et al., 2018). Moreover, prenatal 
androgenization leads to altered placentome morphology with increased numbers of type D 
(more interdigitated fetal villi, heightened cotyledon proliferation and increased vascular 
density) compared to type A placentomes. Prenatal androgenization induces reduced fetal 
weight, suggesting that increased androgen signaling dysregulates fetal development possibly 
through impaired nutrient transport (Cleys et al., 2015). Gestational testosterone and 
dihydrotestosterone exposure produced low-birth-weight female offspring and these actions 
appear to be through impaired AR signaling (Beckett et al., 2014). 
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Detrimental effects of prenatal androgenization and induced altered uterine environment on 
fetal developmental programming of reproductive tissues have been well-documented. Some of 
these long-term changes in female offspring originate during fetal life and involve an increase in 
AR in granulosa, theca and stromal compartments of fetal ovaries. In addition, post-pubertal 
ovaries exhibited increased AR expression in large preantral and antral follicles, while reduced 
expression of AR was evident in stromal cells (Padmanabhan et al., 2010). In male offspring, 
testosterone excess during fetal development also impacts testicular development, mainly 
characterized by an increase in Sertoli cell number (Rojas-García et al., 2013). Ultimately both 
female and male offspring demonstrated reduced fertility in adulthood. Finally, prenatal 
androgenization leads to decreased global DNA methylation in placentomes, and increased 
placental expression of AR (Cleys et al., 2015), and gene expression analysis has demonstrated 
mis-expression on various genes involved with epigenetic regulation of gene function, including 
DNA methyltransferases and histone lysine demethylases, including KDM1A. 

KDM1A and gene regulation in trophoblast cells placental development and 
function 

A nucleosome contains DNA wrapped around a histone octamer. Histone octamers have four 
types of histones; H2A, H2B, H3, and H4. Histone lysine methyltransferases are a group of 
enzymes that methylate lysines in histone tails. Histone lysine methylation leads to a variety of 
biological processes like transcriptional activation and repression. Histone lysine 
methyltransferases can methylate up to three methyl groups on lysine histone tails (Nottke et al., 
2009). Conversely, there are several different histone lysine demethylases that remove methyl 
groups and each serve a specific biological role in regulating chromatin and epigenetic factors. 
KDM1A is a histone lysine demethylase that demethylates mono- and di-methylated 
lysine 4 and 9 on H3 (H3K4me1/2 and H3K9me1/2). Demethylation of H3K4me1/2 causes 
transcriptional repression, whereas demethylation of H3K9me1/2 generally causes 
transcriptional activation. KDM1A contains a flavin adenine dinucleotide (FAD) dependent amine 
oxidase domain that is responsible for histone demethylation. This oxidase enzyme uses FAD to 
help catalyze amine oxidation to create iminium ions. Water then joins with the iminium ion to 
release formaldehyde resulting in a mono-methylated lysine. The mono-methylated lysine 
undergoes the same reaction to become completely demethylated (Husmann and Gozani, 2019). 

KDM1A is a subfamily of amine oxidases which play a vital role in regulating transcription 
of both normal and disease signaling pathways (Burg et al., 2015). Evidence on the existence 
of KDM1A first came in 2004 (Shi et al., 2004), and subsequent studies have demonstrated its 
involvement with cancer and tumorigenesis. Overexpression of KDM1A in neuroblastoma is 
possibly linked to impaired KDM1A-silencing of microRNAs (Althoff et al., 2013). Inhibiting 
KDM1A in neuroblastoma cells increased H3K4 methylation, decreased cell proliferation, and 
reduced tumor growth [9]. Histone lysine demethylases also play a role in regulating nuclear 
hormone signaling by binding to and interacting with androgen receptor (AR) and estrogen 
receptors (ESR), and activating or inhibiting AR and ER responsive genes (Wissmann et al. 2007; 
Garcia-Bassets et al., 2007) (Figure 4). KDM1A has also been correlated to regulating breast 
cancer, and studies revealed that inhibiting KDM1A decreases proliferation of breast cancer 
cells (Lim et al., 2010). Similarly, prostate cancer has also been thought to be linked to KDM1A 
due to KDM1A-mediated transcriptional regulation of AR, and KDM1A inhibition decreases 
prostate cancer proliferation (Zhang et al., 2009; Willmann et al., 2012). 
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Figure 4. KDM1A and AR signaling in trophoblast cells. T: testosterone, DHT: dihydrotestosterone, 
HSP: heat shock protein, P: phosphorylated, H3: histone 3 

Considering the many similarities in cellular processes such as proliferation, migration and 
invasion between tumor progression and placental development, it is not surprising KDM1A 
also is present in placenta (Cleys et al., 2015). Immunostaining revealed KDM1A in human first 
trimester placenta localized to the syncytiotrophoblast and villi stromal cells. In sheep 
placentomes, immunofluorescence revealed KDM1A localizes to the nuclei of trophoblast cells. 
As in cancer cells, KDM1A binds to AR and ESR1 in trophoblast cells (Cleys et al., 2015), and 
therefore is thought to play a role in regulating AR and ESR1 signaling in the placenta. 
Considering the fact that AR and ESR1 play a role in cell proliferation and angiogenesis in cancer 
(Chang et al., 2014; Pequeux et al., 2012), it is likely they exert similar functions in placentas. 

Placental development relies on angiogenic factors to allow vascular remodeling in 
maternal spiral arteries to increase blood flow to the placenta. In ruminants, vascular 
remodeling occurs in maternal tissue (caruncles) and capillary branching increases in fetal 
tissue (cotyledon) (Reynolds et al., 2005). In intra-uterine growth restriction (IUGR) 
pregnancies placental abnormalities occur and abnormal blood flow to the fetus in these 
pregnancies causes impaired fetal growth (Regnault et al., 2002; Reynolds et al., 2005). 
IUGR pregnancies were shown to have decreased VEGFA along with its receptors (VEGFR1 
and VEGFR2) (Regnault et al., 2003). The ovine VEGFA promoter contains both androgen 
and estrogen response elements (ARE and ERE, respectively). Of interest here is the 
observation that AR and KDM1A interact with each other and bind the same ARE in the 
VEGFA promoter region in sheep placentomes (Cleys et al., 2015), suggesting a role for 
KDM1A in regulating AR-mediated VEGFA expression. 

Previous work in mice demonstrated KDM1A is necessary for placental development. 
KDM1A knockout mice, with a specific deletion of KDM1A in trophoblast stem cells, 
demonstrated significantly reduced trophoblast development compared to wildtype mice 
(Zhu et al., 2014). Absence of KDM1A resulted in early embryonic lethality by gestational 
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day 8.5, demonstrating KDM1A is necessary for placental development (Zhu et al., 2014). 
The knockout embryos also displayed morphological abnormalities such as smaller sizes and 
reduced trophoblast development compared to wildtype mice. In addition, a recent study using 
human choriocarcinoma (BeWo) cells revealed a role for KDM1A in cytotrophoblast 
differentiation into syncytiotrophoblasts by recruiting transcription factor GATA2 and 
stimulation of hCG production (Milano-Foster et al., 2019). 

To further study the role of KDM1A in regulating trophoblast gene expression and function, first 
trimester trophoblast cells were transduced with a KDM1A CRISPR-cas9 lentiviral gene targeting 
construct to knockout KDM1A. Subsequent in vitro gene expression analysis revealed that KDM1A 
knockout trophoblast cells had significantly reduced levels of the RNA binding protein LIN28 (Figure 5). 
Recent work revealed that LIN28 (A and B) regulates several important cell proliferation associated 
genes in sheep placenta, including IGF2BP1, IGF2BP2, IGFBP3, HMGA1, ARID3B and c-MYC (Ali et al., 
2020), and resulted in significantly impaired conceptus elongation (Ali et al., 2020). These changes in 
gene expression and conceptus elongation possibly involves the LIN28-Let-7 axis, in which decreased 
LIN28 leads to a concomitant increase in let-7 microRNAs, which in turn regulate many of these cell 
proliferation associated genes. KDM1A knockout in trophoblast cells in vitro resulted in significantly 
lower levels of LIN28, and a subsequent increase in let-7 microRNAs (Figure 5). Furthermore, similar 
to LIN28 knockdown, a significant decrease in HMGA1 and c-MYC was observed (Figure 6). Moreover, 
our previous work demonstrated LIN28 also regulates AR expression, possibly through let-7c in 
trophoblast cells, and inhibiting LIN28 resulted in reduced AR expression and increased trophoblast 
cell differentiation (McWhorter et al., 2019). Therefore in trophoblast cells, KDM1A possibly plays an 
important role in regulating AR and other target genes directly or through its interaction with the 
LIN28-Let-7 axis. 

 
Figure 5. LIN28 and Let7 microRNAs in KDM1A knockout ACH-3P trophoblast cells. (A) LIN28A mRNA and protein 
amounts in KDM1A knockout ACH-3P trophoblast cells; (B) LIN28B mRNA and protein amounts in KDM1A 
knockout ACH-3P trophoblast cells; (C) Relative amounts of Let7 microRNA family members in KDM1A knockout 
ACH-3P trophoblast cells. SC: scramble control. Asterisk indicates P < 0.05 (Student’s t-test). 
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Figure 6. Relative amount of HMGA1 mRNA and protein (A), and cMYC mRNA and protein (B) in KDM1A 
knockout ACH-3P trophoblast cells. SC: scramble control. Asterisk indicates P < 0.05 (Student’s t-test). 

Overall these data indicate a very complex genetic network regulating gene function in 
trophoblast cells that is necessary to maintain a balance between trophoblast cell proliferation 
and differentiation. Recognizing the ability of KDM1A to interact with and modulate methyl 
groups at different histone lysine tails highlights its potential role as one of the master 
regulators in gene regulation and functioning of trophoblast cells. 

Future perspectives 

Currently several experiments are ongoing to study KDM1A and AR specifically in the 
ruminant placenta. The continued development of novel gene targeting techniques have now 
enabled unique opportunities to modulate gene expression and function specifically in the 
ruminant placenta, opening new avenues to uncover the complex genetic signaling pathways 
required for placental development and function, and establishment of a successful 
pregnancy. Thus far, a variety of studies have demonstrated the critical role for AR signaling in 
placentation and pregnancy, and KDM1A appears to be an important modulator of AR function. 
Future experiments will further highlight its potential role in placental angiogenesis and 
pregnancy maintenance. These data are necessary to obtain better insight into possible 
mechanisms of early embryo losses in ruminants, and could provide for novel avenues to 
prevent, alleviate and/or treat pregnancy complications. 
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