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Abstract 
The establishment of epigenetic marks during the reprogramming window is susceptible to environmental 
influences, and stimuli during this critical stage can cause altered DNA methylation in offspring. In a previous 
study, we found that low levels of sulphur and cobalt (low S/Co) in the diet offered to oocyte donors altered 
the DNA methylome of bovine embryos. However, due to the extensive epigenetic reprogramming that 
occurs during embryogenesis, we hypothesized that the different methylation regions (DMRs) identified in 
the blastocysts may not maintain in adulthood. Here, we aimed to characterize DMRs previously identified 
in embryos, in the blood and sperm of adult progenies of two groups of heifers (low S/Co and control). We 
used six bulls and characterized the DNA methylation levels of KDM2A, KDM5A, KMT2D, and DOT1L genes. Our 
results showed that all DMRs analysed in both groups and tissues were hypermethylated unlike that noticed 
in the embryonic methylome profiles. These results suggest that embryo DMRs were reprogrammed during 
the final stages of de novo methylation during embryogenesis or later in development. Therefore, due to the 
highly dynamic epigenetic state during early embryonic development, we suggest that is essential to validate 
the DMRs found in embryos in adult individuals. 

Keywords: epigenetics, reprogramming, methylome, DMRs, cattle. 

Introduction 

DNA methylation has been studied in embryos of various species ever since techniques were 
first developed for the analysis of DNA methylation (Stevens et al., 1988; Kafri et al., 1992; 
Kang et al., 2001). The technological advancements of the past few decades have made it possible 
to access the embryonic methylome through whole-genome sequencing. Several studies that 
have analysed DNA methylation during embryogenesis in cattle, sheep, and humans have since 
been published (Guo et al., 2014; Zhu et al., 2018; Duan et al., 2019; Zhou et al., 2019; 
Zhang et al., 2021b). Although these analyses of the various embryonic stages have provided 
valuable information to elucidate some regulatory mechanisms, the epigenetic state during the 
early embryonic development is highly dynamic and requires further study. 

During the initial stages of development in mammals, particularly gametogenesis and 
embryogenesis, extensive epigenetic reprogramming occurs to support proper embryonic and foetus 
growth (Reik et al., 2001; Canovas et al., 2017). First, a wide loss of DNA methylation is initiated during 
primordial germ cell (PGC) formation in the foetal phase (Reik et al., 2001). After demethylation, a 
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subsequent de novo DNA methylation process occurs, establishing a new sex-specific pattern in 
developing gametes (Lee et al., 2002). This de novo methylation process differs between male and 
female germ lines. In the male germ line, the process is initiated in the foetus; hence, the paternal 
allele is hypermethylated at birth in this cell lineage (Davis et al., 2000). In the female germ line by 
contrast, the process is arrested during meiosis in the foetal period, and de novo methylation begins 
only after birth during folliculogenesis/oogenesis, which is around puberty (Obata et al., 1998; 
Fagundes et al., 2011). A follicle is recruited for growth, and de novo DNA methylation is initiated in the 
oocytes. However, the process is not completed without the aid of appropriate hormonal stimuli. 

During embryogenesis, the parental pronucleus undergoes a differential demethylation process, 
where the paternal genome is significantly demethylated by an active mechanism closely following 
fertilization (Oswald et al., 2000). The maternal genome, however, loses DNA methylation at a later 
stage due to cleavage divisions through a passive mechanism (Sasaki and Matsui, 2008). After DNA 
demethylation, global de novo methylation begins at the 8–16 cell stage in cattle (Dean et al., 2001; 
Ivanova et al., 2020). At the blastocyst stage, where several methylome analyses takes place, de novo 
methylation has been started; however, a wide range of reprogramming continues until the 
establishment of DNA methylation patterns in the embryonic and extra-embryonic tissue (Greenberg 
and Bourc'his, 2019). Therefore, several mechanisms of epigenetic remodeling still happen from the 
blastocyst stage until the establishment of the tissue epigenome of the adult animal (Xu et al., 2021). 
Now, how informative could the methylome of the embryos be if the DNA methylation patterns are 
analysed before the structures have been completely reprogrammed? 

One of the main reasons for the increased interest in embryonic DNA methylation is the 
Developmental Origins of Health and Disease (DOHaD) study and the long-term consequences 
for the progeny, which is a crucial concern for humans (Almeida et al., 2019; Lapehn and 
Paquette, 2022). The DOHaD theory states that the foetus undergoes an intrauterine 
environmental adaptation process in order to cope with those same conditions following birth 
(Wadhwa et al., 2009; Moreno-Fernandez et al., 2020). Therefore, adverse environmental 
stimuli during foetal programming can affect the establishment of epigenetic marks. As the 
offspring may not face the same conditions after birth, these adaptions can lead to 
susceptibility to diseases in adulthood (Cropley et al., 2006; Martinez et al., 2014). 

As a result of several studies in humans and animal models, the maternal diet during early 
pregnancy is known to affect the embryo and long-term conceptus (Tobi et al., 2015; Wang et al., 
2015; Finer et al., 2016; Knight et al., 2018; Serrano-Perez et al., 2020). We found that low levels of 
sulphur and cobalt in the diet offered to oocyte donors altered the DNA methylome of bovine 
embryos (Nochi et al., 2022). The inheritance of differential methylation regions (DMRs) by the next 
generation is known as an intergenerational epigenetic inheritance (Skvortsova et al., 2018). Analysing 
embryonic methylomes can be helpful for the analysis of epigenetic inheritance as an initial screening 
strategy. However, caution must be exercised when considering the information extracted from these 
data and when projecting the embryonic methylome onto adult tissues (Nochi et al., 2022). 

Thus, this study tests the hypothesis that the DMRs identified in the embryos are not maintained 
in the somatic tissues of the animal in adulthood, considering that the embryos have a high 
probability of losing these DMR patterns during the second wave of epigenetic reprogramming, which 
occurs during early development (Reik et al., 2001). Accordingly, we aimed to characterize four DMRs 
in genes, which were previously identified in embryos and are involved in the epigenetic machinery, 
in the blood and sperm of adult progenies of two groups of heifers used in a related previous study 
in our laboratory (Nochi et al., 2022). These genes of special interest are related to histone 
methylation: writer lysine methyltransferase 2D (KMT2D), DOT1-like histone lysine methyltransferase 
(DOT1L), erasers lysine demethylase 2A (KDM2A), and lysine demethylase 5A (KDM5A). 

Methods 

Ethical approval 

This experimental study has been approved by the Ethics Committee on Animal Use (CEUA-
Protocol n° 98/2010), School of Veterinary Medicine and Animal Science, Universidade Estadual 
Paulista “Júlio de Mesquita Filho.” 
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Animals and experimental diets 

In this study, we used animals from a previous study conducted in our laboratory 
(Nochi et al., 2022). Briefly, the heifers were separated into groups with different diets, the 
control and the group with low sulfur and cobalt (low S/Co). The respective diets were offered 
to the animals for six months (pre- and periconceptional periods). At the end of the experiment, 
the heifers were inseminated with the same bull used for the in vitro embryo production (IVP) 
performed in Nochi et al. (2022). Among the progeny of those heifers, we collected the blood 
and sperm of the bulls in adulthood. 

Sample collection 

The blood and sperm cells were collected from six bulls (Bull 1, Bull 2, Bull 3, Bull 4, Bull 5, 
and Bull 6) — the progenies of heifers (two from the control and four from the low S/Co group). 
Semen from six Nellore bulls (Bos taurus indicus) was collected from the ejaculate via 
electroejaculation. Sperm quality, concentration, motility, plasma membrane integrity, and 
morphology were evaluated (Table 1). Semen samples were stored in liquid nitrogen (-196 ºC) 
until DNA isolation was performed. 

Table 1. Concentration (×106/mL), total motility (%), plasma membrane integrity (%), and sperm normal 
morphology (%) in the semen of each animal before freezing. 

 Animals 
Bull 1 Bull 2 Bull 3 Bull 4 Bull 5 Bull 6 

Concentration (×106/mL) 1710 1510 1250 2920 650 1750 
Total motility (%) 20% 90% 70% 90% 90% 90% 

Plasma membrane integrity (%) 43% 79% 82% 66,5% 78% 61% 
Sperm normal morphology (%) 31% 80,5% 66,5% 67,5% 64,5% 67% 

DNA isolation 

Genomic DNA was isolated from white blood cells using the DNeasy Blood & Tissue Kit 
(Qiagen, CA, USA) according to the manufacturer’s instructions. Sperm DNA was isolated using 
a protocol based on salting out as described by Carvalho et al. (2012). The DNA samples were 
stored at -20 °C for sodium bisulphite treatment. The quality of the DNA samples was evaluated 
using agarose gel electrophoresis. 

Sodium bisulphite treatment 

Blood and sperm genomic DNA (500 ng) were treated with sodium bisulphite using the EZ 
DNA Methylation-Lightning kit (Zymo Research, Irvine, CA, USA), according to the 
manufacturer’s instructions. Sodium bisulphite-treated DNA were stored at -80 °C until PCR 
amplification was performed. 

Bisulphite PCR 

PCR was performed to amplify the DMRs in the genes KDM2A, KDM5A, KMT2D, and DOT1L, 
which are associated with histone-active methylation marks (Nochi et al., 2022). Primers were 
designed using the MethPrimer (Li and Dahiya, 2002) and Bisulphite Primer Seeker software 
(Zymo Research) to flank the DMRs, which were located on CpG islands in all genes except 
KDM5A (Figure 1). 
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Figure 1. Representation of the KDM2A, KDM5A, KMT2D, and DOT1L gene structures, GC content, and CpG 
island prediction. Green bars represent the input sequence; below, blue lines represent introns, blue 
arrows represent exons, and orange arrows represent primer positions. The GC content and CpG islands 
are predicted for each gene. The graphs were generated using Geneious v2020.0.5 (Biomatters, 
Auckland, New Zealand). 

The primer sequences, GenBank accession numbers, number of CpG sites, amplicon sizes, and 
annealing temperatures are listed in Table 2. The total volume of each reaction prepared was 20 
μL and comprised of 1× Taq buffer, 1.5 mM MgCl2, 0.4 mM dNTPs, 1 U Platinum™ Taq polymerase 
(Invitrogen, CA, USA), 0.5 μM primers (forward and reverse), and 2 μL of bisulphite-treated DNA. 
PCR was performed with an initial denaturing step at 94 °C for 3 min, followed by 29 cycles of 94 °C 
for 40 s, annealing (Table 2) for 1 min, and 72 °C for 1 min. The final extension was at 72 °C for 15 
min. After PCR, amplicons were purified from agarose gels using the Wizard® SV Gel and PCR Clean-
Up System (Promega, Madison, WI, USA), according to the manufacturer’s instructions. 

Table 2. Primers for methylation analysis. 

Gene  Primer Sequence (5’-3’) 
Genbank 
acession 
number 

CpG 
sites 

Amplicon 
length 

(bp) 

Annealing 
(°C) 

KDM2A 
F: GGTAAGTGTAGAGGGTTTTGAAGAAAGGAGATATTG 

540141 28 387 60 
R: TTAACTTTCTCAACTTCAAACAACTCCTTTTTACC 

KDM5A 
F: AAATTGGTTAAGAAGTTAGTAAAAGAAGAAGAGAG 

507962 13 334 55 
R: ATAATACAAAACCAAATCCTAAAATCAAAACAAACC 

KMT2D 
F: TAGTTAGAGTGGAGTAGATTTTGTGGGGTTT 

506805 11 333 60 
R: CACAACTAAAAACCAAACTACCCCCTTATC 

DOT1L 
F: GTTATGGGTATTTTTTAGGTTGGTGGTTG 

510442 19 335 60 
R: TACAAAATAAAAACCATATTCCAAACCCAC 

F (forward); R (reverse); bp (base pair). 
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Cloning and bisulphite sequencing 

The purified amplicons were cloned into the TOPO TA Cloning® vector (Invitrogen, CA, USA) and 
transferred into DH5α cells using a heat shock procedure. Plasmid DNA was isolated using Pure 
Yield Plasmid Miniprep (Promega, Madison, WI, USA), and individual clones were sequenced using 
BigDye® cycle sequencing chemistry and an ABI3100 automated sequencer (Applied Biosystems, 
Foster City, CA). Electropherogram quality was analysed using Chromas® (Technelysium Pty Ltd, 
South Brisbane, Australia), and methylation patterns were processed using the QUantification tool 
for Methylation Analysis (QUMA) (Kumaki et al., 2008). DNA sequences were compared with 
GenBank reference sequences (Table 2), and only those sequences originating from clones with ≥ 
95% identity and ≥ 97% cytosine conversion were used in the analysis (n = 684). The efficiency of 
the bisulphite treatment was calculated based on the percentage of CpH (H = A, C, or T) site 
conversion divided by the total number of CpH sites in the sequence. 

Statistics analysis 

Comparison of methylation data between two groups was done using the Mann-Whitney 
test and more than two groups were performed using the Kruskal-Wallis test followed by 
Dunn’s multiple comparison test. Comparative methylation analysis of CpG site was performed 
using Fisher's exact test. Statistical significance was set at p < 0.05. Data analyses were 
performed using QUMA and GraphPad Prism software. 

Results 

Overall, we analyzed 688 clones and compared the DNA methylation patterns of the four genes 
KDM2A, KDM5A, KMT2D, and DOT1L (detected in the blood and sperm of six Nellore bulls) in the 
control group against that of the low S/Co groups. The DNA methylation levels (Figures 2-5) were 
classified as low (0–20%), moderate (21–50%), and high (51–100%) according to Zhang et al. (2016) 
and Silveira et al. (2018). 

 
Figure 2. DNA methylation profile of KDM2A gene in blood and sperm for control and low S/Co groups. (A) 
Blood samples, (B) Sperm samples, and (C) Comparative analysis of methylation by CpG sites between 
control and low S/Co in blood and sperm. Each line represents an individual DNA clone, and each circle 
represents a CpG dinucleotide. Black circles represent methylated cytosines and white circles represent 
unmethylated cytosines. The DNA methylation percentage for each animal (Bull 1, Bull 2, Bull 3, Bull 4, Bull 
5, and Bull 6) is represented as mean ± standard deviation of the mean. Differences in DNA methylation 
among animals within the same group are shown by letters a and b (p < 0.05). (*) represents significant 
difference in the mean values for methylation of individual CpGs using Fisher's exact test (p<0.05). (n) 
represents the number of sequenced alleles of each sample. 
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Figure 3. DNA methylation profile of KDM5A gene in blood and sperm for control and low S/Co groups. (A) 
Blood samples, (B) Sperm samples, and (C) Comparative analysis of methylation by CpG sites between 
control and low S/Co in blood and sperm. Each line represents an individual DNA clone, and each circle 
represents a CpG dinucleotide. Black circles represent methylated cytosines and white circles represent 
unmethylated cytosines. The DNA methylation percentage for each animal (Bull 1, Bull 2, Bull 3, Bull 4, Bull 
5, and Bull 6) is represented as mean ± standard deviation of the mean. Differences in DNA methylation 
among animals within the same group are shown by letters a and b (p < 0.05). (*) represents significant 
difference in the mean values for methylation of individual CpGs using Fisher's exact test (p<0.05). (n) 
represents the number of sequenced alleles of each sample. 

 
Figure 4. DNA methylation profile of KMT2D gene in blood and sperm for control and low S/Co groups. (A) 
Blood samples, (B) Sperm samples, and (C) Comparative analysis of methylation by CpG sites between 
control and low S/Co in blood and sperm. Each line represents an individual DNA clone, and each circle 
represents a CpG dinucleotide. Black circles represent methylated cytosines and white circles represent 
unmethylated cytosines. The DNA methylation percentage for each animal (Bull 1, Bull 2, Bull 3, Bull 4, Bull 
5, and Bull 6) is represented as mean ± standard deviation of the mean. Differences in DNA methylation 
among animals within the same group are shown by letters a and b (p < 0.05). (n) represents the number 
of sequenced alleles of each sample. 
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Figure 5. DNA methylation profile of DOT1L gene in blood and sperm for control and low S/Co groups. (A) 
Blood samples, (B) Sperm samples, and (C) Comparative analysis of methylation by CpG sites between 
control and low S/Co in blood and sperm. Each line represents an individual DNA clone, and each circle 
represents a CpG dinucleotide. Black circles represent methylated cytosines and white circles represent 
unmethylated cytosines. The DNA methylation percentage for each animal (Bull 1, Bull 2, Bull 3, Bull 4, 
Bull 5, and Bull 6) is represented as mean ± standard deviation of the mean. Differences in DNA 
methylation among animals within the same group are shown by letters a and b (p < 0.05). (*) represents 
significant difference in the mean values for methylation of individual CpGs using Fisher's exact test 
(p<0.05). (n) represents the number of sequenced alleles of each sample. 

In general, a hypermethylated pattern was observed in DNA isolated from both the blood 
and sperm for all genes, groups, and animals (Figures 2-5). However, the KDM2A and KMT2D 
genes of three animals showed a lower methylated pattern [KDM2A/sperm/low S/Co/Bull 4 
(57.7%), Figure 2B; KMT2D/blood/low S/Co/Bull 6 (60.2%), Figure 4A; and 
KMT2D/sperm/control/Bull 2 (54.5%), Figure 4B] as the same animal showed alleles with 100% 
and 0% methylation. We also found more variation in the methylation profile among the sperm 
alleles in other animals [KDM5A/sperm/low S/Co/Bull 3 (75.8%), Figure 3B; KMT2D/sperm/low 
S/Co/Bull 5 (94.1%) and Bull 6 (79.4%), Figure 4B; DOT1L/sperm/control/Bull 2 (86%), Figure 5B; 
DOT1L/sperm/low S/Co/Bull 3 (88.4%) and Bull 5 (90.1%), Figure 5B], but it did not influence the 
higher methylation pattern. 

Interestingly, when we compared the methylation status of each CpG site individually, we 
found specific CpGs differentially methylated between control and low S/Co for KDM2A in the 
blood (CpG 17) and sperm (CpG 25) (Figure 2C), for KDM5A in sperm (CpG 4) (Figure 3C), and 
DOT1L in sperm (Figure 5C). However, when we compared all CpG sites among themselves, 
there were no differences in DNA methylation patterns for any of the genes between the 
control and low S/Co groups in the blood or sperm samples (Figure 6A). Therefore, treatment 
with a low S/Co diet in the heifers during the pre-and periconceptional periods did not affect 
the DNA methylation pattern of the gamete and blood cells of the progeny in adulthood for 
the DMRs analyzed. 

We also analyzed DNA methylation in the blood and sperm tissues of the control and low 
S/Co groups and found a difference in DNA methylation only in the control groups for KDM2A 
(Figure 6B); however, despite the statistical difference between the tissues analyzed, all 
samples were considered hypermethylated. 
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Figure 6. Percentage of methylation in KDM2A, KDM5A, KMT2D, and DOT1L genes (A) Comparison of DNA 
methylation levels between control and low S/Co groups for blood and sperm samples. (B) Comparison of DNA 
methylation levels in blood and sperm samples in the control and low S/Co groups, respectively. Numbers 
represent significant differences in the mean values for methylation using the Mann-Whitney test (p ≤ 0.05) 

Discussion 

In mammals, extensive epigenomic remodelling occurs during the initial stages of development. 
During gametogenesis and embryogenesis, epigenetic marks are more vulnerable to environmental 
influences. In our previous study, we presented DMR candidates for investigation, focusing on the 
impact of maternal nutrition on foetal epigenetic reprogramming during the pre- and peri-
conceptional periods (Nochi et al., 2022). Therefore, to validate whether DMRs in blastocysts are 
maintained in adulthood, we characterized four DMRs in the sperm and blood from F1 animals. 

Our previous study applied the experimental diet during the de novo methylation phase of 
F0 gametogenesis after the animals reached puberty (Nochi et al., 2022). Although Nochi et al. 
(2022) found an altered DNA methylation pattern in the blastocyst stage between the low S/Co 
and control groups in their study, we identified a hypermethylated pattern for both groups in 
all the DMRs analyzed in both the blood and sperm DNA of F1. This result suggests that 
embryos from both groups reprogrammed their epigenetic profiles correctly in the blood and 
sperm cells during development. Thus, epigenetic reprogramming during embryogenesis 
prevents the transmission of F0 gametic epimutations to F1. 

Despite a second wave of epigenetic reprogramming, some regions are not reprogrammed 
during embryogenesis. The DMRs established during gametogenesis are known as germ line 
DMRs (gDMRs). Those that are reprogrammed are known as transient DMRs (tDMRs) 
(Proudhon et al., 2012; Smallwood and Kelsey, 2012). In contrast, the imprinted DMRs (iDMRs) 
are those DMRs that are protected from loss of methylation after fertilization and are not 
methylated during embryo or tissue differentiation (Proudhon et al., 2012; MacDonald and 
Mann, 2014; Thakur et al., 2016). In our study model, the diet on final gametogenesis did not 
exert a permanent effect in the DMRs studied. However, since iDMRs are protected from 
reprogramming during embryogenesis, if the diet had affected these DMRs in any way, those 
effects probably would have been retained into adulthood to create metastable epialleles. 

In addition to evaluating DNA methylation patterns in white blood cells in F1 adults, we also 
analysed DNA methylation in the sperm cells of these animals. Despite the hypermethylated 
state in the blood and sperm samples, we found more variation in DNA methylation patterns 
among sperm alleles. Interestingly, several studies in humans and cattle have described the 
potential use of sperm DNA methylation-epimutations as biomarkers of infertility and 
susceptibility to diseases (Kropp et al., 2017; Nasri et al., 2017; Capra et al., 2019; Lujan et al., 
2019; Garrido et al., 2021). Thus, further studies characterizing whether maternal diet can 
influence the sperm DNA methylation of the offspring will provide valuable information. 
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A previous study in humans revealed some sensitive environmental hotspots in the 
embryonic methylome (Silver et al., 2022). In contrast, a low S/Co diet administered during 
gametogenesis stochastically affected the embryonic methylome (Nochi et al., 2022). Thus, the 
regions of the embryonic epigenome that are impacted by the dietary effects may be 
reprogrammed without deleterious changes in the offspring. 

It is well known that the diet during pregnancy may affect the offspring. Several studies have 
confirmed the effect of different maternal diets on the offspring in humans (Roseboom et al., 
2006), mice (Guo et al., 2018; Mao et al., 2018; Xie et al., 2018), rats (Carlin et al., 2019; 
Pedrana et al., 2020), and bovines (Devos et al., 2021; Liu et al., 2021; Noya et al., 2021). 
Moreover, studies reported that the maternal diet during gestation affects the DNA 
methylation pattern in the placenta and offspring of mice (Ge et al., 2014; Mahajan et al., 2019; 
Zhang et al., 2021a), cattle (Liu et al., 2021), and humans (Daniels et al., 2020; Kupers et al., 
2022). Interestingly, a study showed that the exposure of IVP embryos to choline in the culture 
medium alters the DNA methylation profile in the offspring muscle (Estrada-Cortes et al., 
2021). However, these studies evaluated the effects during embryogenesis. DMRs, by contrast, 
are more likely to propagate in the tissue of the offspring when the stimuli affect epigenetic 
reprogramming beyond the stage of gametogenesis but also embryogenesis. Therefore, 
determining the time and duration to which the dietary stimuli exert its effect is essential to 
study and understand the consequences of the maternal diet on the offspring. 

Interestingly, studies in livestock have only evaluated the dietary effects during the final 
stages of de novo methylation (Sinclair et al., 2007; Zglejc-Waszak et al., 2019; Toschi et al., 
2020), but Nochi et al. (2022) evaluated the impact of nutrition starting from the initial stage of 
de novo methylation during gametogenesis. A broad experimental design for the study of 
environmental influence on gametogenesis should contemplate the erasure of DNA 
methylation during foetal programming and ensure the dietary effect on oocytes during de 
novo methylation. However, this experimental design is easier to implement in mice models 
than it is in cattle because of its expensive and time-consuming nature. Moreover, based on 
our observations, embryonic methylome can be used only as an initial screening tool because 
DMRs may be reprogrammed in the final stages of de novo methylation during embryogenesis 
and foetal growth; therefore, it is crucial to validate the DMRs in adulthood. 

Conclusion 

In this study, we characterized the DMRs identified in the previous experiment, which 
showed that the pre-and periconceptional diet affected the DNA methylation profile of 
embryos. Among the 2,320 DMRs identified in blastocysts by Nochi et al. (2022), the six that we 
analyzed underwent extensive epigenetic reprogramming in both blood and sperm cells. These 
results confirm our hypothesis that the DMRs found in embryos may not be maintained in 
adult animals. Thus, we suggest that after the first screening using WGBS, it is crucial to confirm 
the inheritance before projecting the embryonic methylome onto adult tissues. 
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