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The assessment of the stages of gonadal development 
of fish species is an important issue in many studies of fish re-
productive biology. Fish exhibit different strategies and tactics 
that maximize reproductively active offspring in relation to the 
available energy (Wootton 1984, Roof 1992, Brown-Peterson et 
al. 2011). These strategies have been assessed based mainly on 
the knowledge of germ cell lineage development and fecundity, 
which are essential to understand the maturation process and 
oocyte recruitment patterns (Murua & Saborido-Rey 2003, Costa 
et al. 2015). Bioimaging the dynamic processes of germ cell de-
velopment of fish species is uniquely easy. Oogenesis is a very 
dynamic process in the ovaries. During it, the oocyte passes 
through various phases of development that are very similar 
among different fish species (Selman & Wallace 1989). For in-
stance, staging based on the external appearance of the ovary 
is the simplest and most rapid method to assess the ovarian de-

velopment phases. Moreover, oocyte size may be used to predict 
the developmental stage of the embryo when the size ranges of 
the various stages are known and do not overlap. When they 
overlap, however, histological techniques are a more accurate 
method of estimating the developmental stages and phases of 
the germinative cells.

Fecundity is another important aspect of fish reproductive 
biology (Lowerre-Barbieri 2009). Knowledge of the fecundity of 
a species is important to fish stock management. It is used to 
calculate the reproductive potential of a stock, and enhances our 
ability to estimate recruitment. For this reason, information on 
fecundity is very important for estimating individual reproduc-
tive potential, evaluating the productivity of the population, 
and characterizing specific populations (Lambert et al. 2003, 
Armstrong & Witthames 2012, Costa et al. 2016). Therefore, to 
understand the reproductive strategies in fishes, it is important 
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to understand oocyte development, ovarian organization, and 
fecundity (Murua & Saborido-Rey 2003, Costa et al. 2015).

The smooth weakfish Cynoscion leiarchus (Cuvier, 1830) is a 
coastal fish species distributed along the Western Atlantic coast, 
from Belize to Southern Brazil. This species is usually found on 
mud and sand bottoms in estuarine areas, and along the coast-
line down to about 60 m depth (Menezes & Figueiredo 1980). It is 
an important resource for commercial and artisanal fisheries in 
Brazil. Records of catches of this fish are available between 2008 
to 2010, of 910, 1003 and 948 t year-1, respectively (MPA 2012). 
In the Southeast region, for example, the total landings of this 
species in 2006 were 325.5 t, of which approximately 38% were 
in the state of Rio de Janeiro (IBAMA 2008). In the Sepetiba Bay 
(22°54’-23°04’S, 43°34’, 44°10’W), a 450 km2 embayment in the 
Southeastern coast of Rio de Janeiro, this species ranks among 
the most abundant fish species, occurring mainly in the outer 
bay zone (Araújo et al. 2006) that has predominantly polyhaline 
waters (salinity average = 30), and mean temperature ranging 
between 21.5°C (winter) and 27°C (summer) (Araújo et al. 2002). 
Despite the wide geographical distribution and commercial value 
of C. leiarchus, information on the reproductive biology of the 
species is still lacking.

The reproductive strategies and tactics of other species 
of Cynoscion along the Atlantic coast of the United States, Gulf 
of Mexico, Mexico and South America have been studied. Such 
studies reported an extended reproductive season, multiple 
spawning, asynchronous oocyte development and indetermi-
nate fecundity for Cynoscion nebulosus (Cuvier, 1830) in south-
ern Texas and coast of Mississippi (Brown-Peterson et al. 1988, 
Brown-Peterson & Warren 2001) and for Cynoscion othonopterus 
(Jordan & Gilbert, 1882) in the Colorado River Delta, Mexico 
(Gherard et al. 2013). Brown-Peterson et al. (2002), studying C. 
nebulosus in five estuaries from Charlotte Harbor to Redfish 
Bay, USA, observed subtle but consistent differences in batch 
fecundity among the estuaries. Taylor & Villoso (1994) described 
aspects of the daily ovarian cycle and spawning of Cynoscion 
regalis (Bloch & Schneider, 1801) in the Delaware Bay (USA) 
and found that this species has batch fecundity, with spawning 
at irregular intervals during the early hours of the evening. In 
South America, Marcano & Alió (2001) reported a wide range of 
diameters of mature oocytes, indicating multiple spawning for 
Cynoscion jamaicensis (Vaillant & Bocourt, 1883) in the northern 
coast of Paria Peninsula, Venezuela. In Brazil, Vieira & Haimovici 
(1997) studying the oocyte development and batch fecundity 
of C. guatucupa (Cuvier, 1830) (synonymous of C. striatus), re-
ported consistent similar reproductive patterns for this species 
from Southern Brazil to Argentina. Militelli & Macchi (2006) 
also estimated batch fecundity for C. guatucupa in the coastal 
waters of Argentina-Uruguay.

The objective of this study was to describe for the first 
time aspects of the reproductive strategy of C. leiarchus in the 
Sepetiba Bay: (i) to describe the stages of development of germi-
native cells, (ii) to determine oocyte size frequency distribution 

and (iii) to assess batch fecundity. We expected to find oocytes 
overlapping in different stages at individual level, suggesting 
multiple spawning and batch fecundity for this species, a general 
characteristic within Cynoscion. We also compare our results with 
another species within the family Sciaenidae, to test whether 
closely related species exhibit similar reproductive strategies to 
avoid interspecific competition among offspring.

MATERIAL AND METHODS

We collected specimens from artisanal catches from July 
2013 to June 2014. The nets were 1,500 m long, 3 m in depth, 
and had three panels of different mesh sizes (35, 45, and 35 mm 
adjacent mesh). All fish specimens were stored in ice and trans-
ported to the laboratory, where they were measured (total length) 
(TL, nearest 1 mm) and weighted (TW, nearest 0.01 g). A ventral 
incision was made to expose gonads for sex determination and 
the development stage of the macroscopic gonad. Gonads were 
removed and weighed while wet (WG, nearest 0.01 g). Voucher 
specimens were deposited in the ichthyological collection of the 
Laboratório de Ecologia de Peixes of the Universidade Federal 
Rural do Rio de Janeiro under number: LEP-UFRRJ#1600.

A subsample of 18 specimens (11 females and 7 males) 
was examined for histological analysis. The female subsample 
ranged from TL 215 to 484 mm, TW 316 to 958 g and WG 13.20 g 
to 64.80g. Males ranged from 290 to 493 mm TL, TW 194 to 
1269 g and WG 0.10 to 4.00 g. A portion (<0.05 g) of each ovary 
and testis were taken from the middle part of the gonad, being 
weighed to the nearest 0.01 mg and fixed in Bouin’s solution 
for histological study during 12 hours, being then transferred to 
70% ethanol for preservation. Afterwards, the gonads were de-
hydrated and embedded in paraffin wax. Cross-sections, 4-6 µm 
thick, were made in a rotary microtome (Leica RM 2135, Wetzlar, 
Germany), stained with haematoxylin eosin (HE) and mounted 
on glass slides for light microscopy scrutiny (Spector & Goldman 
2006). Microphotographs were taken with a MOTICAM 2300 3.0 
megapixels camera coupled to an Olympus BX41 microscope.

Identification of the gonadal maturation phases and 
oocyte development stages were made following the criteria in 
Brown-Peterson et al. (2011) for histological analyses. Primary 
growth oocytes were determined based on the occurrence of 
oogonia, chromatin nucleolar and perinucleolar stages. Accord-
ingly, all vitellogenic oocytes and cortical alveolar oocytes are 
secondary growth oocytes. Vitellogenesis is normally a long pro-
cess during which important and visible changes occur within 
the oocyte: oocyte size increases noticeably, yolk progressively 
accumulates in the cytoplasm and several cytoplasmatic inclu-
sions appear (vacuoles, yolk globules, etc.). In this study, vitel-
logenic oocytes are separated into three stages (primary (Vtg1), 
secondary (Vtg2) and tertiary (Vtg3) based on the diameter of the 
oocyte, the amount of cytoplasm filled with yolk globules, and 
appearance of the zona radiata. The Vtg3 oocyte has the neces-
sary receptors for the maturation-inducing hormone and thus 
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is able to progress to oocyte maturation (OM) (Brown-Peterson 
et al. 2011). Oocyte maturation is divided into four stages based 
on cytoplasmic and nuclear events, beginning with germinal 
vesicle migration (GVM) and ending with hydration (Jalaber 
2005); ovulation is not considered a part of OM.

For each fish, the diameter of the oocytes and their nucleus 
were measured to the nearest 0.1µ using the Image J software and 
the mean diameter of each type of oocyte was then calculated. 
Measurements were taken on oocytes sectioned through the 
nucleus. The spermatogenic stages follow those outlined by Grier 
& Uribe-Aranzábal (2009) and include the stages spermatogonia 
(Sg), spermatocytes (Sc), spermatids (St), and spermatozoa (Sz), 
which can be differentiated by a decrease in size and an increase 
in basophilic staining as development progresses from Sg to Sz.

Batch fecundity was estimated by direct counts of oocytes 
undergoing OM (> 400 µm) in subsamples of 20 ovaries with 
intense yellow color in final maturation of the spawning capable 
phase, and calculated as: F = N × WG × WGS

-1, where F = fecun-
dity, N = number, WG = total gonad weight and WGS = gonadal 
subsample weight. This criteria is in agreement with the state-
ment of Hunter & Macewicz’s (1985) that oocytes undergoing 
final oocyte maturation may be included as hydrated oocytes 
when hydration occurs very rapidly. Relative fecundity (number 
of eggs per gram of ovary-free body weight) was calculated to 
remove the effect of body size. A linear regression analysis was 
performed to assess relationships between fecundity with total 
length, total body weight, gonad weight and age. The age data 
were obtained from Silva (2015), who used otoliths for deter-
mining age in this species.

RESULTS

Stages of oocyte development
Primary Growth – PG (Figs. 1-2): Oogonia, chromatin 

nucleolar and perinucleolar stages are present in the ovary 
throughout the entire annual cycle, and are referred to as prima-
ry growth oocytes (diameter <30 μm). Oocyte diameter averaged 
28.14 ± 0.50 μm (n = 60) and nucleus 12.64 ± 0.30 μm (n = 60). 
We observed this stage in in all phases of ovarian development.

Pre-vitellogenic (Figs. 3-4): Cortical alveoli formation: 
oocytes in different stages of development. Small vesicles and 
alveoli appear in the periphery of the cytoplasm. Mean diameter 
of oocyte 55.38 ± 2.85μm (n = 60) and nucleus 15.92 ± 1.43 
μm (n = 60). Zona radiata visible, although not yet stained by 
eosin. Accumulation of lipid inclusions in cytoplasm has begun. 
Cortical alveoli were observed in in developing and spawning 
capable phases.

Vitellogenic (Fig. 3-4): Primary vitellogenic (Vtg1). In 
early stage, yolk granules small and numerous, also called yolk 
spheres or yolk globules, containing cortical alveoli, occupying 
the entire cytoplasm. Mean oocyte diameter 76.07 ± 5.52 μm (n = 
60) and nucleus 24.79 ± 1.99 μm (n = 60); secondary vitellogenic 
(Vtg2). Cortical alveoli increase in size and gravitate towards 

the periphery as the yolk granules grow. Follicular layer and 
zona radiata are visible, with the latter being dyed with eosin. 
Mean oocyte diameter 164.60 ± 6.09 μm (n = 60) and nucleus 
54.07 ± 3.40 μm (n = 60); Tertiary vitellogenic (Vtg3). Lipid 
inclusions dispersed in the cytoplasm. Mean oocyte diameter 
293.03 ± 10.23 μm (n = 60) and nucleus 69.40 ± 3.36 μm (n = 
60). Primary and secondary vitellogenic oocytes were present 
in the developing ovarian phase and all stages of vitellogenic 
are present in spawning capable ovarian phase.

Oocyte maturation (Fig. 4): Oocytes in early and late 
stages were observed. The following characteristics of oocyte 
maturation (OM) were noted: germinal vesicle migration (GMV), 
germinal vesicle breakdown (GVDB), yolk coalescence or clarifi-
cation (Jalabert 2005). Early OM included GVM, but little yolk 
coalescence. Late OM was characterized by completed GVM or 
GVBD, yolk coalescence. Mean oocyte diameter 397.61 ± 7.13. 
Oocytes in final maturation stage represent the actively spawn-
ing subphase of the spawning capable ovarian phase.

Atresia (Fig. 2-3): Atretic oocytes were detected and char-
acterized by disintegration of the nucleus and evident irregular 
shape as into alpha stage. The cells of the granular layer migrate 
to the interior of the ooplasm, absorbing the yolk; at the end of 
this stage the zona radiata disappears. Although thus stage could 
occur in any phase, except immature and actively spawning 
sub-phase, we only observed atresia stage in regenerating and 
spawning capable phases.

Stages of spermatocytes development
The spermatogenic cells appear in the interior of lobules 

at different stages during spermatogenesis (spermatogonia 
(Sg), spermatocytes (Sc), spermatids (St) and spermatozoa (Sz)), 
forming cysts (Cy). Each cyst is bound by a layer of connective 
tissue and contains cells at the same stage of development. In 
spawning capable testes, the lobules are filled with spermatozoa, 
continuo germinal epithelium at testis periphery (Figs. 5-6).

Oocyte size distribution
The size-frequency distribution of oocytes differed for 

each phase of gonadal maturation (Fig. 7). Oocytes in the 
reserve stock had diameter <25 μm and were present in large 
numbers in all maturation phases; the immature phase showed 
in second class oocytes ranging from 26 to 36μm in diameter. 
In the developing phase, a continuum oocyte distribution with 
diameter of oocytes ranging from 20 to 299 μm was observed. 
The spawning capable showed the same pattern with diameter 
of oocytes ranging from 250 to 407 μm. The regenerating phase 
oocyte distribution was similar to the immature phase, with 
diameter ranging from 20-42 μm.

Fecundity
Batch fecundity ranged from 100 × 103 to 866 × 103 

oocytes undergoing OM. The relative fecundity ranged from 
232 to 1,225 oocytes, averaging 467 ± 48 oocytes per gram of 
somatic body weight (ovary-free). We counted approximately 
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220 oocytes for each of the 20 examined females, with a total of 
4,500 measured oocytes. Fecundity tended to increase linearly 
with gonad mass, total mass, total length, and age (p < 0.05) 
with the highest linear correlation (r = 0.82) obtained between 
the gonad weight and fecundity (Fig. 8-11).

DISCUSSION

Histological analyses allowed the detection and descrip-
tion of changes in five oogenesis and four spermatogenesis stages 
of Cynoscion leiarchus from Sepetiba Bay. This species seems to 

Figures 1-6. Photomicrographs of ovarian (1-4) and testicular (5-6) histology illustrating oocytes and spermatocytes at different develop
ment stages of C. leiarchus: (1-2) regenerating ovarian phase; (3) spawning capable ovarian phase; (4) actively spawning subphase; (5-
6) spawning capable testis phase. (PG) Primary growth, (MB) muscle bundle, (CA) cortical alveolar, (OW) ovarian wall, (Vtg1) primary 
vitellogenic, (Vtg2) secondary vitellogenic, (Vtg3) tertiary vitellogenic, (A) atresia POF: postovulatory follicle complex, (GVM) germinal 
vesicula migration, (GVBD) germinal vesicular breackdown, (Sg1) primary spermatogonia, (Sz) spermatozoa, (Cy) spermatocyst.

3 4

5 6

21
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Figure 7. Oocyte size-frequency distribution through subsequent 
phases of gonad development of Cynoscion leiarchus. Dashed line 
(V) indicate early vitellogenesis and (OM) indicate early oocyte 
maturation.

patterns confirm that closely related species develop strategies 
to avoid interespecific competition for limited resources and to 
overcome environmental constrains (Wootton 1992, Amarasekare 
2003). For instance, timing segregation in reproduction will 
enable offspring to maximize the use of the available resources, 
facilitating survival and reproductive success. We therefore con-
sider that this trait is common to the entire family.

The analysis of oocyte size-frequency distributions in the 
developing and spawning capable phases reveals continuous oo-
cyte recruitment into vitellogenesis. Batch spawners with these 
features exhibit asynchronous oocyte development and inde-
terminate fecundity, characterized by the presence of oocytes in 
several developmental stages in the ovary during the developing 
phase Brown-Peterson et al. (2011) and by the permanence of 
this oocyte recruitment during the spawning season, making 
it impossible to estimate fecundity with precision (Wallace & 
Selman 1981, Hunter et al. 1992, Gordo et al. 2008). Therefore, 
this pattern corroborates C. leiarchus as a batch spawner with 
asynchonic oocyte development and indeterminate fecundi-
ty. Furthermore, batch-spawning species with indeterminate 
fecundity will have different oocyte developmental patterns 
depending on how quickly the oocytes are recruited to various 
stages of vitellogenesis, which drives how asynchronous the 
oocyte pattern appears (Lowerre-Barbieri et al. 2011).

Despite the absence of hydrated oocytes, the presence of 
POFs represents a subsequent phase. According to Brown-Peterson 
et al. (2011), in warm-water batch spawners with indeterminate 
fecundity, oocytes in a batch normally undergo rapid OM and 
are released in a single spawning event. This author also reported 
that the late OM of C. nebulosus occurred within 10 hours in 
the natural environment in South Texas (Brown-Petersen et al. 
1988). Taylor & Villoso (1994) also described that C. regalis oo-
cytes undergo late OM during the day with ovulation probably 
occurring between late afternoon and early evening. Therefore, 
the absence of hydrated oocytes could be circumstantial, and 
allows us to suppose that the oocytes of C. leiarchus undergo 
rapid OM and hydration, as other species of Cynoscion.

The presence of postovulatory follicles has been reported 
as evidence of recent spawning (Vazzoler 1996, Dias et al. 1998, 
Maddock & Burton 1999) since they remain in the ovary for less 
than 24 hours (Wilson & Neiland 1994, Lowerre-Barbieri et al. 
2011). Our records on postovulatory follicles in this study suggest 
that the Sepetiba Bay might be used as reproductive grounds by 
at least part of the population of C. leiarchus. Furthermore, the 
occurrence of young-of-the-year of this species in great numbers 
at the nearshore waters of the bay was reported by Pessanha & 
Araújo (2003) and Pereira et al. (2015). However, more studies 
are necessary to confirm this hypothesis.

Our findings indicate that C. leiarchus has higher relative 
fecundity than reported for C. guatucupa (292-649 oocytes × 
gram-1) from the coast off the estuary of Rio da Prata (Cassia 
1986), but lower than populations off the coast of the state of Rio 
Grande do Sul (1,220-1,251 oocytes × gram-1, Vieira & Haimovici 

spawn in batches, with asynchronic oocyte development and 
indeterminate fecundity, suggesting a long spawning season. 
According to Winemiller & Layman (2005), this type of behavior 
may be considered an adaptive response to environmental vari-
ations. This involves allocation of energy for different stages of 
life in order to ensure the survival of recruits and juveniles, as 
a result of a large investment of the parents to produce a high 
number of offspring at each reproductive cycle (Pianka 1970), 
even if each individual has little chance of surviving to adult age.

According to Fonteles-Filho (2011), batch spawning is com-
mon in tropical areas, and reflects adaptation to environmental 
constraints to optimize release of gametes in a synchronized 
process related with food availability for larvae and post larvae. 
This ensures a greater survival of the offspring. This reproduc-
tive pattern was also observed in other species of Cynoscion, for 
instance C. nebulosus from the Golf coast of Mississipi (Brown-Pe-
terson & Warren 2001) and from the South Carolina (Roumillat & 
Brouwer 2004), C. othonopterus from the California Gulf (Gherard 
et al. 2013), C. jamaicensis from Venezuela coast (Marcano & 
Alió 2001), C. guatucupa from Southern Brazil (Vieira & Haimovici 
1997) and Argentinian-Uruguaian coast (Militelli & Macchi 
2006), thus confirming that batch spawning and indeterminate 
fecundity are common strategies in Cynoscion. These reproduc-
tive traits were also observed in other Sciaenidae species, for 
instance Macrodon ancylodon (Bloch & Schneider, 1801) (Juras & 
Yamaguti 1989), Menticirrhus americanus (Linnaeus, 1758) (Chaves 
1989), Isopisthus parvipinnis (Cuvier, 1830) (Chaves 1989), Stellifer 
rastrifer (Jordan, 1889) (Chaves & Vendel 1997), Paralonchurus 
brasiliensis (Steindachner, 1875) (Costa et al. 2015). Thus, these 
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1997), results which are based on late oocyte maturation. This 
suggests that changes in fecundity are associated with different 
areas of the Argentinian-Uruguaian and Southern-Southeastern 
Brazilian coast and that this pattern in not consistent, as report-
ed by Vieira & Haimovici (1997). According to Brown-Peterson 
& Warren (2001), such changes are expected and are likely 
associated with differential environmental conditions or/and 
food availability.

In this study, gonadal weight was the best predictor of 
fecundity, compared with total length, body weight and age. 
This relationship is dependent of condition, in terms of abso-
lute and relative body mass (Murua et al. 2003). Moreover, the 
direct relationship between length/age and fecundity suggests 
that older individuals are more fertile. Nevertheless, fecundity 
in teleosts could be affected by food availability, female condi-
tion, size and environmental conditions (Murua & Motos 2006, 
Dominguez-Petit & Saborido-Rey 2010). Thus, for a given size, 
females in better condition exhibit higher fecundity (Kjesbu et al. 
1991), indicating that size and condition are the key parameters 
to properly assess fecundity at the population level.

This study provides the first information on the gonadal 
development of C. leiarchus form the southeastern Brazilian bay. 
Similarly to other species from the Sciaenidae family, we confirm 
that the reproductive strategy is characterized by batch spawning, 
wide reproductive season and indeterminate fecundity. We believe 
that our findings contribute to clear and update the knowledge 
of gonadal development patterns and to provide a baseline for 
comparisons with other South American species of Cynoscion. 
As no information on these biological aspects currently exists in 
FishBase, the present results may also contribute to this database.
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