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Enviromics: bridging different sources of data, 
building one framework
Germano Costa-Neto1,2 and Roberto Fritsche-Neto2,3*

Abstract: Enviromics is the field of applied data science that integrates da-
tabases of environmental factors into biostatistics and quantitative genet-
ics. It can leverage plant ecophysiology knowledge to bridge the gaps about 
environment interactions with systems biology (genes, transcripts, proteins, 
and metabolites), which also boosts the ability to understand and model the 
phenotypic plasticity of the main agronomic traits. Recently, the plant breeding 
community has experienced reduced costs for acquiring environmental sensors 
to be installed in the field trials while increasing the reliability and resolution 
of the remote sensing techniques. The combination of those two factors has 
started the spring of enviromics-aided breeding in recent years. However, the 
use of environmental information in plant breeding is not a novelty approach 
developed a few years ago, but a core of efforts originated in the last 60 years, 
yet some basic ideas traced back to early 20th century attempts to establish 
a relationship between phenotypic and environmental variation. This review 
highlights the main concepts surrounding the construction of the “modern 
enviromics science”, tracing back to its origins in the last decades. Finally, we 
present how this field has helped integrate different data sources in prediction-
based models or build one framework.
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INTRODUCTION

One of the most promising tools of Modern Plant Breeding is the enviromics 
(Resende et al. 2020, Crossa et al. 2021), yet it less explored omics-based 
approach (Costa-Neto et al. 2021c) even after several works describing its benefits 
(Cooper et al. 2014, Xu 2016, Voss-Fels et al. 2019). Most of this neglected 
usefulness relies on the lack of a clear envirotyping pipeline to provide analytic 
data to accomplish this field’s theoretical concepts. In this context, we envisage 
the need to review basic concepts and the historical background underlying 
environmental information in predictive breeding and analytics. 

Our objective here is to discuss the differences between envirotyping, 
enviromics, and the simple use of any environmental information in breeding 
decisions under G×E prediction scenarios. To achieve this objective, we first 
highlight some important concepts regarding the genotype-environment 
interaction and how the environment shapes the phenotypic variation of complex 
traits. Then we present a historical timeline from the early 20th century until the 
present days, passing by the benchmark works for elaborating the “enviromics 
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theory”. Finally, we envisage the “treasures” mined to establish enviromics-aided predictive breeding platforms that 
integrate different data sources in prediction-based models or build one framework.

KEY QUESTIONS FOR UNDERSTANDING “ENVIROMICS”

What is “environment”?
As geneticists, we tend to interpret environment as the core of sources outside of the Central Dogma of Molecular 

Biology: the effects surrounding the rate of gene expression, driving the process of transcription and its translation 
in proteins that results in the observed phenotype. It also is related to other processes such as regulating epigenetic 
factors that affect gene expression. Thus, the environment is an emergent property derived from the balance of inputs 
and frequency across the plant’s lifetime. Therefore, the environment is not a “fixed property”, but a gathered effect 
of multiple factors and its balance driving the quality of the growing conditions for a given species, germplasm, or 
genotype. From the agriculture or forestry point of view, and translating this idea to a realistic situation, we can define 
“environment” as a certain time window between planting date and harvesting, that is, experimental treatment or 
replication of the genetic treatments across the time and the space. At a certain experimental design, the replications 
conducted in some field trials aim to control micro-environmental effects that are not part of the genetic treatments 
under study, as pointed by Fisher in 1918. At multi-environment trials (MET), this problem increases, which demands 
some knowledge about the macro-environmental effects that must be considered to visualize better how the environment 
shapes the phenotypic variation of plants.

How does the “environment” shape the phenotypic variation?
Understanding how the environment (balance and availability of inputs) regulates growth and development is an 

important step to understand at which level the enviromics can be used in Systems Biology. Thus, at least three clear 
levels of environmental acting can be reasonably described. 

At the cellular level, the first acting is by regulating gene expression, activating cellular divisions, and cellular growth. 
Then, it also drives the dynamics of the transcripts within the surrounding cell environment, activating enzymes and 
determining the rate of protein denaturation during the lifetime of the cell. Secondly, it acts outside of the cell environment, 
impacting the interaction between cells and plant organs, regulated by the availability of resources and metabolites 
important for plant physiology. Third, the (eco) physiology of the plants is modulated by external factors surrounding the 
micro-environments of the plant, that is, its biotic and abiotic interactions. Some of the biotic factors might include the 
genotype-specific interactions with the soil microbiome and the responsiveness to pests, diseases, and neighbor plants. 
For the abiotic effects, it consists of the soil-plant-atmosphere continuum, that is: how the ecophysiological responses 
due to the soil water availability, fertilizer levels, air temperature, solar radiation, and other conditions related to a certain 
time window of plants development, at a certain cultivation practice, at a certain location in the world. Consequently, the 
core of those inputs (also referred to as plant stimuli) directly affects the sanity of specific tissues or plant organs, which 
reflects in the availability of certain metabolites in the cells and finally comes back to the differential gene expression. A 
reflection of this phenomenon, for instance, is the measured leaf temperature impacting the differential production of 
hormones and plant architecture (Patel and Franklin 2009, Castroverde and Dina 2021) and the soil water availability in 
the roots regulating leaf stomata (Buckley 2019), which directly affects the final yield status. Thus, the balance of those 
factors, in terms of frequency of occurrence in different phenological stages, is also strongly related to the magnitude 
of those factors in limiting the potential phenotypic expression of the genotypes.

Because of the well-established interactions studied in fields such as plant pathology and crop ecophysiology, it is 
also possible to trace the interactions between biotic and abiotic factors affecting the phenotypic expression of diverse 
genotypes. Therefore, quantitative geneticists can take advantage of those studies to establish relationships between the 
performance of target agronomic traits as a function of the environmental gradient (range of environmental conditions) 
experienced by the crops as a signal of the possible drivers of genotype by environment interaction. This is why from 
ecophysiology, we can infer those plants are static in some ‘location’, and to survive to the balance of inputs (which 
sometimes affects it negatively), the plasticity of the genotype is a key for understanding the phenotypic variation 
(Bradshaw 1965). This idea also leads the physiologists back in the 1960’s decade to start developing mechanistic crop 
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growth models capable of measuring those relations, while plant breeders tried to establish linear responsiveness of 
each genotype for certain key environmental factors – the reaction norm modeling.

What is genotype by environment interaction?
Genotype by environment interaction (G×E) results from the genotype-specific plasticity for the surrounding macro-

environment fluctuations in the lifetime of the crops (Hogben 1932, Allard and Bradshaw 1964, Bradshaw 1965, Arnold 
et al. 2019). If the environment modulates the rate of gene expression (e.g., Jończyk et al. 2017, Liu et al. 2020) and 
fine-tuning epigenetic variations related to transcriptional responses (Vendramin et al. 2020, Cimen et al. 2021), there 
are many sources to bridge the genetic diversity and phenotype variation that implies on G×E variation for each genotype 
at each growing condition. Because of that, the common way to compute the G×E in breeding trials is to assume it as 
a differential and multiplicative interaction between genetic (G) and macro-environment effects (E), in which micro-
environmental factors (plot-level) are corrected using experimental design structures (e.g., replications, blocks) and 
statistical analysis for the phenotype correction (e.g., linear models, spatial analysis). This last is capture by the residual 
variance effects into the first stage of statistical analysis of field trials. Thus, all of the unknown processes between the 
potential phenotypic plasticity and the modeled sources of variation (G, E), and also all model misspecifications, are 
accounted as G×E and residual variance, respectively.

To further understand G×E, it is needed first to understand three main concepts: i) phenotypic plasticity; ii) reaction-
norm; iii) interrelation between target population of environments (TPE) and multi-environment trials (MET). Figure 
1 illustrates the basics to explain that the G×E is not a phenomenon per se but a consequence of the environmental 
range of the multi-environment trials (MET) (and its representativeness) and the lack of knowledge on modeling the 
sources of phenotypic variation. Let’s consider four experimental networks (the core of field trials), conducted under 
MET conditions for the same TPE, and considering two distinct genotypes (G1 and G2). The curves of each genotype 
illustrate its particular (and potential) phenotypic plasticity: the ability to shape the phenotypic expression according 
to the environmental gradient experienced. As discussed in the last section, this plasticity results from the particular 
system biology dynamics of the genotypes. Excess or deficit of environmental inputs is a stressful factor limiting the 
potential expression of the genotypes. The vertical solid lines indicate the range of the experimental network conditions: 

Figure 1. The interplay between phenotypic plasticity and reaction-norm as a function of the observed environmental gradient range.
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the maximum and minimum input level that the genotypes experienced in each MET condition. 

According to these environmental limits, each genotype expresses a different reaction-norm: nonlinear responsiveness 
to the gradient of growing conditions. The concept of reaction-norm is an old idea but reflects particular genotype-specific 
sensibilities for key environmental factors – which defines the adaptability of the genotypes for the MET condition. Finally, 
at the dashed lines, it is possible to visualize the observed G×E pattern as an expectation of the particular adaptability 
of the genotypes. As illustrated, for each environmental gradient of each MET, it is possible to visualize a different G×E 
pattern for the same genotypes. At experimental network 1, the pattern is the crossover, that is, there is a rank change 
across the environments – also known as qualitative changes. On the other hand, if the range growing conditions differ, 
the pattern might be non-crossover (or simple), as observed at the experimental network 2,3 and 4 – quantitative changes 
in the phenotypic expression across the environments without rank changes.  Thus, considering this illustration for a 
real-world breeding program scenario, it is expected to visualize a MET-specific G×E pattern for each germplasm at each 
MET. Because of that, the plant breeders must define the environmental limits of the TPE to conduct field trials that 
represent a sample of those conditions – and then explore the G×E to select the most adapted cultivars. The process of 
identifying TPE and relating it to the MET conditions can only be done using a diverse set of envirotyping analytic tools 
(Chenu et al. 2011, Heinemann et al. 2019, Crespo-Herrera et al. 2021).

Then, what is the difference between envirotyping, envirome, and enviromics?
Envirotyping gathers the steps of collecting, processing, and associating environmental data with phenotypic data 

to understand the typology of environments for some MET, which is conducted relating it to the target population of 
environments (TPE) of the breeding program. This is a two-way process approach, in which the definition of the best 
MET can also be done by analyzing the typology of the TPE. It is expected to the MET is a representative sample of the 
TPE, but every MET is composed of some germplasm (well know tested individuals or newly developed or introgressed 
materials) at yet-to-be-seen growing conditions, in which sometimes some specific field trial might not be so close to 
the TPE expectations. Furthermore, each germplasm has a unique interaction with the tested environments due to the 
change in allele frequencies across the years and the arrangement and introgression of variability, which directs impacts 
G×E relations. Thus, the envirotyping process might be continuously used to update the gene-environment relations for 
some TPE (and perhaps redefine the TPEs).

The process of deriving typologies relies on identifying the most impactful environmental factors for some specific 
trait (or core of main traits), in terms of impact and frequency of occurrence at some location and planting date within 
the TPE. For example, the effect of planting date shaping the climatic impacts is well understood in agrometeorology 
(Heinemann et al. 2019, Antolin et al. 2021). Thus, we can affirm that the same location with different planting dates 
might be targeted as different TPEs according to the climatic stability (and occurrence of diseases), for instance. The 
final goal of envirotyping is then to understand the expected G×E patterns to be achieved for some location, in which 
the pure environmental data might be associated with historical phenotypic records (or records from some specific MET) 
to identify the key factors impacting the reaction-norms of the germplasm (and consequently, the end-resulted G×E).

Enviromics is the large-scale envirotyping, based on the collections of environmental data across time and space to 
establish a global association between the crops envirome (the core of TPEs) and phenotypic variation of key factors 
driving G×E. From enviromics, it is possible to derive some useful outputs, such as an environmental relatedness matrix, 
which supposes that the core of typologies is a marker of “environmental polymorphisms” (Resende et al. 2020, Costa-
Neto et al. 2021a, Costa-Neto et al. 2021c). Another important goal of enviromics is its further integration in systems 
biology approaches, which can support the understanding of genomics × enviromics interactions, but also its relation 
with different omics sources (e.g., transcriptomic, proteomic) and its impact on improving accuracy and resolution of 
predictive breeding platforms (Costa-Neto et al. 2021a, Costa-Neto et al. 2021b, Rogers et al. 2021).

ENVIRONMENTAL INFORMATION IN PLANT BREEDING HISTORY

The use of environmental information is not a recent idea surrounding the plant breeding community. Perhaps 
the first attempt of it started with Sir. Ronald Fisher (Fisher 1924) trying to establish a relationship between rainfall 
and wheat grain yield. However, the idea of establishing a relation between phenotypic variation and environmental 
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variation started with Woltereck (1909), in which the concept of “reaction norm” (reaktionsnorm). Then, Nilsson-Ehle 
(1914) brings the concept of ‘acclimatization or adjustment of plants,’ which was the first step surrounding the idea of 
‘phenotypic plasticity (plasticitet) over a certain environmental gradient. Finally, Hogben (1932) recognized a certain 
‘hereditary source’ related to genetic variation at environmental-specific effects – which started to be called genotype 
× environment interaction.

From these basic studies, some plant breeders started to pay attention to the implications of G×E in selection 
decisions. Diverse biometric methods were proposed, but perhaps the most popular came up from Finlay-Wilkinson’s 
(1963) regression-based model for analyzing the adaptation of the cultivars. Four years later, Eberhart and Russell (1966) 
also implemented a regression of the phenotype variation over the mean-centered yield values as an environmental 
quality index for running yield adaptability and stability analysis. At that time, the authors suggested that: “…an index 
independent of the experimental varieties and obtained from environmental factors would be desirable. Unfortunately, 
our present knowledge of the relationship between these factors and yield does not permit the computation of such 
an index. Until we can measure such factors to formulate a mathematical relation with yield, the average yield of the 
varieties in a particular environment must suffice” (Eberhart and Russell 1966, p.37). 

Thus, at that time, the lack of reliable environmental data and the knowledge gap in ecophysiology modeling have 
hampered the implementation of an ‘actual’ reaction-norm modeling. However, this is not the reality nowadays, with 
the available remote sensing tools, mechanistic crop growth models, and less expensive costs for environmental sensors. 
So why most plant breeders still do not use environmental data on MET analysis? Below we show some historical efforts 
after the Eberhart and Russell (1966) suggestions and how these concepts are implemented under the predictive 
breeding context. Another important issue is the integrative use of CGM for environmental characterizations, which is 
also discussed further in this review.

Biological interpretation of the environmental and genetic determinants of G×E
The decade of 1970 started with advances in the crop growth modeling approaches, since the introduction of 

the called ‘School of de Witt’ (Bouman et al. 1996). On the other hand, reaction-norm models were introduced to 
recover some explained G×E patterns using environmental data (Freeman and Perkins 1971, Wood 1976). The first 
devoted efforts to understanding the mechanistic process of plant-environment interaction: how the resources are 
captured and allocated into the different plant organs across time (phenological development) to produce biomass 
and converted it into agronomic yield. These are process-based models in which certain steps must be trained for each 
cultivar, species, or germplasm. The efforts in CGM continue until these, while the most useful application today is to 
support crop systems predictions. The second approach is more related to quantitative genetics, while we aimed to 
recover unknown patterns within the G×E to be understood and perhaps explored as a target trait. In the 1980s, Denis 
(1980) introduced the concept of factorial regression (FR) that was widespread during the 1990s and 2000s (Epinat-Le 
Signor et al. 2001, Romay et al. 2010, Nunes et al. 2011, Oliveira et al. 2021). This implementation was mostly a result 
of the seminal work of Van Eeuwijk (1996) and the innovative efforts from Crossa et al. (1999) and Vargas et al. (1999). 
Nowadays, it is possible to use these approaches to understand yield adaptability from the main reaction-norms that 
shape a major impact on MET- or TPE-specific G×E (Ly et al. 2018, Millet et al. 2019, Costa-Neto et al. 2020, Porker et 
al. 2020). After the step of genetic mapping and QTL (quantitative trait loci) detection, for specific environments (or 
resulted from a multi-environment QTL mapping model), the resulted QTL×E matrix can also be dissected in terms of 
reaction-norms at the QTL level (Vargas et al. 2006, Malosetti et al. 2006, Bustos-Korts et al. 2019), which also can be 
done after association mapping studies (Li et al. 2018, Guo et al. 2020, Li et al. 2021). All of these models were first 
implemented using linear ordinary least squares (OLS), but nowadays, the same approaches can be made using since 
partial least squares models (PLS) until machine learning (ML) techniques, such as random forest (Monteverde et al. 
2019, Marchal et al. 2019, Porker et al. 2020).

Adding value to the classical predictive breeding platforms
Heslot et al. (2014) introduced a whole-genomic version of the FR using W covariates, bringing envirotyping-based 

outputs to the predictive breeding scenario. This model includes stress covariates derived from running crop growth 
models (CGM) with raw environmental, that is, resulting in covariables with a reasonable biological meaning. This approach 
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was expanded by Ly et al. (2017) and Ly et al. (2018), in which in the first study, the CGM was used to characterize G×E 
while in the second the genotype-specific reaction-norms. It seems that 2014 was an exceptional year for envirotyping 
because a few months later, Jarquin et al. (2014) introduced the method of building environmental relatedness kernels 
from W covariates. Unlike the classical FR-based reaction norm models, the goal of this method is to consider a nongenetic 
source of variation build up with realizations from the envirotyping outputs.

Similar to the classical GBLUP, in which molecular markers shape a genomic relationship matrix (G), the environmental 
relatedness must also be created using the linear covariance among W covariates (W). In addition, the authors showed a 
more intuitive approach to model G×E, in which now the Hadamard product (#) between genomics, GW~ZgGZgT # ZeWZeT, 
and what was called later as ‘enviromic-based matrix’ (Costa-Neto et al. 2021a, Costa-Neto et al. 2021c) is the core of 
putative reaction-norms driving the expected G×E (Jarquin et al. 2014). This approach was expanded by Morais-Júnior 
et al. (2018), which involved a wide number of W covariates and another genetic relatedness, both from genomics and 
pedigree-based records. Then, Costa-Neto et al. (2021b) introduced nonlinear kernels for modeling the W matrix and 
the strategy of computing the predictive ability of each genotype as a sign of the ‘model resolution in predict complex 
G×E’. At this proof-of-concept study, it seems that nonlinear effects better describe the environmental relatedness and 
improve the model’s ability to predict novel G×E. Moreover, with the advent of the EnvRtype software (Costa-Neto et al. 
2021c), diverse kernel structures might also be built with W covariates, such as developmental stage-specific W kernels. 
More detail about enviromics-aided GP models is given in the next section.

Finally, yet in 2014, Cooper et al. (2014) introduced the terminology “envirotyping” (environmental + typing) to the 
plant breeding community, which was well established only two years later by Xu (2016). The use of “environmental 
characterizations” with envirotyping and aided by CGM is used at least since the 2000s (Malosseti et al. 2006, Chenu 
et al. 2011). However, Cooper et al. (2016), followed by Messina et al (2018) and Toda et al (2020), introduced a tan 
integrative approach that brings the concepts of CGM with the genomic prediction (adapted here as CGM-GP). The 
potential advantage of this approach is the phenotypic plasticity is better modeled using the mechanistic CGM structure. 
First, the genotype-specific parameters are trained for a given population, in which the whole-genome regressions are 
then used to predict those parameters. After an optimization process, the most fitted genotype-specific parameters are 
used as inputs in the CGM, which takes the raw environmental data to simulate the growing conditions that each genotype 
must face. Using historical weather and soil data, it is possible to predict the crop’s performance across several years 
and locations (Li et al. 2013, Heinemann et al. 2015, Heinemann et al. 2019, Robert et al. 2020, Antolin et al. 2021), as 
same for using future climate scenarios (Ramirez-Villegas et al. 2018). This also is related to a useful property of CGM: 
the design of ideotypes. In this field, the genetic-specific coefficients are optimized for simulated growing scenarios. 
This approach can be leveraged by marker-assisted procedures (Gu et al. 2014).

ENVIROMIC-AIDED GENOMIC PREDICTION OF G×E
Genomic prediction (GP, Meuwissen et al. 2001) is the most used and powerful predictive breeding tool. It relies on 

Fisher’s Infinitesimal model, in which the sum of whole-genome markers might be a realization of the genetic variation 
within a given population. Then, the selection made up in silico after training GP models for some traits and populations 
is also referred to as genomic selection. The GP platforms were first designed to model the genotype-to-phenotype 
relations (G-to-P) under single environment conditions, e.g., in a breeding program nursery (Lorenzana and Bernardo 
2009, Windhausen et al. 2012). Under these conditions, the micro-environmental variations within breeding trials (e.g., 
spatial gradients in soil properties) are minimized in the phenotypic correction step by separating useful genetic patterns 
and experimental noises (nongenetic patterns). Thus, it is reasonable to assume that the realized G-to-P relations might 
capture a large part of the observed phenotypic variation.

But the efforts of GP at MET only started in 2012 with the marker environment models (Burgueño et al. 2012, 
Schulz-Streeck et al. 2013). In this scenario, we must consider that all phenotypic records carry the indissoluble effects 
of macro-environmental fluctuations of certain weather and soil factors during crop growth and development (Costa-
Neto et al. 2021a, Costa-Neto et al. 2021c). Because of that, every phenotypic record carries an inner covariance with its 
growing environment, in which this phenomenon is visualized when the same model is trained for the same germplasm 
evaluated under different growing conditions. Thus, for multi-environment GP models, the effect of genomic-environment 
interaction is then maximized. Conversely, if it does not account for it, it results in a lack of predictive ability and an 
increase of residual variation. 
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To evolve the current GP platforms for the next level, which includes increasing the accuracy and resolution of 
predicting particular genotypes for complex future scenarios (e.g., climate change), we envisage that the use of explicit 
covariates in a wise manner must also evolve. There are three ways to implement it: 1) the classical reaction-norms to 
consider whole-genome regressions with key-environmental factors, and also hierarchical trait-by-trait interactions (Li 
et al. 2018, Ly et al. 2018, Millet et al. 2019, Guo et al. 2020, Jarquín et al. 2020); 2) get a better understanding of crops 
envirome to formulate a mathematical description of the environmental relatedness (Jarquín et al. 2014, Morais-Júnior 
et al. 2018, Monteverde et al. 2019, de los Campos et al. 2020, Costa-Neto et al. 2021a, Costa-Neto et al. 2021b, Costa-
Neto et al. 2021c, Rogers et al. 2021), in which; 3) integrate different prediction approaches, such as crop growth models 
in the GP platforms (Cooper et al. 2016, Messina et al. 2018, Toda et al. 2020, Robert et al. 2020), in which enviromics is 
an output of the environmental factors and mechanistic process shaped by genotype-specific parameters. To rethinking 
the idea of MET GP, perhaps a generalized enviromic-genomic prediction model for modeling the phenotypic variation 
might be written as:

y = 1μ + Xβ + Σ k
s=1 gs + Σ k

s=1 gEs + Σ l
r=1 Wr + Σ k

s=1 Σ k
r=1 gWsr + ε

where: μ + Xβ is the core of fixed effects (intercept + other possible fixed effects); ε is the residual variation of all 
sources not considered in the model; Σ k

s=1 gs is the sum of all k genetic effects, in which might be SNP markers (e.g., 
coded for additive or dominance effects), a genomic-based relationship kernel (e.g., the G matrix for the genomic-
enabled realizations of the individuals relatedness) or independent genetic effects (similar to the classical FR model); 
Σ k

s=1 gEs  is a the sum of all genetic by environment effects, in which usually is a block-diagonal matrix of the genomic 
effects or any other structured matrix; Σ l

r=1 Wr sum of all enviromic-based effects, in which might be W covariates 
(e.g., air temperature, rainfall, solar radiation) or W-based kernels (the W matrix of enviromic-realized environmental 
relatedness); Σ k

s=1 Σ k
r=1 gWsr is the sum of all interactions between genetic and enviromic effects, in which might be 

realization of SNP markers by W covariates, Hadamard products between covariance structures for genetic effects (e.g., 
additive, dominance, epistasis genomic relationships) and enviromic-based effects. This last can also be implemented 
by projecting the genomic effects over the enviromics by using the Kronecker product (⊗) between enviromics and 
genomics, that is, gW ~ N(0, W⊗G σ2

gW), but only if the enviromics is a matrix of q × q environments and genomics 
is a matrix of p × p genotypes (resulting then into a n × n dimension kernel for the phenotypic records, where n = 
pq). Otherwise, the direct Haddamard product will be more adequate. In table 1, we summarize some of the possible 
arrangements of this generalized model. However, if this approach is conducted under the CGM-GP approach (Cooper 
et al. 2016, Messina et al. 2018), the generalized model is reframed to integrate genomic effects as a predictor of the 
genotype-specific sensitivities to be inputted in the CGM machinery.

ENVIROMICS IS LIKE A CHOCOLATE BOX: YOU NEVER KNOW WHAT YOU GONNA GET

This section is devoted to highlighting some suggestions of practical uses of enviromics and envirotyping analytics 
in plant breeding programs beyond the predictive tools already discussed. But before explain its practical benefits, it is 
reasonable to discuss the motivation behind incorporating environmental information in plant breeding. In an adaptation 

Table 1. Possible model’s assumptions derived from the generic genetics (or genomics) with enviromics approach

Model
Effect

Genetic (G) Environment (E) G×E

Main Genotypic Effects (MM) Σp
s=1 gs ≠ 0 Σ l

r=1 Wr = 0 Σ k
s=1 gEs = 0; Σ k

s=1 Σ l
r=1 gWsr = 0

MM + G×E deviation (MDs) Σp
s=1 gs ≠ 0 Σ l

r=1 Wr = 0 Σ k
s=1 gEs ≠ 0; Σ k

s=1 Σ l
r=1 gWsr = 0

MM + Enviromic effects (EMM) Σp
s=1 gs ≠ 0 Σ l

r=1 Wr ≠ 0 Σ k
s=1 gEs = 0; Σ k

s=1 Σ l
r=1 gWsr = 0

EMM + G×E deviation (EMDs) Σp
s=1 gs ≠ 0 Σ l

r=1 Wr ≠ 0 Σ k
s=1 gEs ≠ 0; Σ k

s=1 Σ l
r=1 gWsr = 0

EMM + G×W reaction-norm Σp
s=1 gs ≠ 0 Σ l

r=1 Wr ≠ 0 Σ k
s=1 gEs = 0; Σ k

s=1 Σ l
r=1 gWsr ≠ 0

EMDs + G×W reaction-norm Σp
s=1 gs ≠ 0 Σ l

r=1 Wr ≠ 0 Σ k
s=1 gEs ≠ 0; Σ k

s=1 Σ l
r=1 gWsr ≠ 0
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of the famous quote of the character lived by Tom Hanks in Forrest Gump (1994), it seems that “…enviromics is like a 
chocolate box: you never know what you gonna get”. This can lead to several interpretations. The first and most obvious 
is: you don’t know the “taste of enviromics” unless you prove it. Second, suppose the box has “different shapes of 
chocolates.” In that case, that is, different applications and uses of enviromics, perhaps you must prove it and see which 
type of “enviromic-based practice” most fits your reality and stage of the breeding program. Finally, the exemplified 
quote also means that there are no black boxes to be opened for implementing envirotyping analytics and enviromics-
based predictive tools. If you open a chocolate box, it is expected to have chocolate inside. Thus, the use of enviromic is 
like an improvement of what has already been done by plant breeders, providing novel options and insights to support 
the decision making and understand the adaptation of the developed germplasm.

Suggestion 1 (Basic step): check out the sources for collecting reliable environmental data
The use of environmental data is a long-term approach neglected by most breeders, despite diverse efforts to call 

attention to its benefits (Cooper et al. 2014, Xu 2016, Costa-Neto et al. 2021c, Crossa et al. 2021 and so many others). 
Perhaps it was because of: 1) lack of equipment; 2) data availability; 3) not consider the importance of the environment; 
4) a mainstream creed that by modeling only genetics would be enough; 5) communication gaps between biometrics 
and crop ecophysiologists. There are at least two main strategies to collect raw data that can be used for envirotyping 
analytics. The first and most obvious is the data sources derived from environmental sensors installed in the field, that is, 
sensors of soil water contents, sampled fertilizer status of the soil profile, structural properties of the soils (e.g., texture), 
weather stations, and scored ranks of phenotyped pests and diseases severity, in which the average value of those scores 
in the certain environment might be an indicator of the environmental sanity. The limitation of this source is the costs 
for acquiring the remote sensors, which might be expensive for some public breeding programs in certain regions of the 
world. In addition, if every field trial does not have the same core of sensors, there is a bias of using different equipment 
that must be considered. Another important factor is that some equipment has the data resolution of minutes, hours, or 
days and it must be standardized for all experimental networks. However, this might be worth the investment because it 
might be one of the most reliable data sources describing environmental conditions. The limitations of implementation 
costs, data availability, or logistics issues are overcome by the second source of data: remote sensing-based tools and 
public databases, such as SoilGrids (https://soilgrids.org/), WorldClim (https://www.worldclim.org/) and NASA POWER 
(https://power.larc.nasa.gov/). These two latter can be easily implemented by the EnvRtype software (Costa-Neto et 
al. 2021c). The main limitation of this technique is the physical and temporal resolution, which varies depending on the 
data source used and are mostly given at a daily or monthly scale.

Suggestion 2. Integration of envirotyping analytics for breeding diagnosis using past or future data
Historical field trial data provides a reliable source to understand the G×E for a certain trait and TPE. In this context, the 

investigation of the G×E is used as a diagnosis of breeding’s program efficiency in delivering adapted cultivars to attempt 
the consumer’s needs (Chenu et al. 2011, Chenu et al. 2018, Heinemann et al. 2019). It can be done, for instance, by 
running reaction-norm models across the historical yield trials and then checking the genetic progress of reaction-norm. 
It also provides the data sources for understanding the static and nonstatic environmental patterns for a given region. 
A second possibility is to use CGM to first process outputs from the raw environmental data. For instance, Heinemann 
et al. (2019) used historical predictions enabled by CGM to simulate the impact of direct selection for grain yield in the 
upland rice tolerance for drought-stress in Central Brazil.  Another use is given by Cooper et al. (2020), where genotype-
specific parameters (GSP) of CGM are evaluated to diagnose the germplasm’s selection responses. Finally, CGM using 
simulated raw data (e.g., future scenarios) provides the foundations for defining plant ideotypes that can be screened 
(Chenu et al. 2018) also using marker-assisted tools (Gu et al. 2014). Thus, after founding some significant QTL or genes 
related to the certain GSP, the breeding program germplasm might be screened to select the most promising parentals 
capable of generating a desirable ideotype for expected growing conditions (Martre et al. 2014, Rötter et al. 2015).

Suggestion 3. Use of envirotyping networks to define crops envirome and mega-environments
Before being associated with some phenotype, at a specific MET or TPE, the raw environmental data (or its processed 

data for a given crop species) is a global source of information shared among breeding programs and TPEs. Think about 
the genome of a certain species: despite being global, every breeding program has its unique allelic pool anchored to 



Enviromics: bridging different sources of data, building one framework

9Crop Breeding and Applied Biotechnology - 21(S): e393521S12, 2021

the species’ genome. The same basic idea can be implemented: after running an envirotyping analytics of a certain 
TPE, considering its variations across the space (diverse regions) or time (different planting dates), the plant breeders 
might define mega-environments and their global TPEs. If the envirotyping analytics pass by to a second step, where 
the envirotyping data is associated with some trait-specific phenotype, then it’s possible to see a breeding program-
specific TPE (Crespo-Herrera et al. 2021). The use of remote sensing-based envirotyping analytic tools (e.g., EnvRtype) 
easily implements those approaches as diverse global sites might share similar environmental patterns according to 
their planting dates (Costa-Neto et al. 2021a, Costa-Neto et al. 2021b, Costa-Neto et al. 2021c). A next step might be 
implementing well-consolidated enviromes for each crop species, considering the all-possible typologies that some 
crop species might face. Then, the matrix of envirotype markers by the environment will be global, and each entry will 
be preached by the frequencies of occurrence of each marker typology (Costa-Neto et al. 2021a). Our recent study 
demonstrates the benefits of studying the environment as a core of typologies. Then, it is possible to compute the 
frequencies of occurrence of each typology as an actual environmental marker (also known as an envirotype descriptor). 
The use of ensemble machine learning techniques might help define the thresholds for each environmental factor, but 
ecophysiology knowledge about the crop and agronomic expertise must also suffice in some cases. After this, optimization 
algorithms might be used to select the most representative environments of the TPE (Rincent et al. 2017).

Suggestion 4. Selection of genotypes based on its reaction-norms and further genomic architecture of 
the G×E effects

As commonly done in classical adaptability and stability analysis, the genotype-specific sensibilities for the key 
environmental factors must be used to rank the most adapted genotypes. This will take the suggestion of Eberhart and 
Russell (1966) from almost 60 years ago. However, a genomic-wide association study (GWAS) can find another interesting 
approach over these genotype-specific coefficients. If these coefficients indicate the genotype-specific reaction norms, it 
can be treated as a trait evaluated at single environment conditions – so dealing with the environmental dimensionality 
in GWAS (Li et al. 2021). Thus, it facilitates a biologically informed dissection of complex traits, in which genomic regions 
related to reaction-norms must be identifying and explored by plant breeders. Before this work, Gage et al. (2017) 
conducted a similar approach over the classical Finlay-Wilkinson parameters of broad adaptation, adaptability, and 
stability. These authors investigated how artificial selection indirectly affects the yield plasticity at different genomic 
regions for eleven traits in maize. This is also a potential analytical tool useful for plant breeders because it might help 
explain ‘what is going on with the germplasm across several years of selection over a nursery-specific growing condition. 
After this type of study, it is possible to rethink breeding strategies and optimize the selection of alleles that confer 
adaptation of the genotypes according to the breeding goals.

FREQUENT QUESTIONS IN THE FIELD

Does enviromics is used in environmental data in any manner? The answer is no. Environmental information needs 
to be processed, organized, and make agronomic sense in explaining the plant’s growth and development biology. 
Otherwise, there is a huge possibility of spurious and unrealistic relationships between the environmental factor and 
phenotype. Take as an example the factor rainfall precipitation. The accumulated rainfall values during the growing 
cycle of the crop do not represent the biology of the crop at all, but the frequency of rainfall is already a more accurate 
indication of the environment quality for this factor. 

Does enviromics is the only solution for increased accuracy on the G×E prediction? That is a common mistake that some 
research waves most cause in the scientific society. And as with other waves, we must take care of these affirmations. 
No, there are also different techniques whose uses will vary according to the MET-specific conditions and the breeder’s 
target. For example, suppose the G×E interactions have small importance on the phenotypic variation (less than 10%, 
for instance). In that case, the modeling of G×E will be a concern, and the use of enviromics will just help the plant 
breeder to extract novel insights from its germplasm – how the germplasm responds to air temperature, radiation, etc. 
This might be very helpful for tracing strategies for selecting higher adapted genotypes and know the potential genetic 
factors underlying the adaptation for its environmental aspects. In addition, it helps the agronomic transfer after the 
advanced yield testing stage, optimizing then the recommendation of superior cultivars for given locations. On the other 
hand, if G×E is very important to the phenotypic variation (higher than 60%, for instance), it seems that envirotyping 
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analytic might help group environments, optimize the experimental network and provide enviromic data for increasing 
the resolution and accuracy of the prediction models. However, for prediction novel G×E the use of some enviromic-
based strategy is still the main option.

Why sometimes the use of environmental data did not increase accuracy in predictive breeding? Perhaps the answer 
to this question may be related to MET-specific factors (e.g., the magnitude of G×E), genomic architecture of the trait 
(e.g., qualitative traits). And issues with processing environmental data (environmental data not representative of 
ambient conditions) or finding key development stages with a higher sensibility for the target trait under analysis. Another 
possibility is the misspecification of some environmental or management factors not considered in the envirotyping 
analytics (e.g., some differential agronomic practices across field trials) and issues in the phenotype correction step of 
the field trial single analysis. 

Is there a unique and correct model or computational to use enviromics in G×E analysis? It seems that in terms of 
computational implementation, the best model is the model that solves your issues. However, it always must consider 
agronomic aspects and the biological reality (Hammer et al. 2016). An exception perhaps is the kernel method used for 
estimating environmental relatedness from W covariates. Some proof-of-concept studies seem that nonlinear kernel 
methods (Gaussian kernel and Deep kernel) are better than using the classical linear covariance matrix, that is WWT 
(Jarquín et al. 2014).

CONNECTING THE DOTS: BUILDING ONE FRAMEWORK

Plant breeding is an interdisciplinary field, involving and evolving more areas every day. The main reason for that is 
that most revolutions happen within the boundaries of the sciences. Consequently, the amount and nature of data have 
exponentially increased over the years. However, in quantitative genetics, we are still targeting the same: understand 
the genetic basis of quantitative traits, predict performances, and optimize breeding programs.

In this context, breeders have added new layers of data, one by one in prediction models, such as with markers, 
image-based phenotypes, molecular phenotypes, and enviromics. The next step is to integrate two different worlds, 
quantitate genetics and crop-growth models. There are many attempts to combine them. Based on our experience, we 
propose one of the possible ways (Figure 2).

All individuals will be genotyped and phenotyped for important traits, such as grain yield in the training set, moreover, 
characterized for molecular phenotypes (e.g., transcriptome, proteome, etc.; Morgante et al. 2020) and image-based 

Figure 2. A proposed framework to combine different data sources and statistical approaches, with one aim, predicts performances.
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phenotypes (number of leaves, Leaf index area (LAI), biomass, etc.; Li et al. 2018, Gano et al. 2021). However, for the 
latter, with the aid of new tools, for instance, deep learning (DL), it is possible to improve even more the accuracy for 
these image-based traits.

The second step is to estimate the genotype-specific parameters (GSP) in crop models (Acharya et al. 2017), leveraging 
the genotypic variation in these mechanistic approaches (Oliveira et al. 2021). For that, in the begging, we recommend 
using a radiation-based thermal model due to its simplicity. These GSPs are latent phenotypes, representing the nonlinear 
slopes of genotypes’ reactions norms of genotypes to environmental inputs, based on putative physiological responses. 
For that, a good description of the weather and soil growing conditions is essential – the basics of envirotyping analytics.

Then, we can use the calibrated GSP as phenotypes in a univariate single-environment GT-BLUP model (Morgante 
et al. 2020). Besides the markers, it is possible to include transcriptome-based kernels to capture the dynamic gene 
expression over the crop cycle and epistasis. In this context, DL might play an important role in selecting the best features 
and optimize the molecular phenotype information (Morgante et al. 2020).

Finally, we can predict the GSP for each non-tested genotype and replacing them with the base crop model, tuning 
the crop model for specific genotype-environment combinations. Consequently, we can predict performances on non-
observed genotypes in non-observed environments, optimize training sets in multi-environment-trials (MET), and build 
ideotypes per target population of environments (TPE).
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