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Abstract: The usefulness of genomic selection (GS) for improvement of complex 
traits has been demonstrated in plant and animal breeding. While fully adopted 
in the livestock sector and commercial plant breeding, the implementation of 
GS in public-sector plant breeding programs lags. The goal of this review is to 
discuss advancements in GS implementation and opportunities for near-term 
and long-term adoption in public-sector plant breeding programs. We also 
highlighted specific applications of GS for cultivar development ordered by what 
we believe to be their feasibility, where feasibility is defined by cost, disruption 
to current breeding practices, and risk.
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INTRODUCTION

The wide availability of high-density molecular markers has been opening 
new opportunities to plant breeding programs for at least the past decade 
while enabling higher genetic gains from selection. Genome-wide markers 
can provide more accurate estimates of genetic relatedness among individuals 
than pedigree relationships by capturing Mendelian sampling effects (Habier 
et al. 2007). In fact, Bernardo (1994) successfully used background markers to 
capture relationships and predict the yield of maize single-crosses using best 
linear unbiased prediction. The use of ridge regression as an alternative to 
marker subset selection was first proposed for marker-assisted selection (MAS) 
by Whittaker et al. (2000) within the context of biparental populations. The 
concept of genomic selection (GS), however, was fully introduced by Meuwissen 
et al. (2001) in a landmark article proposing statistical models for marker-based 
prediction that could take advantage of high-density molecular marker data. 
The application of genomic selection to plant breeding has been studied since 
the late 2000s (Bernardo and Yu 2007) and has been considered one of the key 
post-1990 technological advances in crop improvement, accompanied by genetic 
engineering, quantitative trait locus (QTL) mapping, phenomics, envirotyping, 
and gene editing (Bernardo 2016). 

Marker-assisted selection was proposed and successfully used for selecting 
traits controlled by genes with large effects (Young 1999). However, many 
economically important traits are complex, being controlled by many small-
effect loci that are strongly influenced by the environment. The MAS procedure 
includes QTL identification followed by estimation of marker effects - a two-step 
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approach that can result in biased marker effects (Moreau et al. 2004, Heffner et al. 2009). Meanwhile, small effect loci 
are often excluded from the prediction model due to stringent significance thresholds used for QTL detection. A major 
advantage of GS is that it circumvents the individual QTL detection and validation. This also circumvents the need to 
develop specific mapping populations that are costly and time-consuming. Multiple researchers have indeed confirmed 
that the genomic prediction approach is more accurate than a MAS approach (Lorenzana and Bernardo 2009, Lorenz 
2013), and have reported improved genetic gains in both simulated and real breeding populations (Bernardo and Yu 
2007, Wong and Bernardo 2008, Asoro et al. 2013, Massman et al. 2013).

The fundamental goal of GS in cultivar development is to achieve higher rates of genetic gain at a lower cost and in 
less time than with conventional phenotypic methods. While the number of publications on GS for plant breeding has 
greatly increased since 2007 (Figure 1), and GS has been widely adopted by multinational seed companies, challenges 
remain and thus there are still relatively few examples of smaller public programs that have fully adopted GS. Hence, 
the objective of this review is to discuss advancements in GS implementation and opportunities for near-term and long-
term adoption in public-sector plant breeding programs.

PROMISING APPLICATIONS OF GENOMIC PREDICTION FOR CULTIVAR IMPROVEMENT

Breeding programs are oriented towards obtaining high rates of genetic gain while maintaining useful genetic 
diversity for the traits of interest. The expected response to selection per unit time can be elegantly summarized by the 

breeder’s equation: ΔG = 
ihσA

L , where ΔG is the gain per year, i is the selection intensity, h is the selection accuracy, σA 
is the square root of additive genetic variance, and L is the time in years to complete a cycle of breeding (Lush 1937, 
Falconer and Mackay 1996). While this formula can predict genetic gain only under many assumptions in a highly 
structured and systematic recurrent selection program, it nevertheless has been invaluable to plant breeders running 
cultivar development pipelines by providing a framework to assist them in identifying numerous ways in which genetic 
gain can be enhanced (Cobb et al. 2019). Identifying ways to enhance genetic gain in breeding programs is nothing new, 
but more accurate predictions of complex traits made possible by genomic prediction has opened new opportunities. 
We briefly review some of these potential applications.

Reducing cycle time
A main advantage of GS over phenotypic selection (PS) is the potential reduction in cycle time. Opportunities for 

recombination and allele frequency changes that only occurred every five or more years are now possible within months 
using GS. Phenotypic selection is limited by the evaluation of performance in the target population of environments 
(TPE), which is only one opportunity for field evaluation per year during the growing season of major crops in temperate 
regions. Meanwhile, GS can be performed in a greenhouse or year-round nursery. Under the assumption of equal 

Figure 1. Number of publications on genomic selection in plant breeding obtained from a search on “genomic selection” AND “plant 
breeding” in the Scopus Database on 22 August 2021.



Implementation of genomic selection in public-sector plant breeding programs: Current status and opportunities

3Crop Breeding and Applied Biotechnology - 21(S): e394621S15, 2021

additive genetic variance and selection intensity for GS and PS, a reduced selection accuracy of GS compared to PS can 
be compensated for by greatly reduced cycle time (Heffner et al. 2010).

Increasing selection intensity
Resources for testing in breeding programs are, of course, limited, and thus the allocation of testing resources to 

different testing stages (preliminary versus advanced) and between replication and population size is a topic of great 
interest to plant breeders (Mi et al. 2011, Riedelsheimer and Melchinger 2013, Longin et al. 2015). Genomic prediction 
can act as a replacement for phenotyping in advancing individuals to the next stage of testing. In terms of resource 
allocation, an estimated cost of a two-row field plot in one environment is $14 (in U.S. dollars), while the per-sample 
cost of genotyping for a few thousand single nucleotide polymorphism (SNP) markers is the same (Bernardo 2021). The 
potential for strong genotype x environment (GxE) interaction effects for complex traits necessitates that phenotyping 
be performed in many environments, thus increasing the cost of phenotyping for each selection candidate. 

The cost advantage of genotyping over phenotyping is especially pronounced in perennial species for which field 
plots need to be maintained for several years. If genotyping is less expensive than phenotyping, genomic prediction 
allows for increased population size by generating and testing more candidates for the same cost, effectively increasing 
the selection intensity. This GS application is particularly useful in the early stages of a breeding program where early-
generation material often consumes the most testing resources because of large population sizes before selection (Bassi 
et al. 2016).

Increased selection accuracy for traits that are difficult to phenotype
Genomic prediction has the potential to increase the selection accuracy for traits that are difficult to accurately 

phenotype because it effectively shares information between individuals in the form of genetic relationships. From the 
individual marker perspective, genomic prediction leverages “hidden replication” of alleles, and therefore the sum of 
predicted marker effects could be a more accurate predictor of genetic value than an individual phenotype. Examples 
of potential traits for this use are resistance to insect pests (Badji et al. 2021), nematodes (Ravelombola et al. 2020) and 
diseases (Adeyemo et al. 2020), root traits (Wolfe et al. 2017), postharvest storage (Roth et al. 2020), and end-product 
quality traits (Dreisigacker et al. 2021). This approach still requires the upfront investment in design and laborious 
phenotyping of the training population (TP), but the investment may decrease future costs by performing GS in several 
populations.

Genomic prediction for single-cross performance in hybrid cultivars
Genomic selection can be deployed in different stages of hybrid breeding to predict the performance of all possible 

hybrids made between all parent candidates at any stage in the breeding program. The prediction of performance per se 
of lines targets traits that exhibit mainly an additive genetic architecture, such as disease resistance traits. The topcross 
performance consists of predicting the general combining ability (GCA) of inbred progenies to advance the superior 
ones to additional crosses with more testers and evaluation in more environments (Albrecht et al. 2011, Albrecht et al. 
2014, Riedelsheimer et al. 2012, Jacobson et al. 2014). The major benefits of GS in this stage are better allocation of field 
testing resources and cost savings if genotyping is cheaper than creating and evaluating the topcrosses. Lastly, GS can 
be expanded to predict the specific combining ability (SCA) effect of a specific parental combination in addition to GCA 
effects of the parents to predict total single-cross performance. This approach changes the scope of genetic evaluation 
from narrower set of field tested candidate lines to the in silico evaluation of all possible single-cross combinations 
(Technow et al. 2012, Massman et al. 2013, Kadam et al. 2016, Kadam et al. 2021).

ACADEMIC STUDIES HAVE PROVIDED NEW KNOWLEDGE ON OPTIMIZATION, BUT 
IMPLEMENTATION LAGS

The number of publications on optimizing the efficiency of GS for plant breeding has greatly increased during the 
last decade (Figure 1). Factors such as size of the TP, heritability, relatedness between TP and target population, linkage 
disequilibrium (LD) and effective number of factors play important roles in determining the prediction accuracy and 
thus the selection response (Daetwyler et al. 2008, Combs and Bernardo 2013a). For instance, the expected prediction 
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accuracy increases as the product of the TP size and the trait heritability (Nh2) (Daetwyler et al. 2008). Increased TP size 
improves marker effect estimation accuracy, with more pronounced effects when h2 is low and diminishing returns as N 
becomes larger (Lorenzana and Bernardo 2009, Albrecht et al. 2011, Heffner et al. 2011, Guo et al. 2012). The genetic 
relationship between the TP and the target population is another key factor (Wientjes et al. 2013, Cooper et al. 2014, 
Lorenz and Smith 2015). High relatedness helps to ensure that the loci generating variation in the target population are 
the same as in the TP, and that the marker and QTL alleles are in the same linkage phase so that marker effects can be 
translated between the TP and target population (Habier et al. 2010, Riedelsheimer et al. 2013). Other effects such as 
allele-by-genetic background effects could be ameliorated by selecting training and target populations that are genetically 
similar. A good guiding principle is to design the TP with the target population in mind. 

Several prediction models based on whole-genome marker data have been proposed to predict the genetic value of 
selection candidates for complex traits and they differ on their assumptions and treatment of marker effects (Jannink et 
al. 2010). The ‘large predictor effects p, small available observations n’ problem has been tackled with parametric (e.g. 
genomic best linear unbiased prediction, ridge regression, Bayesian regression), and non-parametric approaches (e.g. 
kernel regression, support vector regression, random forest, neural networks) (Gianola et al. 2009, de los Campos et al. 
2013). Even though the prediction accuracy of different parametric models depends on the genetic architecture of the 
trait and LD structure of the population (Lorenz et al. 2011), empirical studies have shown reasonably good performance 
of these models for complex traits with different genetic architectures (Crossa et al. 2017). The ridge regression – best 
linear unbiased prediction (RR-BLUP) is the most commonly utilized model due to computational efficiency, with marker 
effects treated as random effects, normally distributed, and equally shrunken towards zero (Endelman 2011). Various 
studies have examined other relevant factors for the success of GS in a plant breeding program such as modeling G×E 
interaction and non-additive effects, resource allocation, and multiple-trait models. These factors have been extensively 
reviewed recently elsewhere (Crossa et al. 2017, Voss-Fels et al. 2019, Xu et al. 2020).

Research on the development of strategies to implement GS in breeding programs needs to account for the reproductive 
biology of the crop, genetic architecture underlying the target traits, current program design, and resource availability. 
Computer simulations that examine the reorganization of conventional breeding programs around GS with distinct 
population improvement and product development components have predicted larger genetic gains (Gaynor et al. 2017) 
while selection can be balanced with maintenance of genetic diversity by means of a specific algorithm (Gorjanc et al. 
2018). In a perennial ryegrass program, stochastic simulation comparing GS and conventional breeding strategies have 
shown significantly larger genetic gain utilizing GS due to a four-year reduction in cycle time (Lin et al. 2016).

Despite an abundance of studies generating the knowledge summarized above, there is a limited number of reported 
cases of actual implementation of GS in public breeding programs (Voss-Fels et al. 2019). Converting promising publications 
into practical application involves the resolution of many tactical logistics and practical program constraints that are not 
often addressed in journal publications. For instance, careful consideration of reviewed aspects in resource allocation, 
optimal TP design and required phenotyping efforts, choice of genotyping platform, redesign of the breeding pipeline, 
and detailed cost-benefit analysis are required for the adequate implementation of GS.

EXAMPLES OF GENOMIC SELECTION IMPLEMENTATION IN LIVESTOCK BREEDING AND 
COMMERCIAL PLANT BREEDING

There are empirical results showing the effectiveness of GS in the livestock sector and commercial plant breeding. 
Genomic selection was initially proposed in the context of animal breeding and subsequently rapidly adopted due to 
the reproductive biology, production system and economics of these species (Georges et al. 2019). Genomic selection 
has long been feasible in livestock due to higher investment return from higher individual value and more benefits from 
early selection and reduced generation interval (Meuwissen et al. 2016). Genomic selection was first adopted in dairy 
cattle in 2008, where it replaced the progeny testing and enabled a drastic reduction in generation interval (Wiggans 
et al. 2017). The generation interval for sires of bulls was reduced from seven years to less than 2.5 years and the rate 
of genetic gain increased 50-100% for milk, fat, and protein yield (García-Ruiz et al. 2016). In beef cattle breeding, GS 
provided benefits for traits that are very expensive or difficult to measure, such as feed conversion efficiency and beef 
quality (Bolormaa et al. 2013). An advantage was also observed in swine breeding with increased selection accuracy for 
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maternal traits (Lillehammer et al. 2011). Lastly, GS enabled increased efficiency in early selection for low heritability 
traits in poultry breeding (Wolc et al. 2016).

In plant breeding, multinational breeding companies are routinely using GS for major crops (Bernardo 2016, Hickey 
et al. 2017). Commercial maize breeding deployed GS along with precision phenotyping to develop maize hybrids for 
increased yield in drought-stress conditions in the western U.S. Corn Belt. The training data sets entailed drought-
managed environments and target environments managed over multiple years that enabled predictions for all stages of 
the breeding programs (Cooper et al. 2014, Cooper et al. 2014). The key agronomic traits were yield performance under 
both drought and well-watered conditions, seedling emergence under stressful growing conditions, and resistance to 
various diseases (Gaffney et al. 2015).

Commercial seed companies rely on large-scale operations performed in well-equipped and centralized platforms 
with standardized protocols to implement GS. Cost efficiency is obtained by sharing genotyping platforms and workflows 
among the numerous breeding teams within the company. Additionally, the large number of running samples gives 
a cost advantage of 50-70% savings in the overall genotyping cost in comparison to individual breeding programs in 
underdeveloped nations (Xu et al. 2020). Besides economies of scale, a large amount of accumulated historical data stored 
in structured relational databases is leveraged by dedicated data analysts to develop large training sets representing 
many target environments, ultimately providing high prediction accuracy (Xu et al. 2020, Zhao et al. 2021).

WHY SHOULD GENOMIC SELECTION BE IMPLEMENTED IN PUBLIC-SECTOR PLANT BREEDING PROGRAMS?

The commercial sector is the main source of new cultivars under situations where the market and other conditions 
are favorable, mainly for commodity and vegetable crops in major production areas. The public sector holds a key role in 
the education of future plant breeders and scientists; advancement and communication of basic and applied research; 
and germplasm improvement. These reasons for the implementation of GS in the public-sector plant breeding programs 
are discussed below.

The public university is the main source of education for the next generation of agricultural scientists. Education 
and training in an academic and field setting is combined with research focusing on a specific breeding objective or 
methodology. Most of the plant breeding students in developed countries will pursue a career in the commercial sector 
(Baenziger 2019). According to Baenziger (2019), experiential learning needs to occur at a similar scale and level of 
automation as in the commercial sector. Furthermore, public breeding programs must use state-of-the-art methods, 
tools, and techniques to allow seamless transition for technically skilled professionals to act in multiple career paths. The 
methods and tools are the same and updated but usually used at a smaller scale due to the costs of the new technologies.

The public sector has a role in methodology development and research that requires long-term investments. While 
the commercial sector needs to make a profit to sustainably support the ongoing research and development of new 
products, the public sector has more freedom to pursue higher risk research endeavors. Publication in peer-reviewed 
journals is valuable to disseminate findings to other researchers working in the field. Making advancements in breeding 
methodology freely available to everyone helps to further the field and its application.

Public-sector breeding institutions have an essential role for smallholder farmers and minor crops. International 
breeding centers belonging to the Consortium of International Agricultural Research Centers (CGIAR) are the main 
source of new improved germplasm for smallholder farmers. The CGIAR is an excellent global open-source breeding 
network that applies knowledge and world-class research to address challenges in food, land, and water systems. The 
public sector has also been a main provider of new barley, oat, and pearl millet cultivars (Baenziger 2019). For many 
other crops, the main role evolved towards germplasm preservation and development by means of “pre-breeding” that 
creates parental lines with specific trait combinations that are used by the commercial sector for cultivar development 
(Carena 2013, USDA 2015). 

Public breeding programs are also pivotal to breed new varieties of so-called “orphan crops”, i.e., some small grains, 
roots, tubers, trees, etc. (Frey 1996). In this context, the development of improved germplasm has extensive importance 
and social return to the respective cropping region of the species. Furthermore, public institutions are important 
contributors to applied research for cultivar development targeting geographic locations outside the major production 



6 Crop Breeding and Applied Biotechnology - 21(S): e394621S15, 2021

CA Wartha and AJ Lorenz

areas, alternative management systems, and small markets that are not profitable enough to justify significant investments 
from the commercial sector, yet are still economically important for some regions (Shelton and Tracy 2017). For instance, 
the University of Minnesota (UMN) soybean breeding program develops new food-type soybean cultivars adapted to 
Minnesota. The targeted specialty markets are small-seeded soybeans for natto and soybean sprouts, large-seeded 
soybeans for tofu and soymilk production, and black-seeded soybeans for specialty food products. These market types 
can command a premium in the market place and provide an important source of revenue through export markets to 
some specific growing areas.

GENOMIC SELECTION IMPLEMENTATION IN THE PUBLIC SECTOR FOR CULTIVAR DEVELOPMENT

The implementation of GS for crop improvement in public-sector plant breeding programs has been slow with a few 
programs exploring this approach or partially using it (Hickey et al. 2017). One could notice that most of the GS studies in 
plant breeding focus on the factors influencing the predictive ability in the same manner there were numerous studies 
to map QTLs. As pointed out by Bernardo (2016), there have been far few published reports that deployed the identified 
QTLs to improve germplasm, likewise there have been only a limited number of articles published to-date describing 
realized genetic gains from GS in crop improvement (Table 1).

Previous studies have compared PS and/or traditional MAS to GS using empirical data involving crops and traits with 
different genetic architecture. The first empirical field results comparing GS to MARS targeted testcross performance 
for stover and yield indices in a biparental maize population of recombinant inbred lines, with larger realized gains with 
GS compared to MARS (Massman et al. 2013). Studies on biparental populations of tropical maize exhibited realized 
gains under drought conditions attained through GS (Beyene et al. 2015, Vivek et al. 2017). Other studies demonstrated 
similar responses to selection per cycle with GS and PS, but with a shorter cycle and reduced costs under GS (Table 
1). With the goal of conserving genetic diversity while achieving high genetic gains, Zhang et al. (2017) implemented 
GS in multi-parental tropical maize populations originating from crossing among 18 CIMMYT (International Center for 
Maize and Wheat Improvement) elite lines (Zhang et al. 2017) and CIMMYT-Asia synthetic populations (Das et al. 2020, 
Das et al. 2021). In this sense, the CIMMYT maize breeding program is developing a phased GS implementation with a 
test-half-predict-half (THPH) strategy that has been cost effective since 2018 (Beyene et al. 2019, Atanda et al. 2021). 
Moreover, the program is currently adapting approaches for the use of across-year and across-breeding programs data 
to eventually eliminate the need of the first-year yield testing (Atanda et al. 2021).

Besides maize, most applied GS experiments to date have been in self-pollinated small grains crops. One example 
of routine implementation of GS for cultivar development is the barley breeding program at the UMN. The program 
routinely relies on genomic predictions of Fusarium head blight (FHB) resistance, yield, winter hardiness, and malting 
quality, and has done so since 2010 (Bernardo 2016). In small grains, Asoro et al. (2013) reported increased genetic gain 
for β-glucan concentration from GS implementation in elite oats. Meanwhile in wheat, Rutkoski et al. (2015) published 
an empirical selection experiment over two cycles of GS for quantitative adult plant resistance to stem rust using a 
historical population derived from CIMMYT stem rust screening nurseries. Genomic selection for processing and end-

Table 1. Summary of the main features and results from published experimental studies reporting realized genetic gains from GS

References Species Trait Number of genomic 
selection cycles

Realized genetic gain 
(per cycle, in t ha-1 or %)

Genomic/phenotypic 
selection ratio (%)

(Massman et al. 2013) Maize Yield + stover index 2 0.300 * +3.9 †
(Combs and Bernardo 2013b) Maize Yield 4 -0.181 *‡ -2.9 ‡

(Asoro et al. 2013) Oat β-glucan concentration 2 1.12% +1.2
(Beyene et al. 2015) Maize Yield under drought stress 2 0.086 * +7.3
(Rutkoski et al. 2015) Wheat Stem rust severity 2 -5.84% -20.4
(Vivek et al. 2017) Maize Yield under drought stress 1 0.450 * +24.5
(Zhang et al. 2017) Maize Yield 3 0.225 * §
(Das et al. 2020, Das et al. 2021) Maize Yield under drought stress 2 0.245 * +7.5

* Testcross values reported instead of population performance per se; † Realized genetic gains from genomic selection were compared to marker-assisted recurrent selec-
tion (MARS) instead of phenotypic selection; ‡ Lower reported values in the later genomic selection cycles were caused by an atypical short growing season due to late 
planting and early harvest; §Ratio not estimated because only realized gains from genomic selection were reported.



Implementation of genomic selection in public-sector plant breeding programs: Current status and opportunities

7Crop Breeding and Applied Biotechnology - 21(S): e394621S15, 2021

use quality traits has been routinely implemented since 2013 at the CIMMYT wheat breeding program (Dreisigacker 
et al. 2021). Since 2017, the UMN wheat breeding program has implemented GS for FHB at the F5 stage to eliminate 
highly susceptible lines from entering the yield trials (Adeyemo et al. 2020). Similarly, the University of Nebraska wheat 
breeding program implemented GS for FHB resistance in the breeding nursery and for grain yield in the preliminary 
yield trials (F3:6) (Belamkar et al. 2018).

In perennial species, GS is being deployed to accelerate the domestication of intermediate wheatgrass and improve 
domestication traits, grain yield, seed-related traits, and disease resistance (Bajgain et al. 2020). Genomic selection 
has also been implemented at three Next Generation Cassava Breeding institutions in Africa to reduce cycle times in 
cassava breeding (Wolfe et al. 2017). Cassava is a highly heterozygous non-inbred crop that is vegetatively propagated 
and higher rates of genetic gain are expected from prediction across generations and across TPs from different breeding 
populations or programs. 

CHALLENGES OF GENOMIC SELECTION IMPLEMENTATION IN PUBLIC-SECTOR BREEDING PROGRAMS

While the programs and publications highlighted above are a source of optimism for future GS applications, challenges 
still remain and gaps exist between research and practical application in public programs. 

Redesign of the breeding program
Taking full advantage of GS often requires redesigning conventional breeding programs through shortening the 

entire pipeline by skipping an initial year of field testing, or recycling breeding lines as parents earlier. Even more 
aggressive approaches require complete reorganization of the pipeline around GS under a two-part strategy with 
distinct components of population development through rapid cycling GS and product development through a series 
of field trials (Gaynor et al. 2017). It should be recognized that plant breeding programs are dynamic entities that 
evolved to their current state through trial and error over long periods of time. Because of this, there is often inertia 
that can slow their redesign. Plant breeders only change their pipelines under two main conditions: novelty – being 
able to do something that they were previously not able to; and efficiency – do something that was already possible 
but more efficiently (Baenziger 2019). The pipeline redesign is a disruptive process and should only be performed 
with strategies that allow GS to surpass the genetic gain rate achieved by PS or when GS is sufficiently less expensive 
than PS to ensure return on investment. Moreover, there are differences in the skill set of a typical breeder with 
a field-based background and the skills required to implement GS. Successful GS implementation depends on the 
resourcefulness of the breeder and ability to efficiently deploy genotypic, phenotypic, and environmental information 
based on detailed evaluation of distinct breeding strategies.

Cost of genotyping
Dramatic advances in sequencing technologies have allowed collection of high-density molecular marker information 

at less cost. Currently, SNP-based arrays have robust allele calling, cost-effectiveness per data point and high-throughput 
analysis. However, the estimated cost per sample for at least several hundred SNP markers is still $14 (in U.S. dollars) 
(Bernardo 2021). Additionally, there is the cost of the DNA extraction. The routine implementation of GS requires the 
genotyping of large populations for both the TP and selection candidates, with thousands of lines per year. For example, 
a typical public soybean or small grains program in the U.S. can include 10,000 progeny rows per year. Genotyping these 
at this price point would require an investment of hundreds of thousands of U.S. dollars per year. This can be a major 
limitation for small-scale breeding programs within developed and developing countries.

Turnaround time
Tight seasonal deadlines are a ubiquitous feature of agricultural research programs, especially plant breeding programs, 

that often dictate methodology. These deadlines are paramount to decisions in adapting new technologies and taking 
advantage of new opportunities. For example, plant breeding programs that began to use winter nurseries decades ago 
needed to alter planting and harvest times, as well as streamline data analyses to meet the new even tighter deadlines 
imposed by this new opportunity to advance generations more quickly (Duvick 1996). The same consideration needs to 
be taken with the turnaround time and complex bioinformatics involved in obtaining genomic predictions. For breeding 
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programs that rely on third-party providers for genotyping, an estimate of turnaround time between tissue sampling 
and genomic predictions is about three months. It can be partitioned in one week for tissue sampling, one week for 
DNA extraction, one week for shipping, six weeks for genotyping by service provider, one week for quality control and 
statistical analysis, and one week to interpret the results and finalize selections (Bassi et al. 2016). The turnaround 
time can be shortened by the use of in-house genotyping. In-house genotyping allows for more flexibility and shorter 
turnaround time, but should be balanced with the entry expenses for the acquisition of the genotyping platform and 
availability of staff. Thus, deployment of GS has to be tailored to ensure enough turnaround time from tissue sampling 
in the seedling stage to the use of genomic predictions before pollination and crossing or decision on advancements to 
the next stage in the pipeline.

Human resources and temporary specialized personnel
In a recent survey on plant breeding capacity in U.S. public institutions, the majority of breeding programs (71.6%) 

reported the lack of advanced scientific personnel (allied scientists, statisticians, bioinformatics specialists, etc.) employed 
within the program (Coe et al. 2020). The absence of personnel with advanced knowledge and skills in breeding-related 
sciences to aid in GS implementation can be attributed to a lack of stable long-term funding. Public breeding program 
leaders are typically researchers with publication, advising, teaching, and outreach responsibilities on top of the 
responsibilities related to planning, managing, and conducting breeding activities. Consequently, breeding programs rely 
on post-doctoral associates and graduate students with the technical knowledge to carry out the data analyses. Coe et al. 
(2020) indicated that post-doctoral associates and graduate students spent more time on plant breeding research than 
on germplasm enhancement or variety development. These individuals are temporary by definition as they depend on 
short-term funding and move to other institutions after completion of their studies. Even though the constant turnover 
of students is expected, planning is essential to avoid detrimental effects on the routine implementation of GS and 
associated turnaround time and seasonal deadlines. 

Risk of failure and assessment of success rate
Assessing success or failure of GS is difficult in the short term. The use of prediction accuracies in academic 

studies is adequate to evaluate the performance of a prediction model. However, the breeder is mostly interested 
in the percentage of the top individuals that are correctly selected or the correct culling of the low performing 
individuals. Low to moderate prediction accuracies might entail a risk of failure that is too high for a breeding 
program. Pondering that the possibility of failure is existent, the breeder might only find out the selections made 
were inadequate when a considerable amount of resources were already invested. Under PS, field observations 
and data are available yearly to support steering the selection decisions in the correct direction. For illustration, 
if a breeder makes poor PS decisions in a given stage (e.g. preliminary yield trials), the breeder will observe them 
right away in the next stage (e.g. advanced yield trials) and can adjust parental selection and breeding populations 
accordingly. In GS, on the other hand, the result of poor selection decisions may not be apparent until considerable 
resources, time, and effort have been expended.

OPPORTUNITIES AND TOOLS TO ADDRESS THESE CHALLENGES

In order to address the challenges described above, there are several relevant tools that can be assembled in a 
framework to enhance the rate of genetic gain. The optimal strategy to compile the technological options depends 
on the crop and particular features of the breeding program. We outline below some of the tools helpful for breeding 
programs to implement GS.

Genotyping platform and imputation
The efficient implementation of GS requires a high-throughput SNP genotyping platform that enables genotyping 

of large populations of progenies at reduced cost while generating clean and repeatable marker data. With remarkable 
advancements in next-generation DNA sequencing technologies and ongoing cost reduction of high-density marker panels, 
the cost of genotyping may be of minimal concern in future years. Current strategies such as reduced-representation 
sequencing and targeted genotyping-by-sequencing (GBS) have become one of the most promising approaches (Niedzicka 
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et al. 2016). In the case of biparental populations with limited recombination events, a low-density (several hundred 
polymorphic and representative markers) and therefore low-cost genotyping platform could be enough to ensure that 
at least one marker is in LD with each causal polymorphism. 

Another opportunity to reduce the genotyping costs is the use of marker imputation (Bassi et al. 2016). The parental 
lines are genotyped with high-density whole-genome or skim sequencing technology while the progenies are genotyped 
with an inexpensive low-density platform (Howie et al. 2011, Torkamaneh et al. 2018). Under the assumption of absence 
of double crossovers, the alleles present in the low-density marker set are combined with the high-density markers from 
the parental lines to impute the alleles at all remaining loci. This procedure can yield high-density marker information 
using inexpensive genotyping on large number of progenies (Jacobson et al. 2015, Gorjanc et al. 2017).

Reliable and streamlined data storage and decision support workflow
A workflow comprised of software for data storage, curation, and analysis is essential for the seamless implementation 

of GS under the tight seasonal deadlines that are a hallmark of cultivar development programs. The use of high-throughput 
genotyping and phenotyping platforms is expected to largely increase the amount of data available for breeding activities. 
The currently used tools to manage breeding programs might not be suitable to handle the amount of data required for 
GS and other techniques, with the need of improved software. 

The specialized workflow should combine breeding data sources such as phenotypic, genotypic, pedigree and 
environmental data to inform selection decisions. In a nutshell, it should enable consistent storage, mining, and analysis 
of information from multiple genotypes, years, and locations in an interoperable and user-friendly manner. In order to 
automate the breeding routine processes, all data collection should also be digitalized.

Status and future prospects of next-generation data management analysis and decision support tools for crop 
improvement have been reviewed in detail by Rathore et al. (2018). Currently, there are very few systems meeting 
the described requirements and which are available to public-sector plant breeding programs, with no single system 
in widespread use (Cobb et al. 2019). BreedBase is a free comprehensive breeding management and analysis software 
available as a web application tool. The software is capable of designing field layouts, support the collection of 
phenotypic information, field tissue sampling for genotyping, storage of high-density genotypic information, and GS-
related analytics (Mueller et al. 2019). Another free web-based tool ‘Genotype investigator for genome-wide analyses’ 
(Gigwa) is capable of storage, filtering, graphical visualization, and sharing capabilities for multiple users to access, 
query, and analyze genotypic datasets (Sempéré et al. 2019). However, it does not perform analysis and store pedigree 
information. Both listed softwares follow the standards of the public plant Breeding Application Programming Interface 
(BrAPI), created to ease data exchange and interaction between distinct systems (Selby et al. 2019). The adoption of 
BrAPI across platforms was a great step forwards, enhancing prospects for future developments in public breeding 
database and tool development. We feel that further development and support of such systems that seamlessly tie 
together relational marker and phenotype data storage along with analysis and visualization will be a key element to 
full-scale GS implementation in the public sector.

Publicly available training data
The cost to develop a reliable TP of sufficient population size and enough environments could be a limiting factor 

for small and medium-size breeding programs. The establishment of a shareable and standardized genotyping platform 
enables the partnership of different breeding programs towards the goal of GS implementation through easy sharing 
of training data. One successful case of standardization and shareable genotypic, phenotypic, and environmental 
information in a large network is the public institutions in the U.S. that established the Maize Genome to Fields Initiative 
(McFarland et al. 2020). Another option to reduce costs with the initial TP development is the incorporation of publicly 
available data sets (Spindel and McCouch 2016). Candidate individuals are selected from the larger set to compose the 
TP based on optimization algorithms (Akdemir et al. 2015) and the internal TP is built using a sliding window approach 
with gradual replacement of the publicly available data set by the genotypic and phenotypic information collected within 
the program. The contribution of the external data set decreases as more information is collected on the individuals of 
the program across the cycles.
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FORMS OF GENOMIC SELECTION FOR 
CULTIVAR DEVELOPMENT AND POTENTIAL 
FOR NEAR AND LONG-TERM ADOPTION

When GS is implemented in plant breeding, there 
is a dynamic shift between markers and phenotypic 
information and the definition of a new role for 
phenotyping. Likewise, GS should be considered a tool 
in the breeding program in a similar manner to MAS 
rather than an entire replacement of PS. Therefore, 
phenotypic evaluations serve the purpose of calibrating 
statistical models for GS in addition to PS.

Any implementation of GS for cultivar development 
involves using a predictive model to identify the high-
performing and low-performing individuals. The optimal 
pipeline stage at which to implement GS varies due to 
the differences among programs that make them unique, 
and differences among key target traits in terms of trait 
heritability and cost of phenotyping (Figure 2). Breeders 
have the opportunity to predict the expected genetic 
value of individuals in distinct stages of a breeding 
program. Different GS breeding schemes should be 
evaluated for each specific situation to understand the 
trade-offs in cycle time and selection accuracy and to 
optimize genetic gain. We illustrate below different forms 
of GS deployment for cultivar development ordered by 
what we believe to be their feasibility in the near-term, 
where feasibility is defined by cost, disruption to current 
breeding practices, and risk.

Genomic mating
Choosing the parents and parental combinations is perhaps the most critical decision a breeder makes, establishing 

the foundation of the entire program for years to come. The ultimate goal is to identify the specific parental combinations 
that would generate progeny with higher genotypic values, recognizing that the value of a cross is really defined by 
the performance of its best progeny rather than the mean progeny performance. Schnell and Utz (1975) proposed the 
usefulness criterion (Up = μ + ihσA) to quantify the expected mean of superior progeny as a function of the expected 
overall population mean, selection intensity, square root of the trait heritability, and the standard deviation of breeding 
values among the progeny resulting from the cross. Assuming that most elite lines are fixed for the same superior alleles, 
identifying those that can give rise to breeding populations of high genetic variance becomes critical. The conventional 
way to identifying crosses giving rise to high genetic variance is through using pedigree information to ensure unrelated 
breeding lines are crossed with one another. However, markers have opened up opportunities to identify specific parental 
combinations that complement one another based on actual allelic effects (Akdemir and Sánchez 2016).

Methods that rely on marker effects estimated from a TP using genome-wide prediction models and in silico simulations 
to predict the progeny genetic variance of a prospective cross were reported (Bernardo 2014, Mohammadi et al. 2015). 
Briefly, the progenies are simulated using the genotypic information of genotyped parents and modeling of recombination 
frequency and distribution with a genetic map. The simulated marker information of the progenies is combined with the 
marker effects obtained from a prediction model (e.g., RR-BLUP) to calculate the genomic estimated breeding values 
(GEBV) and the progeny variance is obtained as the sample variance of the GEBVs. In addition, deterministic equations were 
developed to predict the genetic variance of a prospective cross based on modeling the segregation and recombination of 
genome-wide marker effects (Zhong and Jannink 2007, Lehermeier et al. 2017, Osthushenrich et al. 2017), which match 

Figure 2. Layout of a conventional pure line breeding program 
adapted from Gaynor et al. (2017) and prospective forms to imple-
ment genomic selection ordered by ability for near-term adoption. 
DH: double haploid; PYT: preliminary yield trial; AYT: advanced yield 
trial; RYT: regional yield trial.
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the simulated outcomes very well (Neyhart et al. 2019). The major advantage of the deterministic equations approach 
compared to in silico simulations is computational speed. A potential downward bias with underestimation of the true 
genetic variance was described when using the sample variance of GEBVs due to shrinkage of RR-BLUP marker effects 
when h2 is <1 (Lian et al. 2015). In this sense, Lehermeier et al. (2017) suggested an analytical derivation for the genetic 
variance with a fully Bayesian estimate based on Markov chain Monte Carlo (MCMC) samples.

The issue of parental selection is relatively more important than questions related to number versus size of breeding 
populations. For instance, Bernardo (2003) obtained large selection responses under a wide range of combinations 
between number and size of breeding populations. Nevertheless, knowledge on the magnitude of the predicted genetic 
variance of a potential cross could be used to weight the population size. Breeders could optimize their allocation of 
resources by adjusting the size of the populations that will be created.

Cross selection based on predicted mean and genetic variance can be further expanded to multiple-trait improvement 
by predicting the expected genetic correlation (rG) between two traits (Allier et al. 2019, Neyhart et al. 2019). If the 
prediction of the genetic correlation is accurate, ideal crosses could be distinguished based on the correlated progeny 
mean to improve two unfavorably correlated traits. Genetic correlation among traits is caused by shared genetic 
influence (i.e., pleiotropy) or non-random association of alleles (i.e., LD) (Falconer and Mackay 1996). Breeding efforts 
are functionally constrained in the first case but unfavorable correlations due to LD can be disrupted by successive 
recombination events. Neyhart et al. (2019) reported increased multi-trait genetic gain by 11–27% when compared to 
selection on the predicted cross mean when choosing crosses based on predicted rG for unfavorably correlated traits 
FHB severity and plant height in barley. In a retrospective analysis for soybean seed yield and maturity, Jean et al. (2021) 
compared predicted performance of crosses and progeny persistence during selection. The authors observed that most 
crosses predicted to have superior performance were retained by the breeders and crosses with below-average predicted 
yield produced no superior advanced lines, demonstrating the utility of identifying crosses informed by rG predictions.

One foreseen limitation for programs working on crops with less investment, and possibly complex polyploid 
genomes, is the lack of a genetic map. This investment in a genetic map may be advantageous because it can increase 
genetic gains by enabling a tool to design crosses that are more likely to produce improved lines while increasing the 
efficiency in resource allocation within the program. The empirical validation of predicted rG requires phenotypic data 
on families with large population sizes due to greater error in estimation of higher order statistics, and therefore the 
empirical validation of such predictions may not be feasible on a regular basis.

Genomics-assisted seed purification
Pure lines are often derived from a single plant in an early generation of inbreeding (around F3 or F4) from a biparental 

cross. While the selection candidates undergo multi-location yield trials, unpurified seed increases occur simultaneously 
through generations of selfing and bulk harvesting to ensure seed availability for advanced yield trials. The bulk 
harvesting often starts at a generation in which not all loci are fixed (e.g., F4 or F5) and therefore genetic heterogeneity 
within breeding lines is common. To attain a cultivar of high genetic purity, a purification step is often undertaken on 
the basis of easily observable and highly heritable phenotypic traits (e.g., flowering time, maturity date, plant height, 
flower color, trichome color, etc.). This purification step creates a bottleneck that can shift allele frequencies in the 
genetically heterogeneous breeding line that was derived and tested. Genomic selection holds potential to leverage this 
genetic bottleneck in the subline selection to the breeder’s advantage by selecting those sublines with best predicted 
performance and thus shifting allele frequencies in favorable directions during purification. Selection of new sublines 
outperforming the original heterogeneous “mother cultivar” was demonstrated by (Sebastian et al. 2010) using MAS, 
which could easily be extended using GS. 

Reallocation of yield trial resources around Genomic Selection: Sparse testing designs
Genomic selection can be particularly useful for sparse testing in preliminary yield trials (PYTs) when there is a large 

number of selection candidates that need to be reduced for more extensive evaluation in replicated multi-environment 
trials (MET). The PYT is a prime stage for this application because of the large number of untested genotypes and limited 
amount of seed for field plots. Reducing replication of breeding lines within and across environments allows for increased 
selection intensity under fixed costs. Therefore, increased selection intensity or increased selection accuracy of phenotyped 
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lines at low heritability by broader sampling of the TPE is expected. Under the supposition that the prediction might 
be less accurate than the observed phenotype, an increase in selection intensity with the low-cost screening of large 
population sizes can outweigh the loss in accuracy and result in higher genetic gain (Jarquin et al. 2020).

This approach proposes a shift from the phenotype being the selection criterion and the genotype as the unit of 
evaluation to a prediction based on allele effects, which means that the allele is now the unit of evaluation (Lorenz et 
al. 2011). The purpose of the field trial becomes the replication of alleles, with hidden replication of alleles increasing 
with population size (Lorenz 2013). With the new role of phenotyping being to provide useful data to train a genomic 
prediction model, field trial design with allocation of plot resources to genotypes and which individuals to evaluate in 
the trials becomes an important topic.

Individual lines can be evaluated without replication or partial replication across environments, but relatives are 
randomized among environments. The genomic predictions benefit from borrowing information through genomic 
similarity among relatives and from genotypes within and across environments by means of correlated environments 
(Burgueño et al. 2012, Jarquin et al. 2020). Sharing of information in this way effectively allows the evaluation of some 
lines in environments in which they were never tested, saving overall testing resources. 

In light of this, Belamkar et al. (2018) performed a retrospective analysis and investigated the TP design for PYT in 
wheat breeding with varying numbers of lines from the same year as well as lines from previous years. They reported 
a substantially greater number of lines correctly selected for advancement when predictions were made with 50% of 
the lines from the testing year added to the TP. Verges and van Sanford (2020) corroborated this TP design result and 
also investigated the meaning of different prediction accuracies from a breeder’s standpoint. With a 20% proportion 
of selected individuals common to the PYT stage, a prediction accuracy >0.4 could bring successful results in terms of 
identifying the top performing lines for a complex trait such as grain yield.

Endelman et al. (2014) found an advantage to spreading the PYT genotypes across multiple locations with limited 
replication compared to phenotyping a smaller number of genotypes with more replicates. This approach leverages the 
hidden replication of alleles by increasing the population size and testing more lines at different environments instead 
of all lines in one environment or fewer lines with higher replication in all environments. Lado et al. (2016) observed 
that the use of marker information from related lines evaluated in multiple environments was useful to predict the 
performance of new genotypes with high accuracy (0.5). To predict genotypes before phenotyping, the authors found 
the best strategy to be borrowing information from relatives evaluated in multiple environments and modeling the 
correlation matrix across environments to exploit the GxE interaction. Furthermore, Jarquin et al. (2020) found that the 
GS model accounting for GxE interaction yielded higher prediction accuracies and captured more phenotypic variability 
than the main effects models in different sparse testing allocation designs with varying levels of overlapping genotypes 
in environments.

Spatial models that account for field spatial heterogeneity in large PYT trials can be incorporated to reduce plot 
error variance within trials and obtain the best estimates of phenotype to be used to train the GS model (Gilmour et 
al. 1997, Rodríguez-Álvarez et al. 2018). Likewise, the use of linear mixed models accounting for spatial variation in 
field trials combined with the GS framework has potential to increase the efficiency of PYT selections (Lado et al. 2013, 
Belamkar et al. 2018).

Genomic selection in single plants or progeny rows
The benefits of GS can be exploited by increasing the selection accuracy for complex traits in early-generation 

screening. The progeny row stage involves screening of lines derived from a single plant and consequently a small 
amount of available seed planted in a single row or small plot, resulting in low heritability of trait measurements. Only 
observational selection for traits with high heritability are often carried out in this stage.

Genomic prediction can be deployed to increase the selection accuracy for complex traits by using the predictions 
as an additional year of yield selection. Advanced lines from the breeding program that were highly replicated in METs 
can be leveraged to design the TP. Under low to moderate prediction accuracies, GS still works as a pretest with reduced 
selection intensity by culling the low performing lines (Longin et al. 2015). Even without a reduction in breeding cycle 
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time, applying GS among lines can enable higher selection accuracy and the early exclusion of low performing lines 
allows for more resources to be targeted to more promising lines at advanced testing stages.

Smallwood et al. (2019) compared context-specific GS strategies and PS in a F5-derived recombinant inbred line 
(RIL) soybean population grown in a single plot in one location to simulate the progeny row stage. A subset of the RILs 
with similar maturity was further evaluated in replicated METs to validate the predictions in field conditions and test 
the effect of selection across generations for soybean yield and seed composition traits. Genomic selection strategies 
outperformed PS and showed strong potential for advancing fatty acid traits at this stage. No major differences in 
selection accuracy were found for yield, protein, and oil content but selections using GS can be made prior to harvest, 
improving the efficiency in comparison to PS. Similarly, no major differences in selection accuracy between GS and PS 
for seed oil concentration were observed by Hemingway et al. (2021) with biparental context-specific GS targeting the 
progeny row stage in four biparental soybean populations (BC1F4:5 lines) using a low-density marker panel.

Genotyping in early breeding generations is expected to be costly due to the large number of selection candidates. The 
number of lines in the progeny row stage varies among breeding programs but it can easily range from a few thousands to 
20,000. These numbers mean that genotyping could be cost prohibitive for the budget of a public-sector plant breeding 
program. Genomic selection could be combined with a step of PS on a secondary trait to cull the lowest potential lines, 
allowing a reduction in the number of candidates to be genotyped. In this context, low-cost high-throughput phenotyping 
(HTP) could be used to evaluate lines for early season traits that are highly heritable and genetically correlated to yield 
to reduce the number of lines to be sampled and genotyped (Araus et al. 2018). For example, canopy coverage obtained 
from an unmanned aerial system has been reported to be correlated to seed yield in soybeans and thus is a good 
candidate for indirect selection (Xavier et al. 2017). Besides increased selection accuracy from the conventional visual 
selection method, the successful pairing of GS and HTP could increase the population size evaluated in the progeny row 
stage, allowing for higher selection intensity.

Parental selection based solely on the prediction of genotypic value
Parental selection is considered one of the most critical decisions breeders routinely face. The goal of GS here is to 

accurately predict breeding values to perform parental selection on progenies at early stages such as the progeny rows 
or first year of yield testing. This strategy is powerful but requires careful planning and consideration when applied in the 
early stages of the pipeline. Advanced elite lines with proven performance based on replicated field trials are currently 
used as new parents. The inbred recycling procedure aims to develop new and improved versions of elite inbreds. This 
task enables the use of GS without changes to the conventional breeding pipeline. Higher genetic gains through reduced 
cycle time are expected from early recycling of progenies as parents as quickly as the genotype is determined to have 
an above average breeding value for a quantitative trait (Heffner et al. 2010, Atlin et al. 2017, Cobb et al. 2019, Atanda 
et al. 2021). A breeding cycle can be determined as the time when a cross is made until selection of new parents. 

This method was incorporated in a simulation of different breeding programs implementing GS at different stages 
of the pipeline (Gaynor et al. 2017). A given number of parental lines were selected as the ones with the highest GEBVs 
from a set of candidates that comprised the parents in the previous crossing block as well as the entries in the PYT and 
later stages of yield trials. The approach enabled a cycle time reduction from four years in the conventional program to 
three years in the alternative program that incorporated GS. The cycle time to selection of new parents can be further 
reduced to two years by selecting non-inbred progeny at the progeny row stage and yield trials.

An extreme form of parental selection based solely on predicted genotypic values is year-round rapid cycling GS 
(RCGS) (Asoro et al. 2013, Combs and Bernardo 2013b, Massman et al. 2013, Beyene et al. 2015, Rutkoski et al. 2015, 
Vivek et al. 2017, Zhang et al. 2017, Das et al. 2020, Das et al. 2021). Conventional recurrent selection is amenable to GS 
by using genome-wide markers to select the individuals that will be recombined instead of phenotypic measurements 
in the target environment. At least one generation of reliable phenotypic evaluation in the TPE is conducted in cycle 
0, which also serves as the TP (Bernardo and Yu 2007). From calculated marker effects in cycle 0, the performance 
of individual plants is predicted prior to flowering and the best individuals are intermated in a year-round nursery or 
greenhouse to form the next cycle. Two cycles per year of RCGS mean that cycle time using GS is reduced by as much 
as eight-fold compared to phenotypic selection (Gaynor et al. 2017).
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The effectiveness of RCGS was initially assessed in a temperate maize biparental mapping population, with higher 
realized genetic gains for indices of stover and grain yield from RCGS in comparison to MARS (Massman et al. 2013). 
Superior response was also reported in tropical maize multiparental populations with cycles of RCGS for drought and 
waterlogging stress (Zhang et al. 2017, Das et al. 2020, Das et al. 2021). For example, Zhang et al. (2017) performed 
four cycles and obtained genetic gain for grain yield of 0.225 t ha−1 per cycle, which is equivalent to 0.100 t ha−1 year−1 
over 4.5 years from the initial cross to the last cycle.

Studies deploying computer simulations demonstrated that breeding cycles of population development can be 
separated from the product development component as early generation parents are selected solely on the basis 
of GEBVs (Gaynor et al. 2017). This strategy is a special case of RCGS and requires the reorganization of the breeding 
program in two distinctive components: 1) the population improvement component based on RCGS and 2) the product 
development component to identify new breeding lines using phenotypic evaluation. The population improvement 
through RCGS in early breeding generations relies on predicted breeding values to identify the parents of subsequent 
breeding cycles. This approach is expected to increase the frequency of favorable alleles and drive genetic gain in the 
base population. Meanwhile, individuals with the highest GEBVs are selected to derive lines and ensure a constant 
supply of improved germplasm. Inbreeding through single-seed descent or double haploidization is used to derive inbred 
lines that follow the conventional product development component, which might entail GS. The update of the TP and 
prediction models used in RCGS occurs with phenotypic and genotypic data gathered from the line testing stages in 
the product development pipeline. The two-part breeding strategy involves substantial restructuration of the breeding 
program taking into account costs, infrastructure, logistics, number, and size of populations.

Depending on the biology of the crop, genetic gain could be further increased by increasing the number of cycles per 
year used in RCGS. Rapid generation advance or “speed breeding” relies on intensive greenhouse or growth chamber 
use to accelerate plant development under prolonged photoperiod and controlled temperatures and greatly shortens 
generation time (Watson et al. 2018, Jähne et al. 2020). Under these conditions, phenotyping or use of MAS for basic 
adult plant traits is possible. The two-part breeding strategy and a modified speed breeding approach are currently 
being combined in the CIMMYT wheat program to accelerate the development of high-Zn and competitive yield varieties 
(Dreisigacker et al. 2021).

While implementing RCGS may be possible in commercial or large public breeding programs, there are still challenges 
for breeding programs with less capacity. Practical implementation will face challenges in turnaround time, cost of 
genotyping, and access to state-of-the-art growth facilities for flowering synchrony. Long turnaround time between 
sample tissue collection and genomic predictions can be overcome with streamlined software workflow for data storage 
and predictive analysis besides in-house genotyping. One way to mitigate the cost of genotyping is to adjust the number 
of selection candidates per cycle for varying levels of selection intensity. 

CONCLUSION AND PERSPECTIVES

Genomic selection has considerable potential for improving complex traits by reducing breeding cycle time and costs 
all while possibly increasing selection accuracy. Although genomic selection has been widely adopted in commercial 
settings and extensively studied in academic settings, actual full implementation in public plant breeding programs lags. 
The integration of genomic selection with conventional breeding in public plant breeding programs will impact current 
and future efforts in crop improvement. In addition, implementation would benefit the education of future plant breeders 
that are likely to be employed in multinational companies fully immersed in genomic selection. Moreover, breeding 
methodology research - widely communicated by public programs and thus critical to progress in the discipline of plant 
breeding as a whole – would benefit from full genomic selection adoption to help ensure research questions and findings 
are as close to state-of-the-art as possible. Gaps exist between research and practical application because challenges such 
as redesigning of the breeding program, cost of genotyping, turnaround time, temporary human resources, and risk of 
failure remain. We provided a review of pertinent findings reported in the literature along with a roadmap of applications 
of genomic selection for cultivar development across the different stages of the breeding pipeline. Advancements and 
new approaches for implementation of genomic selection will continue to emerge in applied breeding programs, and 
adoption in public-sector breeding programs will help to ensure that this methodology is not only used by a few select 
programs, but rather is available to many programs diverse in their objectives and size.
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