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Abstract: Genetic selection efficiency is measured by accuracy. Model selection 
relies on hypothesis testing with effectiveness given by statistical significance 
(p-value). Estimates of selection accuracy are based on variance parameters 
and precision. Model selection considers the amount of genetic variability 
and significance of effects. Questions arise as to which one to use: accuracy 
or p-value? We show there is a link between the two and both may be used. 
We derive equations for accuracy in multi-environment trials and determine 
numbers of repetitions and environments to reach accuracy. We propose a new 
methodology for accuracy classification based on p-values. This enables a better 
understanding of the level of accuracy being accepted when certain p-value is 
used. Accuracy of 90% is associated with p-value of 2%. Use of p-values up to 
20% (accuracies above 50%) are acceptable to verify significance of genetic 
effects. Sample sizes for desired p-values are found via accuracy values.
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INTRODUCTION

Statistical significance, selection accuracy, and experimental precision are 
concepts used to assess experimental efficiency and the effectiveness of genetic 
selection in plant breeding (Resende and Alves 2020). The most important 
parameters and concepts in quantitative genetics and plant breeding are: 
genetic gain with selection (Gs); accuracy (rĝg); heritability (h2); genetic variance 
(σ2

g); and genetic value (g). Genetic gain with selection (Gs = k rĝg σg) measures 
the genetic and practical gains obtained with genetic improvement. Accuracy 
(correlation between predicted and true genetic values) and individual or plot 
level heritability (which is itself a component of accuracy) enables a predictive 
estimate of genetic gains with selection. The predicted genetic value and 
accuracy are essential in genetic evaluation catalogues on which selection 
decisions are based.

Genetic selection involves the prediction and ranking of genetic materials 
and is central to genetic improvement. Its efficiency is measured by selection 
accuracy. Tangential to genetic improvement is model selection, which is based 
on inference and hypothesis testing. Its effectiveness is inferred from statistical 
significance (p-value).

Accuracy is useful for making inferences about the quality of experiments, 
the reliability of predictions of genotypic values, and the statistical validity of 
predictive and inferential results. In practical terms, accuracy is also used to 
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compare alternative selection methods, to calculate genetic gains with selection and to plan experiments. Thus, it is 
one of the building blocks of statistical and genetic analyses.

In single-environment trials, the accuracy values are obtained considering the heritability (h2) of the trait and the number 
of repetitions (n) of each genotype. In multi-environment trials, the accuracy is estimated considering the heritability 
of the trait (h2), genotypic correlation across environments (rge), number of repetitions, and number of environments.

Conversely, a desired accuracy can be used to determine the size of experiments, inferred by choosing the number 
of repetitions and environments (total sample size). In this case, an optimized sample size can be obtained from the 
expected accuracy, heritability, and genotypic correlation across environments. In this study, we extend the work of 
Resende and Duarte (2007) and derived equations for the accuracy in multi-environment trials, modeling the effects 
of the genotype x environment (GxE) interaction using estimates of genetic parameters and Snedecor’s F distribution. 
These equations were used to define the optimal sample sizes.

Until recently, identifying an adequate number of repetitions was mainly based on minimizing or reducing the residual 
variance in experimental statistics and quantitative genetics. However, this method is inefficient given the limited capacity 
of the coefficient of experimental variation (CVe) to provide information about accuracy, as demonstrated by Resende 
and Duarte (2007). Another approach is to minimize the phenotypic variation of treatment means. This is also not 
entirely adequate, as a fraction of the phenotypic variance is genetic in nature. Another approach assumes the effects of 
genotypes as fixed and is based on maximizing the probability of detecting significant differences between treatments.

Recently, efforts have been made to determine an adequate number of repetitions (n) and environments (l) (Xu 
et al. 2016, Baxevanos et al. 2017a, Baxevanos et al. 2017b, George and Lundy 2019, Zhang et al. 2020, Woyann et al. 
2020). Two important contributions were provided by Yan et al. (2015) and Yan (2021), who used a similar approach to 
the one herein but through different equations. Nevertheless, these previous studies did not contemplate a statistical 
way to express the equations in terms of the F test and the p-value. Storck et al. (2011), following Resende and Duarte 
(2007) for single-environment trials, extended the approach to determine plot size in agronomic crops. Yan’s two article 
(2015 and 2021) were based on reliability (which is the square of the accuracy and for balanced data is equivalent to 
the heritability at the means level) of the prediction, called H and fixed at 0.75 as a general suitable value. Besides, they 
did not express the equations results in terms of the individual heritability.

Considering statistical significance, selection accuracy, and experimental precision in plant breeding, this study aims: 
i) to obtain accuracy estimators for multi-environment trials; ii) to obtain estimators for the number of replications 
and environments to maximize the selection accuracy in multi-environment trials; iii) propose a new methodology for 
classifying accuracy based on statistical significance via p-value. Our study extends the work of Resende and Duarte 
(2007) to maximize accuracy and optimize the definition of the number of replications and environments. An original 
approach was applied to multi-environment trials, which included deriving accuracy estimators and expressing them 
in terms of the F-test of the joint analysis of variance of multi-environment trials. This was then related to statistical 
significance via p-value. Here, quantitative genetics intersects with experimental statistics, advancing work in both areas.

ACCURACY AND ITS RELATIONSHIP WITH OTHER MEASURES OF EXPERIMENTAL QUALITY

The quality of genotypic evaluation should be inferred based on accuracy (rĝg). In balanced experiments, Snedecor’s 
F distribution can also be used, as rĝg = (1 − 1/F)1/2 (Resende and Duarte 2007). The mathematical expression that relates 
the appropriate values of F to the required accuracy is given as: F = 1/(1 − r̂2

ĝg). The F statistics is the proportion between 
the mean square of treatments and the residuals mean square from an analysis of variance. To achieve an accuracy of 
90%, an F value equal to 5.26 must be obtained. This value is independent of the species and trait evaluated and can 
be considered a standard value for any species and a reference value in tests of value for cultivation and use (VCU).

This statistic simultaneously contemplates the coefficient of experimental variation (CVe), the number of replications 
(n), and the coefficient of genotypic variation (CVg), as can be seen through the expression F = 1 +(nCV2

g/CV2
e). Although 

traditionally used to evaluate experimental quality, the coefficient of experimental variation alone is inadequate. All 
three parameters are necessary because accuracy depends on them simultaneously, as shown through an alternative 
expression: 
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rĝg = {1/[1 +(CV2
e/CV2

g)/n]}1/2  (Resende and Alves 2020).

For the selection process in breeding programs, the aim should be to achieve accuracy values above 70% (Resende and 
Duarte 2007). This is equivalent to F values greater than 2. Therefore, F values less than 2 provide low accuracy (Resende 
and Alves 2020). Another statistic commonly calculated in the context of genetic evaluation, proposed by Vencovsky 
(1987), is the relative coefficient of variation (CVr = CVg/CVe). By fixing the number (n) of repetitions or individuals per 
treatment, the magnitude of the relative coefficient of variation (CVr) can be used to infer the accuracy and precision 
of the genetic evaluation. With n = 2, a CVr > 1 provides high accuracy.

PROOF OF THE RELATIONSHIP BETWEEN ACCURACY AND F TEST

From an analysis of variance, the components of the 
accuracy can be expressed in terms of variance components 
(as used by Fisher, Kempthorne, Henderson and Robertson) 
or intraclass correlation coefficients (determination 
coefficients or proportions between variance components; 
as used by Lush and Wright) (Table 1).

At the individual (common in perennial plants) or 
plot (common in annual plants) levels, F is given as 

F = 1 + n h2

1 –h2  or F = 1 + n
λ

 = λ + n
λ

, where λ = (1 – h2)
h2  is 

the shrinkage factor in the mixed model equations. F will 

be greater than 1 only if h2 is greater than zero. Since F − 1 = n h2

1 –h2 , the number of repetitions is given as: n = (F − 1) 
(1 – h2)

h2  = (F − 1)λ. The significance of F indicates that h2 is non-zero.

Increasing the number of repetitions (n), increases the value and power of the F test in detecting significance. It 

also increases the reliability or heritability at the treatment mean level, given as h2
m = 1 − 1

F
 and the accuracy given 

as rĝg =  1 − 1
F

 (Resende and Duarte 2007). The variance components enable us to estimate heritability or coefficients 

of determination at the individual plot and treatment mean levels, given as: h2 = σ2
g

σ2
g + σ2  and r2

ĝg = h2
m = nh2

1 +(n – 1)h2  , 

respectively. The h2 can also be estimated as h2 = CV2
r

CV2
r + 1

 = 1
1 + 1/CV2

r

 and by h2 = F – 1
(F – 1)+ n

, as a function of F and n.

High reliability and accuracy can be achieved using an adequate number of repetitions or individuals (n) per treatment. 
An F = 5.26 is reached, for example, with n = 6.39, for h2 = 0.40. It can be inferred that h2 = 0.40 and n = 6 provides high 
accuracy (r2

ĝg = 0.90). From the desired reliability (r2
ĝg), and according to the heritability of the trait (h2), n is given as:

n = r2
ĝg

h2  (1 – h2)
(1 – r2

ĝg)
 = r2

ĝg

(1 – r2
ĝg)

 (1 – h2)
h2 .

Yan et al. (2015) used the same approach to obtain the optimal number of repetitions (n) but fixed the reliability 
(r2

ĝg) at 0.75, which led to more restricted results. Furthermore, they did not express the equations results in terms of 
individual heritability.

NEW ACCURACY CLASSIFICATION BASED ON STATISTICAL SIGNIFICANCE
The quality of genetic evaluation in the context of plant breeding and experimentation is generally based on the 

statistical significance (p-value) of the genetic effects of the statistical model and on the accuracy of the genetic values. 
Initially, significance levels of 1% and 5% were considered as sufficient to statistically validate the comparison between 
genetic treatments (genotypes, varieties, cultivars, clones) (Fisher 1925). These cut-off points have also been used in the 
comparison and selection of statistical models with a hierarchical or nested structure, for example, likelihood ratio test 
(LRT) or deviance analysis (Resende 2007). Measures of significance associated with genetic variance (σ2

g) and individual 
heritability (h2

g) are also used, for which values must be statistically different from zero for acceptance and validity of 
the experiment, considering the possibility of sufficient genetic variability for genotype selection.

Table 1. Illustration of the analysis of variance for random effects 
of genetic treatments

Source of variation E(MS)† E(MS)‡ F

Treatment σ2
e + nσ2

g [(1 − h2) + nh2] σ2
y

1 + n h2

1− h2  

Error σ2
e (1 − h2) σ2

y -
†: expected mean square in terms of variance components; ‡: expected mean square 
in terms of intraclass correlation or coefficients of determination; σ2

e: residual vari-
ance; σ2

g: genotypic variance; σ2
y: phenotypic variance; n: number of repetitions; 

and h2: heritability.
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Geneticists also rely on the magnitude of accuracy (correlation between predicted and parametric values) to infer 
about the effectiveness of selection and consequent genetic improvement. Reference values were suggested by Resende 
and Duarte (2007), with an accuracy of ≥90% necessary for recommending cultivars, and a desirable accuracy of ≥70% 
for improvement in the context of recurrent selection.

In technical works and in the practice of genetic improvement, it is a common doubt to know in which situations (in 
terms of magnitudes of genetic variance (σ2

g), individual heritability (h2
g), significance of genetic effects and/or statistical 

differences of fit between prediction models), the selection and validation of models as well as the acceptability of the 
levels of genetic variability and heritability present in the breeding populations are reasonable to lead to adequate genetic 
gains. Which magnitudes are acceptable? For example, is a heritability value at the mean level of 70% favorable for 
selection? Is an individual heritability equal to 5% valid for selection? To respond these questions, information on 
the magnitude of the accuracy associated with these situations is necessary. Thus, the key questions are: what is 
the relationship between accuracy and significance (p-value) in an experiment, and which criterion should be given 
preference? Discussions related to such misgivings are absent from the scientific literature. This study aimed to 
address these issues.

Beginning from the fact that for each p-value there is a test statistic of the data distribution, some associations 
between the test statistic and p-value can be stipulated in experimental evaluation. The genetic values estimated from 
the statistical analysis can be tested against zero, using the Student’s t test with infinite degrees of freedom (Van Vleck 
et al. 1987). To perform this test, a significance level (or the complement called degree of confidence) must be chosen, 
which is usually 5% (95% confidence) and associated with a Student’s t test value equal to 1.96. Snedecor’s F distribution 
is also used in the analysis of experiments and is asymptotically (tends to infinite degrees of freedom for the residual) 
equivalent to the square of the Student’s t distribution, i.e., F = t2. Asymptotic equivalence also exists between the 
Chi-square (χ2) distribution with one degree of freedom and Snedecor’s F distribution, with one degree of freedom 
for the numerator and infinite degrees of freedom for the residual. Resende and Duarte (2007) showed the following 

relationships between F and the square of accuracy: r2
ĝg = 1 − 1

F
 and F = 1

1 – r2
ĝg

. Based on these relationships, knowing 

the value of F allows us to estimate the accuracy via rgg = (1 − 1/F)(1⁄2). Also, rgg = (1 − 1/χ2)(1⁄2) and rgg = (1 − 1/t2 )(1/2). 
Thus, the p-value can be inferred from tables of Snedecor’s F, Student’s t, and Chi-square statistics, with large (tending 
to infinite) number of degrees of freedom for the residual, thus establishing a bridge between p-value and accuracy. A 
relationship also exists between F and the non-centrality parameter (NCP = (zα + zβ)

2) via (F − 1) = (zα + zβ)
2 = NCP, that 

is, F = 1 + NCP (Resende and Alves 2020), discussed further below.

In Table 2, we present accuracy values in the first column and associated p-values in the second column. These two 
columns offer information about which p-value is being accepted when practicing a certain accuracy. For example, 
typical values of 0.70, 0.80 and 0.90 are associated with p-values of 16% (0.16), 10% (0.10) and 2% (0.02), respectively. 
An accuracy of 0.50 is associated with a p-value of 25% 
(0.25). Values less than 0.50 for accuracy are unacceptable 
as they lead to a selective coincidence of less than 50%. 
In this case, selection would result in more mistakes than 
successes. Thus, the highest acceptable p-value is less 
than 25%. Traditionally p-values greater than 5% are not 
allowed in selection. The results presented here suggest 
that p-values between 5% and 20% are also adequate in 
some situations. Accuracy values should be interpreted 
as: useless, leading to more wrong than correct selections 
(bellow 0.5); useless, leading to selection at random 
(equal 0.5); useful, leading to more correct than wrong 
selections (above 0.5).

In Table 3, p-values are presented in the first column 
and associated accuracy values in the second column. These 
two columns show the accepted selective accuracy when 

Table 2. p-values, Snedecor’s F or Chi-square (χ2) statistics, Stu-
dent’s t, and reliability (r2

gg) associated with different accuracy 
(rgg) values

rgg p-value F or χ2 Student’s t r2
gg

0.50 0.25 1.33 1.16 0.25
0.60 0.21 1.56 1.25 0.36
0.70 0.16 1.96 1.40 0.49
0.75 0.13 2.31 1.52 0.57
0.80 0.10 2.76 1.66 0.64
0.85 0.06 3.53 1.88 0.72
0.90 0.02 5.43 2.33 0.82
0.93 0.005 7.90 2.81 0.87
0.95 0.001 10.82 3.29 0.91
0.99 0.000000002 36.00 6.00 0.97

rgg = 50%, p-value = 25%; rgg = 70%, p-value = 16%; rgg = 80%, p-value = 10%; rgg = 
90%, p-value = 2%; rgg = 95%, p-value = 0.1%.



Statistical significance, selection accuracy, and experimental precision in plant breeding

5Crop Breeding and Applied Biotechnology - 22(3): e42712238, 2022

using a certain p-value. For example, typical p-values of 
0.10, 0.05, and 0.01 are associated with accuracies of 79%, 
86%, and 92%, respectively. These traditional 10%, 5% and 
1% cut-off points for significance were recently revised, 
and a p-value of 0.5% (0.005) is currently widely accepted 
(Benjamin et al. 2018). With this p-value, the associated 
accuracy is 93%. Using this approach seems appropriate 
and can be recommended with confidence. Thus, in the 
final stages of breeding programs a pair p-value = 0.005 
/ rgg = 93% is strongly indicated. The criteria presented 
can revive the use of the F distribution and its p-value in 
the current analytical context of genetic improvement. 
However, this does not mean that a traditional analysis of 
variance (ANOVA) is necessary, as an analysis using mixed 

models provides F = σ2
g

PEV
 (Resende and Alves 2020), 

where PEV is the prediction error variance associated with 
the empirical best linear unbiased prediction (E-BLUP) of a 
genetic effect. It is an element extracted from the diagonal 
of the generalized inverse of the coefficient matrix of the 
mixed model equations (Fisher information matrix).

The columns of p-values and accuracy (rĝg) in the Table 3 
were plotted in Figure 1. The curve equation describing rĝg  
as a function of the p-value is given by rĝg = 0.814 − 1.521 (p 
value − 0.079), where -1.521 is the regression coefficient. 
The fitting was good, with R2 = 0.99 and mean absolute 
error of 0.01. From this function we create the estimated 
equivalences between p-value and accuracy (Table 4).

The strength of evidence of the p-values enables us 
to test a null hypothesis H0 against an alternative hypothesis H1 based on observed data. The p-value is defined as the 
probability, that a test statistic is as extreme or more extreme than its observed value, calculated considering the null 
hypothesis. The null hypothesis is rejected, and the finding is declared statistically significant if the p-value falls below 
the type I (current) error threshold: α = 0.05.

From a Bayesian perspective, a more direct measure of the strength of evidence for H1 relative to H0 is their odds 
ratio (ratio of their probabilities). By Bayes’ rule, this ratio can be written as: BF x (Pr (H1) / Pr (H0)) = BF x (a priori 
probabilities), where BF is the Bayes Factor (also related to Bayesian information criteria (BIC); according to Resende and 
Alves 2020) that represents the evidence of the data, and the prior probabilities can be informed by the researchers’ 
beliefs, scientific consensus, and validated evidence of similar issues in the same research field. Multiple hypothesis 
testing, P-hacking, and bias affect the credibility of the evidence, with some of these practices reducing the prior odds of 

Figure 1. Accuracy as a function of the p-value, obtained from 
Table 3.

Table 3. Snedecor’s F or Chi-square (χ2) statistics, Student’s t, 
reliability (r2

gg), accuracy (rgg), and class associated with different 
p-values

p-value F or χ2 Student’s t r2
gg rgg Class

0.25 1.33 1.16 0.25 0.50 Moderate
0.20 1.64 1.28 0.39 0.62 Moderate
0.15 2.07 1.44 0.52 0.72 High
0.10 2.71 1.65 0.63 0.79 High
0.05 3.84 1.96 0.74 0.86 High
0.025 5.02 2.24 0.8 0.89 High
0.010 6.63 2.57 0.85 0.92 Very high
0.005 7.88 2.81 0.87 0.93 Very high
0.001 10.83 3.29 0.91 0.95 Very high
0.0005 12.12 3.48 0.92 0.96 Very high

p-value = 10% to 2.5%, rgg = 79% to 89%; p-value = 2% to 0.5%, rgg = 90% to 93%; 
p-value = 0.1%, rgg =95%.

Table 4. Equivalences between p-value and accuracy, estimated by the regression equation: accuracy = 0.814 - 1.521 (p value - 0.079)

p-value Accuracy p-value Accuracy p-value Accuracy p-value Accuracy
0.0005 0.93 0.05 0.86 0.12 0.75 0.19 0.65
0.001 0.93 0.06 0.84 0.13 0.74 0.20 0.63
0.005 0.93 0.07 0.83 0.14 0.72 0.21 0.62
0.01 0.92 0.08 0.81 0.15 0.71 0.22 0.60
0.02 0.90 0.09 0.80 0.16 0.69 0.23 0.58
0.03 0.89 0.10 0.78 0.17 0.68 0.24 0.57
0.04 0.87 0.11 0.77 0.18 0.66 0.25 0.55
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H1 over H0. Analyses of results from reproducibility studies suggest that, for experiments in some fields, the prior odds of 
H1 with respect to H0 may only be about 1:10. Therefore, for fields where the threshold for defining statistical significance 
for new discoveries is a p-value < 0.05, Benjamin et al. (2018) proposed a change to a p-value < 0.005, i.e., p-value = 
0.05 x 0.10 = 0.005. This simple step would immediately improve the reproducibility of scientific studies in many fields.

PAIRWISE COMPARISONS AND THE MULTIPLICITY PROBLEM IN THE VALIDITY OF THE NEW 
CLASSIFICATION METHOD

The relations (shown in Tables 2 and 3) between accuracy (via F values associated to 1 degree of freedom for 
genotypes) and p values hold, as we will show bellow. Even with treatments number higher than 2 in the trials, the 
precision, reliability and selection accuracy rely on precision of pairwise comparisons as the basic quantities to be 
averaged aiming to obtain the accuracy or its squared value (also called reliability or broad sense total heritability at 
mean genotype level).

We seek for a relation between reliability (squared accuracy r̂2
ĝg) of the predictions and statistical significance 

(probability of type I error) of the difference of genotypic treatments. Such reliability can be viewed as a generalized 
coefficient of determination of treatments and also as a proportional reduction of errors. Piepho (2019) addressed the 

subject Ω = r̂2
ĝg in statistics and gives the generalized coefficient of determination as Ω = 1 − σ2

e

σ2
e0

 From this, we can arrive 

at r̂2
ĝg as given by the BLUP method. F-statistic for comparing the full and reduced models can be written as a function 

of Ω and vice versa (Edwards et al. 2008).

In statistics, Ω = 1 − σ2
e

σ2
e0

 [1], where σ2
e and σ2

e0 are the error variances of the full and of the null model, respectively 

(Piepho 2019). From this and in the genetics context, r̂2
ĝg = 1 − PEV

σ2
g

 [2], where PEV is the genetic prediction error variance 

and σ2
g is the true genotypic variance (Searle et al. 1992). According to Resende and Duarte (2007),  r̂2

ĝg = 1 − 1
F

 [3], where 
F is the calculated (from experimental data) Snedecor F statistics.

From [2] and [3] it can be perceived that PEV
σ2

g

 = 1
F

 [4]. From [4], we have F = σ2
g

PEV
 [5] (Resende and Alves 2020). 

According to Cullis et al. (2006), the reliability is , r̂2
ĝgC = 1 − νBLUP

σ2
g

 [6], where νBLUP is the mean (across all pair of genotypes 

combinations) variance of the difference of two treatments BLUP.

From [6] and [3], we have νBLUP

2σ2
g

 = 1
F

 [7], which leads to FνBLUP = 2σ2
g [8], and νBLUP = 2σ2

g

F
 [9]. From [8] or [9], we get 

F = 2σ2
g

νBLUP

 [10]. Rearranging [9], we arrive at νBLUP

2
 = σ2

g

F
 [11], which gives F = σ2

g

νBLUP/2
 [12]. From [12] and [5], we have 

PEV = νBLUP

2
 [13].

For n replication number of each genotype and according to Resende (2007), νBLUP = 2σ2

n
 [14], and we have PEV= σ2

n
 

[15], as we intended to prove. The equation in [15] holds for uncorrelated fixed genetic effects (which produces BLUE 
of the genotypes effects) (Resende 2002, 2007).

Defining the quantity νBLUE as the mean (across all pair of genotypes combinations) variance of the difference of 
two treatments BLUE and after noticing the similarity between νBLUP and νBLUE, another reliability estimation method 
arises, according to Piepho and Mohring (2007) and also used by Dias et al. (2020), in which the reliability is given 

by r̂2
ĝgP = 1 − νBLUE

2σ2
g

  [16], which is similar to [6].

The equivalence between the three approaches (r̂2
ĝg as given by the BLUP method, r̂2

ĝgC and r̂2
ĝgP) was demonstrated 

above. Schmidt et al. (2019) also had an empirical evidence of this approximated equivalence. In this way, the overall 
squared accuracy comes from the average of all pair (two by two combinations) of comparisons based on the difference 
between each two genotype means. The two approaches (r̂2

ĝgC and r̂2
ĝgP) showed to be equivalent as obtaining the squared 

accuracy from the mixed model analysis using the PEV provided by the inversion of the Fisher information matrix.
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The results coming from pairwise comparisons are exact for only single comparison between two treatments. For 
higher number of treatments there is the multiplicity problem of all pairwise comparisons. For circumventing this, a global 
protection of the significance level to test the null hypothesis concerning treatments effects should be considered. Then, 
we adopted the Bonferroni correction and protection (Bonferroni 1936). For T treatments, this approach changes the v 
distribution of the p-value to that given by v* = v|T distribution. Then the significance based on v* should be attained in 
order to keep the overall v-based significance. For example, for v equal to 10% and T = 10, the v* distribution should be 
1% and the F on v* is 6.63 (and rgg = 0.92), which is necessary and sufficient to keep the original v distribution on 10%. 
So, according to the stochastic probability laws (Papoulis and Pilla 1965, Mood et al. 1974) and mathematical logic rules 
(Lightstone 1978), this leads to the combined accuracy of rggc = rggv rggv* = 0.79 x 0.92 = 0.73. From these considerations 
we have the accuracies varying with the number of treatments (and so with the number of degrees of freedom for 
treatments), as expected in F tests obtained in practical experimentation involving diverse number of treatments. Residual 
degrees of freedom numbers were taken as infinity in the paper overall, as they quickly approach (according to asymptotic 
theory of convergence in distribution and in probability) the typically infinity value with relatively small numbers (120 
for example, as is showed by Steel and Torrie (1980)). In plant breeding, given the high numbers of treatments and of 
replications, this assumption of approaching infinity residual degrees of freedom is easily met.

From Table 5 and from rggc = rggv rggv* = 0.79 x 0.92 = 0.73 as above, it can be seen that the Bonferroni correction and 
protection is conservative, reducing the original (unprotected) accuracy from 0.79 to the combined accuracy of 0.73, 
in the example of p-value of 10% and T = 10. The Bonferroni correction is also more rigorous in providing significance 
than is the unprotected t test. Table 5 must be read in the triples (p-value; T number; rgg on v|T). The amount rgg on v|T 

Table 5. Bonferroni corrected accuracies (rgg) for the number of treatments (T number), accounting for the multiplicity problem of 
all pairwise comparisons

p-value v T number F on p-value v* rgg on v* rgg on v rgg on v|T p-value v T number F on p-value v* rgg on v* rgg on v rgg on v|T
0.25 1 1.33 0.50 0.50 0.25 0.10 1 2.71 0.79 0.79 0.62
0.25 1.25 1.64 0.62 0.50 0.31 0.10 2 3.84 0.86 0.79 0.68
0.25 1.7 2.07 0.72 0.50 0.36 0.10 4 5.02 0.89 0.79 0.70
0.25 2.5 2.71 0.79 0.50 0.40 0.10 10 6.63 0.92 0.79 0.73
0.25 5 3.84 0.86 0.50 0.43 0.10 20 7.88 0.93 0.79 0.73
0.25 10 5.02 0.89 0.50 0.45 0.10 100 10.83 0.95 0.79 0.75
0.25 25 6.63 0.92 0.50 0.46 0.10 200 12.12 0.96 0.79 0.76
0.25 50 7.88 0.93 0.50 0.47 0.05 1 3.84 0.86 0.86 0.74
0.25 250 10.83 0.95 0.50 0.48 0.05 2 5.02 0.89 0.86 0.77
0.25 500 12.12 0.96 0.50 0.48 0.05 5 6.63 0.92 0.86 0.79
0.20 1 1.64 0.62 0.62 0.38 0.05 10 7.88 0.93 0.86 0.80
0.20 1.3 2.07 0.72 0.62 0.45 0.05 50 10.83 0.95 0.86 0.82
0.20 2 2.71 0.79 0.62 0.49 0.05 100 12.12 0.96 0.86 0.83
0.20 4 3.84 0.86 0.62 0.53 0.025 1 5.02 0.89 0.89 0.79
0.20 8 5.02 0.89 0.62 0.55 0.025 2.5 6.63 0.92 0.89 0.82
0.20 20 6.63 0.92 0.62 0.57 0.025 5 7.88 0.93 0.89 0.83
0.20 40 7.88 0.93 0.62 0.58 0.025 25 10.83 0.95 0.89 0.85
0.20 200 10.83 0.95 0.62 0.59 0.025 50 12.12 0.96 0.89 0.85
0.20 400 12.12 0.96 0.62 0.60 0.010 1 6.63 0.92 0.92 0.85
0.15 1 2.07 0.72 0.72 0.52 0.010 2 7.88 0.93 0.92 0.86
0.15 1.5 2.71 0.79 0.72 0.57 0.010 10 10.83 0.95 0.92 0.87
0.15 3 3.84 0.86 0.72 0.62 0.010 20 12.12 0.96 0.92 0.88
0.15 6 5.02 0.89 0.72 0.64 0.005 1 7.88 0.93 0.93 0.86
0.15 15 6.63 0.92 0.72 0.66 0.005 5 10.83 0.95 0.93 0.88
0.15 30 7.88 0.93 0.72 0.67 0.005 10 12.12 0.96 0.93 0.89
0.15 150 10.83 0.95 0.72 0.68
0.15 300 12.12 0.96 0.72 0.69            

T: number of treatments, v: distribution of the p-value v, v* = v|T: distribution of the p-value v*, rgg: accuracy. The amount rgg on v|T stands for rgg on the conditional v|T, 
which is v given T.
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stands for rgg on the conditional v|T, which is v given T. We also have rggc = rgg on v|T. Then, in the example, it can be 
learnt the triple (p-value = 10%; T number = 10; rgg on v|T = 0.73).

Other relevant triples are extracted from and highlighted in the Table 5: (10%; 200; 0.76); (5%; 100; 0.83); (2.5%; 50; 
0.85); (1%; 20; 0.88); (0.5%; 10; 0.89). It can be noticed that, if the T values are sufficient high, the corrected rgg are not 
very different from that obtained in Table 3. In these bases it can be concluded that p-values equal or lower than 10% 
can display high and very high accuracies (Tables 3 and 5). It can also be learnt from Table 5 that the v p-values of 15% 
and of 20% (with T > 4) can display moderate accuracies and so can be considered in selection. On the other hand, p 
value of 25% showed to be provided low accuracies whatever the T are. So, under these circumstances p value of 25% 
is unsuitable for selection.

SAMPLE SIZES FOR DETECTING SIGNIFICANCE OF TREATMENT EFFECTS
Statistical reference books (Snedecor and Cochran 1967, Steel and Torrie 1980) provide the general expression to 

calculate the sample size (n) needed to detect significance of treatment effects, as: [(zα + zβ)
2 σ2

D ]δ2, where zα and zβ are 
values of the cumulative distribution functions of Type I (α) and Type II (β) errors, under one-sided hypothesis tests; 
σ2

D is the variance of the difference between the means of two treatments; and δ is the size of the actual difference 
between two means that is intended to be declared significant. The quantity (1-β) is the probability (power) that the 
experiment presents a significant difference between the means of the treatments. In practice, powers of 80% and 90% 
are common and suitable. The σ2

D is a function of the residual variance (given as a function of 1 − h2) and δ2 can be taken 
as the squared difference between an effect and the mass zero point (given as a function of h2).

We then have n = (zα + zβ)
2 (1 − h2)⁄h2. Considering n = (F − 1)(1 − h2)h2 (discussed in the previous topic), we thus have 

(F − 1) = (zα + zβ)
2 = NCP, which is the non-centrality parameter. The values of (zα + zβ)

2 were determined by Snedecor 

and Cochran (1967) as presented in Table 6. Therefore, we also have (zα + zβ)
2 = n

λ
 = nh2

1−h2 .

From Table 6, an accuracy of 90% is associated with α equal to 10% and β equal to 80%, among other combinations 
of α and β. A summary of these results is presented in Table 7.

We can see that, to perform an experiment with the desired power (1-β) of 0.90 of the F test and significance of 
0.05, an accuracy of 0.95 is necessary. In this case, the probability of detecting a true difference between the genotypes 
is 0.90 when the significance level is set at 0.05. As expected, there is a proximity between the accuracy (rg ̂g) and the 
degree of confidence (1-α). Lee and Bjornstad (2013) demonstrated that hypothesis testing is equivalent to predicting 
discrete random effects, while Pawitan and Lee (2020) showed that confidence is likelihood and confidence density is, 
in fact, an extended likelihood.

Furthermore, a relationship between power and the coefficient of determination or square correlation (r2
ĝg) seems 

to exist for these high accuracy values. The coefficient of 
determination is also called the proportional error reduction 
(Linder 1951, Ceapoiu 1968) and is a measure of the 
proportion of coincidence, hits, correctness, or effectiveness.

NUMBER OF REPLICATIONS PER GENETIC 
TREATMENT

The results of the numerical evaluations to determine 
the number of repetitions in experiments in a single-
environment trial are presented in Table 8. Individual 

Table 6. Values of (zα + zβ)
2 in one-sided test for significance levels 

α determined by Snedecor and Cochran (1967)

(1 − β)
(zα + zβ)2 in one-sided test for significance levels α

0.01 0.05 0.10
0.80 10.0 6.2 4.5
0.90 13.0 8.6 6.6
0.95 15.8 10.8 8.6

With α = 5% and β = 90%, NCP = 8.6 and F = 9.6; thus, r2
g ̂g = 0.90 and rg ̂g = 0.95. With 

α = 5% and β = 80%, NCP = 6.2 and F = 7.2; thus, r2
g ̂g = 0.86 and rg ̂g = 0.93. With α = 

5% and β = 80%, NCP = 4.5 and F = 5.5; thus, r2
g ̂g = 0.82 and rg ̂g = 0.91.

Table 7. Significance level and power of the F test associated with the required accuracy levels of 0.90, 0.93, and 0.95

Accuracy (rĝg ) r2
ĝg Significance (Type I error: α) Confidence (1-α) Power (1-β) Type II error: β F Test

0.90 0.82 0.10 0.90 0.80 0.20 5.5
0.93 0.86 0.05 0.95 0.80 0.20 7.2
0.95 0.90 0.05 0.95 0.90 0.10 9.6
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heritability (h2) ranging from 0.05 to 0.95 were considered to achieve accuracies (rĝg) ranging from 0.50 to 0.99. To 
determine the number of repetitions in experiments in a single-environment trial, the equation 

n = r2
ĝg

h2  (1 – h2)
(1 – r2

ĝg)
 = r2

ĝg

(1 – r2
ĝg)

 (1 – h2)
h2  was used (Resende et al. 2014, Resende 2015).

For traits with an individual heritability (h2) of 0.20, an n equal to 17, 37, and 197 repetitions of single tree plots are 
required to achieve accuracies (rĝg) equal to 0.90, 0.95, and 0.99, respectively (Table 8). As 90% is a very high accuracy 
(Resende and Duarte 2007, Resende and Alves 2020), 17 repetitions can be recommended. For traits with high heritability, 
for example 0.50, the recommended number of repetitions to achieve 90% accuracy is four (Table 8). Another way to 
apply these results is to use the estimated heritability of the breeding program itself in the environment in which it is 
conducted.

The results of the numerical evaluations to determine the number of repetitions in multi-environment trials are 
presented in Table 9. Individual heritability (h2) ranging from 0.20 to 0.50 and genetic correlation across environments (rge) 
ranging from 0.60 to 1.00 were considered to achieve accuracies (rĝg) of 0.70, 0.80, and 0.90. The number of repetitions 

Table 8. Number of repetitions (n) in a single-environment trial for traits with individual heritability (h2) ranging from 0.05 to 0.95 to 
reach accuracies (rg ̂g) ranging from 0.50 to 0.99

Very high   Very high   Very high   Very high   High   High
rĝg  0.99 F 50.25 rĝg 0.975 F 20.25 rĝg 0.95 F 10.26 rĝg 0.90 F 5.26 rĝg 0.85 F 3.60 rĝg 0.80 F 2.78
h2

g N h2
g N h2

g n h2
g n h2

g n h2
g n

0.05 936 0.05 366 0.05 176 0.05 81 0.05 49 0.05 34
0.10 443 0.10 173 0.10 83 0.10 38 0.10 23 0.10 16
0.15 279 0.15 109 0.15 52 0.15 24 0.15 15 0.15 10
0.20 197 0.20 77 0.20 37 0.20 17 0.20 10 0.20 7.1
0.25 148 0.25 58 0.25 28 0.25 13 0.25 8 0.25 5
0.30 115 0.30 45 0.30 22 0.30 10 0.30 6 0.30 4.1
0.35 91 0.35 36 0.35 17 0.35 8 0.35 5 0.35 3
0.40 74 0.40 29 0.40 14 0.40 6 0.40 4 0.40 2.7
0.45 60 0.45 24 0.45 11 0.45 5 0.45 3 0.45 2
0.50 49 0.50 19 0.50 9 0.50 4 0.50 3 0.50 1.8
0.60 33 0.60 13 0.60 6 0.60 3 0.60 2 0.60 1
0.70 21 0.70 8 0.70 4 0.70 2 0.70 1 0.70 1
0.80 12 0.80 5 0.80 2 0.80 1 0.80 1 0.80 0
0.90 5 0.90 2 0.90 1 0.90 0 0.90 0 0.90 0
0.95 3   0.95 1   0.95 0   0.95 0   0.95 0   0.95 0
High High Moderate Moderate Moderate Moderate
rĝg 0.75 F 2.29 rĝg 0.70 F 1.96 rĝg 0.65 F 1.73 rĝg 0.60 F 1.56 rĝg 0.55 F 1.43 rĝg 0.50 F 1.33
h2

g N h2
g n h2g n h2

g n h2
g n h2

g n
0.05 24 0.05 18 0.05 14 0.05 11 0.05 8 0.05 6
0.10 12 0.10 9 0.10 7 0.10 5 0.10 4 0.10 3
0.15 7 0.15 5 0.15 4 0.15 3 0.15 2 0.15 2
0.20 5 0.20 4 0.20 3 0.20 2 0.20 2 0.20 1
0.25 4 0.25 3 0.25 2 0.25 2 0.25 1 0.25 1
0.30 3 0.30 2 0.30 2 0.30 1 0.30 1 0.30 1
0.35 2 0.35 2 0.35 1 0.35 1 0.35 1 0.35 1
0.40 2 0.40 1 0.40 1 0.40 1 0.40 1 0.40 1
0.45 2 0.45 1 0.45 1 0.45 1 0.45 1 0.45 0
0.50 1 0.50 1 0.50 1 0.50 1 0.50 0 0.50 0
0.60 1 0.60 1 0.60 0 0.60 0 0.60 0 0.60 0
0.70 1 0.70 0 0.70 0 0.70 0 0.70 0 0.70 0
0.80 0 0.80 0 0.80 0 0.80 0 0.80 0 0.80 0
0.90 0 0.90 0 0.90 0 0.90 0 0.90 0 0.90 0
0.95 0   0.95 0   0.95 0   0.95 0   0.95 0   0.95 0
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Table 9. Number of repetitions (n) in multi-environment trials (l environments), for traits with individual heritability (h2) ranging 
from 0.20 to 0.50, and genetic correlation across environments (rge) ranging from 0.60 to 1.00, to achieve accuracies (rg ̂g) of 0.70, 
0.80, and 0.90

rĝg = 0.90 F=5.26 l=1 l=2 l=3 l=4 l=5
h2

g rge n n n n n n, l=1 n, l=2 n, l=3 n, l=4 n, l=5
0.2 1 17.1 8.5 5.7 4.3 3.4 17.1 17.1 17.1 17.1 17.1
0.2 0.9 - 10.9 6.6 4.7 3.7 - 19.7 19.7 18.8 18.3
0.2 0.8 - 17.1 8.3 5.4 4.1 - 24.8 24.8 21.8 20.3
0.2 0.7 - 88.0 13.0 7.0 4.8 - 38.9 38.9 28.0 24.0
0.2 0.6 - - - 12.3 6.6 - - - 49.1 32.9
0.3 1 9.9 5.0 3.3 2.5 2.0 9.9 9.9 9.9 9.9 9.9
0.3 0.9 - 6.2 3.8 2.7 2.1 - 11.3 11.3 10.7 10.5
0.3 0.8 - 9.5 4.6 3.0 2.3 - 13.8 13.8 12.1 11.3
0.3 0.7 - 47.0 6.9 3.7 2.6 - 20.8 20.8 14.9 12.8
0.3 0.6 - - - 6.1 3.3 - - - 24.5 16.5
0.4 1 6.4 3.2 2.1 1.6 1.3 6.4 6.4 6.4 6.4 6.4
0.4 0.9 - 3.9 2.3 1.7 1.3 - 7.0 7.0 6.7 6.5
0.4 0.8 - 5.7 2.8 1.8 1.4 - 8.3 8.3 7.3 6.8
0.4 0.7 - 26.4 3.9 2.1 1.4 - 11.7 11.7 8.4 7.2
0.4 0.6 - - - 3.1 1.6 - - - 12.3 8.2
0.5 1 4.3 2.1 1.4 1.1 0.9 4.3 4.3 4.3 4.3 4.3
0.5 0.9 - 2.5 1.5 1.1 0.8 - 4.5 4.5 4.3 4.2
0.5 0.8 - 3.4 1.7 1.1 0.8 - 5.0 5.0 4.4 4.1
0.5 0.7 - 14.1 2.1 1.1 0.8 - 6.2 6.2 4.5 3.8
0.5 0.6 - - - 1.2 0.7 - - - 4.9 3.3
rĝg = 0.80 F=2.78 l=1 l=2 l=3 l=4 l=5
h2

g rge n n n n n n, l=1 n, l=2 n, l=3 n, l=4 n, l=5
0.2 1 7.1 3.6 2.4 1.8 1.4 7.1 7.1 7.1 7.1 7.1
0.2 0.9 - 3.8 2.5 1.8 1.4 - 7.7 7.4 7.3 7.2
0.2 0.8 - 4.3 2.6 1.9 1.5 - 8.6 7.8 7.5 7.3
0.2 0.7 - 5.1 2.8 2.0 1.5 - 10.3 8.5 7.8 7.5
0.2 0.6 - 7.3 3.3 2.1 1.6 - 14.5 9.8 8.4 7.8
0.3 1 4.1 2.1 1.4 1.0 0.8 4.1 4.1 4.1 4.1 4.1
0.3 0.9 - 2.2 1.4 1.0 0.8 - 4.4 4.2 4.2 4.1
0.3 0.8 - 2.4 1.4 1.0 0.8 - 4.8 4.3 4.2 4.1
0.3 0.7 - 2.7 1.5 1.0 0.8 - 5.5 4.5 4.2 4.0
0.3 0.6 - 3.6 1.6 1.1 0.8 - 7.3 4.9 4.2 3.9
0.4 1 2.7 1.3 0.9 0.7 0.5 2.7 2.7 2.7 2.7 2.7
0.4 0.9 - 1.4 0.9 0.6 0.5 - 2.7 2.6 2.6 2.6
0.4 0.8 - 1.4 0.9 0.6 0.5 - 2.9 2.6 2.5 2.4
0.4 0.7 - 1.5 0.9 0.6 0.4 - 3.1 2.6 2.4 2.2
0.4 0.6 - 1.8 0.8 0.5 0.4 - 3.6 2.4 2.1 1.9
0.5 1 1.8 0.9 0.6 0.4 0.4 1.8 1.8 1.8 1.8 1.8
0.5 0.9 - 0.9 0.6 0.4 0.3 - 1.8 1.7 1.7 1.6
0.5 0.8 - 0.9 0.5 0.4 0.3 - 1.7 1.6 1.5 1.5
0.5 0.7 - 0.8 0.5 0.3 0.2 - 1.6 1.4 1.3 1.2
0.5 0.6 - 0.7 0.3 0.2 0.2 - 1.5 1.0 0.8 0.8
rĝg = 0.70 F=1.96 l=1 l=2 l=3 l=4 l=5
h2

g rge n n n n n n, l=1 n, l=2 n, l=3 n, l=4 n, l=5
0.2 1 3.8 1.9 1.3 1.0 0.8 3.8 3.8 3.8 3.8 3.8
0.2 0.9 - 2.0 1.3 1.0 0.8 - 3.9 3.9 3.8 3.8
0.2 0.8 - 2.0 1.3 1.0 0.8 - 4.1 3.9 3.8 3.8
0.2 0.7 - 2.2 1.3 1.0 0.7 - 4.3 4.0 3.8 3.7



Statistical significance, selection accuracy, and experimental precision in plant breeding

11Crop Breeding and Applied Biotechnology - 22(3): e42712238, 2022

in multi-environment trials is given as the expression n = r2
ĝg(rge − h2

g)
(1 – r2

ĝg)lh
2
g rge − r2

ĝg h
2
g(1 − rge)

), which is a function of individual 

heritability (h2), genetic correlation across environments (rge), accuracy (rĝg), and number of environments (l).

To achieve accuracies (rĝg) equal to 0.90, 0.80, and 0.70 for traits with an individual heritability (h2) of 0.20, genetic 
correlation across sites (rge) of 0.80, in three environments (l), an n equal to 8.3, 2.6, and 1.3, respectively, is required 
per environment. Thus, for an accuracy of 0.90, across all environments, 8.3 * 3 = 24.9 repetitions of each genetic 
material in the entire experimental network is required (Table 9). For traits with high heritability, for example 0.50, the 
recommended number of repetitions is 1.7 * 3 = 5.1 to achieve 90% accuracy (Table 9).

The values found for multiple environments (24.9 and 5.1) (Table 9) differ from the values found for single environments 
(17.0 and 4.0) (Table 8) as the genetic correlation across environments (rge) in Table 9 is taken as 0.80 while in Table 8 
rge is implicitly equivalent to 1.00. Table 9 shows that with rge = 1, the values 17.1 and 4.3 are obtained, suggesting a 
coherence between the two alternative approaches to determine the number of repetitions (n).

NUMBER OF TRIALS AS A FUNCTION OF GENOTYPE X ENVIRONMENT CORRELATION

The results of the simulations to determine the number of sites (l) in multi-environment trials are presented in Table 10. 
We consider individual heritability (h2) ranging from 0.20 to 0.50 and genetic correlation across environments (rge) ranging 

from 0.60 to 1.00 to reach accuracies (rĝg) of 0.70, 0.80, and 0.90. The expression l = 
r2

ĝg[ 
(1 – h2

g − 
h2

g (1 – rge)
rge

)
nh2

g

+ (1 – rge)
rge

]

(1 – r2
ĝg)was used.

For traits with h2 of 0.20, a rge equal to 0.80, and n equal to five per trial, and to achieve accuracies (rĝg) equal to 0.90, 
0.80, and 0.70, the number of trials required (l) is 4.3, 1.8, and 1.0. Thus, choosing an accuracy of 0.90 requires 4.3 * 5 = 
21.3 repetitions of each genetic material in the entire experimental network (Table 10). For traits with high heritability, 
for example 0.50, the recommended number of repetitions is 1.7 * 5 = 8.5 to achieve 90% accuracy (Table 10).

The resulting values of 24.9 and 5.1 differ from the values 17.0 and 4.0 in Table 8 as here the genetic correlation 
across environments (rge) is taken as 0.80 and in Table 8 rge is implicitly equivalent to 1. Table 10 shows that with rge = 1, 
values of 17.1 and 4.3 are obtained, demonstrating the coherence between the two alternative approaches to determine 
the number of repetitions (n).

USE OF ACCURACY IN DETERMINING THE OPTIMAL PLOT SIZE

Appropriate approaches to determine the optimal plot size to evaluate p progenies, should be performed by setting 

0.2 0.6 - 2.4 1.4 1.0 0.7 - 4.7 4.1 3.8 3.7
0.3 1 2.2 1.1 0.7 0.6 0.4 2.2 2.2 2.2 2.2 2.2
0.3 0.9 - 1.1 0.7 0.5 0.4 - 2.3 2.2 2.2 2.2
0.3 0.8 - 1.1 0.7 0.5 0.4 - 2.3 2.2 2.1 2.1
0.3 0.7 - 1.2 0.7 0.5 0.4 - 2.3 2.1 2.0 2.0
0.3 0.6 - 1.2 0.7 0.5 0.4 - 2.4 2.0 1.9 1.8
0.4 1 1.4 0.7 0.5 0.4 0.3 1.4 1.4 1.4 1.4 1.4
0.4 0.9 - 0.7 0.5 0.3 0.3 - 1.4 1.4 1.4 1.4
0.4 0.8 - 0.7 0.4 0.3 0.3 - 1.4 1.3 1.3 1.3
0.4 0.7 - 0.6 0.4 0.3 0.2 - 1.3 1.2 1.1 1.1
0.4 0.6 - 0.6 0.3 0.2 0.2 - 1.2 1.0 1.0 0.9
0.5 1 1.0 0.5 0.3 0.2 0.2 1.0 1.0 1.0 1.0 1.0
0.5 0.9 - 0.5 0.3 0.2 0.2 - 0.9 0.9 0.9 0.9
0.5 0.8 - 0.4 0.3 0.2 0.2 - 0.8 0.8 0.8 0.8
0.5 0.7 - 0.3 0.2 0.2 0.1 - 0.7 0.6 0.6 0.6
0.5 0.6 - 0.2 0.1 0.1 0.1 - 0.5 0.4 0.4 0.4
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Table 10. Number of sites (l), conditional on the number of repetitions taken as n=2, n=3, n=4 and n=5, for traits with individual 
heritability (h2) ranging from 0.20 to 0.50 and genetic correlation across environments (rge) ranging from 0.60 to 1.00, to achieve 
accuracies (rg ̂g) of 0.70, 0.80, and 0.90

rĝg =0.90 F=5.02
h2

g rge n=2 n=3 n=4 n=5 l, n=2 l, n=3 l, n=4 l, n=5 n=2xl, n=2 n=3xl, n=3 n=4xl, n=4 n=5xl, n=5
0.2 1 2 3 4 5 8.5 5.7 4.3 3.4 17.1 17.1 17.1 17.1
0.2 0.9 2 3 4 5 8.8 6.0 4.6 3.8 17.5 18.0 18.5 18.9
0.2 0.8 2 3 4 5 9.1 6.4 5.1 4.3 18.1 19.2 20.3 21.3
0.2 0.7 2 3 4 5 9.4 6.9 5.6 4.9 18.9 20.7 22.5 24.4
0.2 0.6 2 3 4 5 9.9 7.6 6.4 5.7 19.9 22.7 25.6 28.4
0.3 1 2 3 4 5 5.0 3.3 2.5 2.0 9.9 9.9 9.9 9.9
0.3 0.9 2 3 4 5 5.2 3.6 2.8 2.4 10.4 10.9 11.4 11.8
0.3 0.8 2 3 4 5 5.5 4.0 3.3 2.8 11.0 12.1 13.1 14.2
0.3 0.7 2 3 4 5 5.9 4.5 3.9 3.5 11.8 13.6 15.4 17.3
0.3 0.6 2 3 4 5 6.4 5.2 4.6 4.3 12.8 15.6 18.5 21.3
0.4 1 2 3 4 5 3.2 2.1 1.6 1.3 6.4 6.4 6.4 6.4
0.4 0.9 2 3 4 5 3.4 2.4 2.0 1.7 6.9 7.3 7.8 8.3
0.4 0.8 2 3 4 5 3.7 2.8 2.4 2.1 7.5 8.5 9.6 10.7
0.4 0.7 2 3 4 5 4.1 3.3 3.0 2.7 8.2 10.0 11.9 13.7
0.4 0.6 2 3 4 5 4.6 4.0 3.7 3.6 9.2 12.1 14.9 17.8
0.5 1 2 3 4 5 2.1 1.4 1.1 0.9 4.3 4.3 4.3 4.3
0.5 0.9 2 3 4 5 2.4 1.7 1.4 1.2 4.7 5.2 5.7 6.2
0.5 0.8 2 3 4 5 2.7 2.1 1.9 1.7 5.3 6.4 7.5 8.5
0.5 0.7 2 3 4 5 3.0 2.6 2.4 2.3 6.1 7.9 9.7 11.6
0.5 0.6 2 3 4 5 3.6 3.3 3.2 3.1 7.1 9.9 12.8 15.6
rĝg = 0.80 F=2.78
h2

g rge n=2 n=3 n=4 n=5 l, n=2 l, n=3 l, n=4 l, n=5 n=2xl, n=2 n=3xl, n=3 n=4xl, n=4 n=5xl, n=5
0.2 1 2 3 4 5 3.6 2.4 1.8 1.4 7.1 7.1 7.1 7.1
0.2 0.9 2 3 4 5 3.7 2.5 1.9 1.6 7.3 7.5 7.7 7.9
0.2 0.8 2 3 4 5 3.8 2.7 2.1 1.8 7.6 8.0 8.4 8.9
0.2 0.7 2 3 4 5 3.9 2.9 2.3 2.0 7.9 8.6 9.4 10.2
0.2 0.6 2 3 4 5 4.1 3.2 2.7 2.4 8.3 9.5 10.7 11.9
0.3 1 2 3 4 5 2.1 1.4 1.0 0.8 4.1 4.1 4.1 4.1
0.3 0.9 2 3 4 5 2.2 1.5 1.2 1.0 4.3 4.5 4.7 4.9
0.3 0.8 2 3 4 5 2.3 1.7 1.4 1.2 4.6 5.0 5.5 5.9
0.3 0.7 2 3 4 5 2.5 1.9 1.6 1.4 4.9 5.7 6.4 7.2
0.3 0.6 2 3 4 5 2.7 2.2 1.9 1.8 5.3 6.5 7.7 8.9
0.4 1 2 3 4 5 1.3 0.9 0.7 0.5 2.7 2.7 2.7 2.7
0.4 0.9 2 3 4 5 1.4 1.0 0.8 0.7 2.9 3.1 3.3 3.5
0.4 0.8 2 3 4 5 1.6 1.2 1.0 0.9 3.1 3.6 4.0 4.4
0.4 0.7 2 3 4 5 1.7 1.4 1.2 1.1 3.4 4.2 5.0 5.7
0.4 0.6 2 3 4 5 1.9 1.7 1.6 1.5 3.9 5.0 6.2 7.4
0.5 1 2 3 4 5 0.9 0.6 0.4 0.4 1.8 1.8 1.8 1.8
0.5 0.9 2 3 4 5 1.0 0.7 0.6 0.5 2.0 2.2 2.4 2.6
0.5 0.8 2 3 4 5 1.1 0.9 0.8 0.7 2.2 2.7 3.1 3.6
0.5 0.7 2 3 4 5 1.3 1.1 1.0 1.0 2.5 3.3 4.1 4.8
0.5 0.6 2 3 4 5 1.5 1.4 1.3 1.3 3.0 4.1 5.3 6.5
rĝg = 0.70 F=1.96
h2

g rge n=2 n=3 n=4 n=5 l, n=2 l, n=3 l, n=4 l, n=5 n=2xl, n=2 n=3xl, n=3 n=4xl, n=4 n=5xl, n=5
0.2 1 2 3 4 5 1.9 1.3 4.0 0.8 3.8 3.8 16.0 3.8
0.2 0.9 2 3 4 5 2.0 1.4 4.0 0.9 3.9 4.1 16.0 4.3
0.2 0.8 2 3 4 5 2.0 1.4 4.0 1.0 4.1 4.3 16.0 4.8
0.2 0.7 2 3 4 5 2.1 1.6 4.0 1.1 4.3 4.7 16.0 5.5
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0.2 0.6 2 3 4 5 2.2 1.7 4.0 1.3 4.5 5.1 16.0 6.4
0.3 1 2 3 4 5 1.1 0.7 4.0 0.4 2.2 2.2 16.0 2.2
0.3 0.9 2 3 4 5 1.2 0.8 4.0 0.5 2.3 2.5 16.0 2.7
0.3 0.8 2 3 4 5 1.2 0.9 4.0 0.6 2.5 2.7 16.0 3.2
0.3 0.7 2 3 4 5 1.3 1.0 4.0 0.8 2.7 3.1 16.0 3.9
0.3 0.6 2 3 4 5 1.4 1.2 4.0 1.0 2.9 3.5 16.0 4.8
0.4 1 2 3 4 5 0.7 0.5 4.0 0.3 1.4 1.4 16.0 1.4
0.4 0.9 2 3 4 5 0.8 0.6 4.0 0.4 1.5 1.7 16.0 1.9
0.4 0.8 2 3 4 5 0.8 0.6 4.0 0.5 1.7 1.9 16.0 2.4
0.4 0.7 2 3 4 5 0.9 0.8 4.0 0.6 1.9 2.3 16.0 3.1
0.4 0.6 2 3 4 5 1.0 0.9 4.0 0.8 2.1 2.7 16.0 4.0
0.5 1 2 3 4 5 0.5 0.3 4.0 0.2 1.0 1.0 16.0 1.0
0.5 0.9 2 3 4 5 0.5 0.4 4.0 0.3 1.1 1.2 16.0 1.4
0.5 0.8 2 3 4 5 0.6 0.5 4.0 0.4 1.2 1.4 16.0 1.9
0.5 0.7 2 3 4 5 0.7 0.6 4.0 0.5 1.4 1.8 16.0 2.6
0.5 0.6 2 3 4 5 0.8 0.7 4.0 0.7 1.6 2.2 16.0 3.5

the total area (p * n * k) of the experiment and conditioning the number of plants per plot (k) to the number of blocks 
(n) necessary to obtain an optimal accuracy, typically 0.90. This can be done following Storck et al. (2011) using the 
maximum curvature method conditioned to the desired accuracy value according to Resende and Duarte (2007). This 
accuracy depends on CVg and CVe, which provide a link between the maximum curvature (CV) and the accuracy based on 
the mean of the evaluated genotypes. Accuracy depends on the magnitude of the coefficient of experimental variation 
(CVe), the number of repetitions (n), and the coefficient of genetic variation (CVg), according to the alternative formula 
r̂ĝg = {1⁄[1 +(CV2

e ⁄CV2
g)⁄n]}1⁄2.

On the other hand, alternative methods and applications to estimate the optimal plot size are based on the nonlinear 
relationship CV(x) = A / XB, where CV(x) is the coefficient of variation for plots planned of different sizes (x), expressed 
as a number of base units. The maximum curvature point (Xo) of the function CV(x) = A / XB is considered the optimal 
plot size (Meier and Lessman 1971). In this method, for values of X greater than Xo, the drop in CV(x) is minimal and 
not efficient to reduce the experimental error. Considering that the accuracy is a function of CVg/ CVe and n (Resende 
and Duarte 2007), it is possible to rewrite the function CV(x) = A / XB, incorporating the values of CVe, with predefined 
values of n and accuracy (Storck et al. 2011). Thus, by fixing the magnitude of the selective accuracy and the number 
of repetitions in the design of an experiment and knowing the environmental variability (A and B) of the chosen area, 
we can prepare a suitable experimental plan by combining the number of repetitions and the plot size. Thus, this 
approach estimates the optimal plot size, relating the variability of the experimental area to the predetermined accuracy 
(Storck et al. 2011). Another option is to consider the desired accuracy as a function of individual heritability (h2) and 
the coefficient of determination of plot effects (c2), which measures the degree of environmental variation of the plot, 

indicating the appropriate values of k and n. Accuracy is given as: rg ̂g =  nkh2

1 + (k − 1)(h2 + c2)+ (n −1)kh2  (Resende et al. 
2001).

DISCUSSION

Genetic selection is the result of prediction and ranking and is central to genetic improvement programs. To measure 
the efficiency of such improvement, we must consider selection accuracy. Meanwhile, model selection is related to 
inference and hypothesis testing and is tangential to genetic improvement. Its effectiveness can be measured by the 
p-value, among other techniques. To estimate accuracy, models are fit via the estimation/prediction of their effects, 
variance parameters, and their precision. Model selection is associated with inferences about the presence of sufficient 
genetic variability and significance of the effects of other factors in the model, using hypothesis tests, associated with 
p-values or significance levels. However, questions often arise as to which one to use: accuracy or p-value? The present 
study shows that there is a link between the two and that both can be used simultaneously. High accuracy and effective 
model selection enhances the efficacy of the whole breeding program (Resende and Alves 2020).
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Accuracy is one of the most important parameters in quantitative genetics and plant breeding. It is used to assess the 
quality of experiments and infer the reliability of predicted genotypic values and the statistical validity of the predictive 
and inferred results. In practical terms, accuracy is also used to compare alternative selection methods, to compute 
genetic gains with selection, and to plan the size of experiments. Thus, it constitutes the building blocks of statistical 
and genetic analyses (Resende 2002).

In a single-environment trial, accuracy values are obtained considering the heritability (h2) and the number of 
repetitions (n) of each genotype. In multi-environment trials, accuracy is estimated considering the heritability (h2), 
genotypic correlation across environments (rge), number of repetitions (n), and number of experimental environments 
(l). Conversely, an expected accuracy can be used to plan experimental size and can be inferred by choosing the number 
of replications (n) and experimental environments (l) (total sample size of a genotype). Selections must be based on 
several traits. In such a case, the most economically important and with lowest heritability is the most suitable choice 
for determining the replications and locations numbers.

This position paper aimed to situate and reflect on statistical significance, selection accuracy, and experimental 
precision in connection with the efficiency of experimentation as applied to genetic selection in plants. We derive 
equations for accuracy in multi-environment trials, extending the work of Resende and Duarte (2007), and develop a 
model with GxE interaction effects using genetic parameters and Snedecor’s F statistic. Also, we consider estimators for 
n and l in single- and multi-environment trials. Furthermore, we propose a new methodology to classify accuracy based 
on statistical significance via the p-value.

CONCLUSIONS

The results referring to the number of repetitions (n) and environments (l) were given according to the coefficients of 
heritability (h2) and genetic correlations across environments (rge). For traits with h2 equal to 0.20, rge of 0.80, and l equal 
to three, and to achieve rĝg equal to 0.90, an n equal to 8.3 per environment is required. Thus, across all environments, 
n*l = 8.3 * 3 = 24.9 repetitions of each genetic material is required.

The p-value can be inferred from tables of Snedecor/Fisher´s F, Student’s t, and Bartlett/Pearson´s Chi-square test 
statistics, with large (tending to infinite) number of degrees of freedom for the residual. Therefore, a bridge between the 
p-value and accuracy can be established, expressing rgg as a function of one of these three statistics. This link provides 
statisticians with information on the accuracy being accepted when practicing a certain p-value. For example, typical 
p-values of 0.10, 0.05, and 0.01 are associated with accuracies of 79%, 86%, and 92%, respectively. These traditional 
values for the 10%, 5%, and 1% cut-off points for significance were recently revised and a p-value that is now widely 
accepted is 0.5% (0.005) (Benjamin et al. 2018). With this p-value, the associated accuracy is 93%. This approach seems 
appropriate and can be recommended with confidence. Thus, for the final stages of breeding programs the pair p-value 
= 0.005 / rĝg = 93% is strongly suggested. Conversely, typical accuracy values of 50%, 70%, 80%, 90%, 93%, and 95% are 
associated with p-values of 25%, 16%, 10%, 2%, 0.5%, and 0.1 %, respectively. With the Bonferroni protection, p-values 
of up to 20% are acceptable to attest to the significance of genetic effects in models and to proceed with selection 
between models and between genotypes. The p-values below 20% provide rgg above 50%, which are suitable to enable 
genetic gain.
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APPENDIX

DERIVATION OF ACCURACY ESTIMATORS

Overall estimator for accuracy
Accuracy (rg ̂g) is a correlation coefficient, given as:

rg ̂g = cov(g ̂, g)/[var(g ̂)var(g)]1⁄2 = var(g)/[var(g ̂)var(g)]1⁄2 = [var(g)](1⁄2)/[var(g ̂)1⁄2     [Equation 1].

Expressed in terms of reliability (accuracy squared or heritability at the treatment mean level - h2
m) of the estimation/

prediction, for the case of a single-trial:

r2
ĝg = var(g)

var(g ̂)
 = h2

m = σ2
g

σ2
g + σ2

e/n
 = nh2

1+(n − 1)h2  [Equation 2];

where h2 = σ2
g

(σ2
g + σ2

e)
 [Equation 3] is heritability at the plot or individual plant level and n is the number of replicates.

Equations for reliability and number of replicates (n) for single-environment trial
The reliability (r2

ĝg) is given as:

r2
ĝg = h2

m = σ2
g

σ2
g + σ2

e/n
 = nh2

1+(n − 1)h2  [Equation 2] or r2
ĝg = nh2

1+(n − 1)h2  = n
n+[(1 − h2)/h2]

 = n
n + λ

 [Equation 4];

where λ = [(1 − h2 )/h2] = σ2
e/σ2

g [Equation 5] is shrinkage factor of mixed model equations for the best linear unbiased 
prediction (BLUP) of g.

Reliability depends on n and individual heritability.

Expression for the number of replications (n) in a single-environment trial considering heritability (h2) and the desired 
selective reliability, derived from the isolation of n in [Equation 2]:

n = r2
ĝg

h2  (1 – h2)
(1 – r2

ĝg)
 = r2

ĝg

(1 – r2
ĝg)

 (1 – h2)
h2  [Equation 6]. Or

n = r2
ĝg

(1 – r2
ĝg)

 (1 – h2)
h2  = r2

ĝg

(1 – r2
ĝg)

 λ [Equation 7].

The number of replicates (n) depends on expected/desired reliability (accuracy squared) and heritability.

Equations for reliability and number of replicates (n) for multi-environment trials
Expression for reliability (accuracy squared) for evaluation in multi-environment trials:

r2
ĝg = h2

m = σ2
g

σ2
g + σ2

ge

l
 + σ2

e

nl

 = h2
g

h2
g + c2

ge

l
 + (1−h2

g− c2
ge)

nl

 [Equation 8].

Genetic correlation across environments (Dickerson 1962):

rge = σ2
g

(σ2
g + σ2

ge)
 [Equation 9].

Coefficient of determination of GxE interaction effects (Resende et al. 1998, Resende and Alves 2020):

c2
ge = hσ2

g(1 − rge)
rge

 [Equation 10].

Coefficient of proportion between GxE interaction variance and genotypic variance (Resende 1998, Resende and 
Alves 2020):

σ2
ge

σ2
g

 = (1 − rge)
rge

 [Equation 11].

Expression for the number of repetitions (n) in multi-environment trials given the heritability (h2), desired reliability 
(r2

ĝg), and number of sites (l):

n = r2
g ̂g (1−h2

g− c2
ge)

(1 − r2
g ̂g)lh

2
g − r2

g ̂gc
2
ge

 [Equation 12],
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where c2
ge = hσ2

g(1 − rge)
rge

 Equation [10]. Thus, n = r2
g ̂g (rge − h2

g)
(1 − r2

g ̂g)lh
2
grge − r2

g ̂gh
2
g(1 − rge)

 Equation [13].

If in Equation 12, c2
ge = 0 and l = 1, Equation 12 is equivalent to Equation 6. If in Equation 13, rge = 1 and l = 1, Equation 

13 is equivalent to Equation 6.

The number n depends on reliability (accuracy squared), c2
g, l, and rge.

Number of sites in multi-environment trials via variety means per trial
Taking the expression for reliability (accuracy squared) in multi-environment trials (Resende 2007, Yan 2021):

r2
ĝg* = h2

g

h2
g + σ2

ge

l

 = lrge)
1+(l − 1) rge

 [Equation 14]; l = r2
ĝg

(1 – r2
ĝg)

 (1 – rge)
rge

 [Equation 15].

Number of sites (l) in multi-environment trials
Expression for reliability (accuracy squared) in multi-environment trials:

r2
ĝg = h2

g

h2
g + c2

ge

l
 + (1−h2

g− c2
ge)

nl

 [Equation 8].

Expression for the number of sites (l) in multi-environment trials for a trait with given heritability (h2), desired 
reliability (r2

ĝg), and number of replications (n) derived from the isolation of l in Equation 8:

l = 
r2

ĝg[ 
(1 – h2

g − c2
ge)

nh2
g

+ (c2
ge/h2

g)]

(1 – r2
ĝg)

 = 
r2

ĝg[ 
(σ2

e)
n(σ2

g)
 + (σ2

ge)
(σ2

g)
]

(1 – r2
ĝg)

 = 
r2

ĝg[ 
(λ1)
n

 + (λ2)]

(1 – r2
ĝg)

   [Equation 16],

where c2
ge = hσ2

g(1 − rge)
rge

 [Equation 10]. Thus, l becomes:

l = 
r2

ĝg[ 
(σ2

e)
n(σ2

g)
 + (σ2

ge)
(σ2

g)
]

(1 – r2
ĝg)

 = 
r2

ĝg[ 
(1 – h2

g − 
h2

g (1 – rge)
rge

)
nh2

g

+ (1 – rge)
rge

]

(1 – r2
ĝg)

 [Equation 17].

If n = ∞; l = r2
ĝg

(1 – r2
ĝg)

 (1 – rge)
rge

 [Equation 18], which derives from r2
ĝg* = h2

g

h2
g + σ2

ge

l

 = lrge)
1+(l − 1) rge

 [Equation 14].

The number of l depends on reliability (accuracy squared), h2
g, rge, and n.

Relationships between accuracy and F test in a single-environment trial
Table A1. Analysis of variance for F test in a single-environment trial

Source of variation E(MS)† E(MS)‡ F

Treatment σ2
e + nσ2

g [(1 − h2)+ nh2]σ2
y 1 + n h2

1 − h2

Error σ2
e (1 − h2) σ2

y -
†: expected mean square in terms of variance components; ‡: expected mean square in terms of intraclass correlation or coefficient of determination; σ2

e: residual variance; 
σ2

g: genotypic variance; σ2
y: phenotypic variance; and n: number of repetitions.

h2
g = F – 1

(F −1)+ n
  [Equation 19].

Expression for reliability (accuracy squared):

r2
ĝg = nh2

1 +(n − 1)h2  = 1 − 1/F  [Equation 20].

Number of replications (n) for single-environment trials via F test:

n = = r2
ĝg

h2  (1 – h2)
(1 – r2

ĝg)
 = r2

ĝg

(1 – r2
ĝg)

 (1 – h2)
h2  = (1 − 1/F)

(1/F)
 (1 – h2)

h2  = (1 − 1/F)
(1/F)

 λ  [Equation 21].
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The number of repetitions (n) depends on the F test and heritability.

Relationships between accuracy and F test in multi-environment trials
Equivalence between some GxE parameters and F test (Resende 1998):

σ2
ge

σ2
g

 = 
1 − 1

F*

F – 1  l = l
F*  F* − 1

F − 1
  [Equation 22]. rge = σ2

g

(σ2
g + σ2

ge)
 = (F − 1)

(F − 1) + l (1 − 1
F* )

 = (F − 1)

(F − 1) + (l − l
F* )

  [Equation 23].

Table A2. Analysis of variance associated with F†, F and F* in multi-environment trials. All effects taken as random

Source of variation MS E(MS) F Test
Environment (E) Q1 σ2 + nσ2

g*l + ngσ2
l F† = Q1/ Q3

Genotype (G) Q2 σ2 + nσ2
g*l + nlσ2

g F = Q2/ Q3

GxE interaction Q3 σ2 + nσ2
g*l F* = Q3/ Q4

Error Q4 σ2

n, g and l: number of repetitions, genotypes and environments, respectively.

r2
ĝg = 	 h2

g

h2
g + c2

ge
l

 + (1−h2
g−c2

ge)
nl

 = 1 − 1/F [Equation 24].

h2
g = 	 1

1 + (1−rge)
rge

 + (1/F*)nl
F−1

 [Equation 25].

The h2
g depends on the F and F* test (Equation 23, in terms of F) n and l.

Number of repetitions (b) in multi-environment trials via F test
Reliability (accuracy squared), heritability (h2

g), and genetic correlation across environments (rge) estimators, via F test:

r2
ĝg = 1 − 1/F  [Equation 24].

rge = (F − 1)

(F − 1) + l (1 − 1
F* )

 [Equation 23].

h2
g = 	 1

1 + (1−rge)
rge

 + (1/F*)nl
F−1

 [Equation 25].

h2
g = 	 1

1 + 

(1 −  
(F−1)

(F−1) + l(1 − 
1
F*) )

 
(F−1)

(F−1)+l(1 − 
1
F*)

 + (1/F*)nl
F−1

   [Equation 26].


