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The search for new pharmaceutical dosage forms and different drug delivery systems already used in 
therapeutics is a global trend, serving as an opportunity to expand the portfolio for the pharmaceutical 
industry. In this context, multiparticulate systems, such as pellets, granules, and minitablets, represent 
an attractive alternative, given the range of possibilities they provide. Among the methods used in the 
production of these systems, we highlight the process of extrusion-spheronization for pellet manufacture, 
wet granulation and hot-melt extrusion for the obtention of granules, and direct compression for 
minitablets. Although highly versatile, depending on the technology chosen, many processes and 
formulation variables can influence the ensuing stages of manufacture, as well as the final product. 
Therefore, the characterization of these small units is of fundamental importance for achieving batch 
homogeneity and optimal product performance. Analyses, including particle size distribution, morphology, 
density, porosity, mechanical strength and disintegration, are example tests used in this characterization. 
The objective of this review was to address the most widely used tests for the physical evaluation of 
multiparticulate systems.
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INTRODUCTION

An innovation can be considered a positive 
contribution when it is beneficial to society. Examples 
include promoting the dissemination of knowledge created 
or offering differentiated products and services that have 
added value (Araújo et al., 2010; Johnstone, Pairaudeau, 
Pettersson, 2011). In the pharmaceutical field, innovation 
can be exemplified by a technology that translates to 
direct benefit for patients, such as the introduction of new 
therapeutic arsenals providing alternatives to conventional 
treatments (Johnstone, Pairaudeau, Pettersson, 2011).

However, the entry of new chemical products 
onto the market is a slow and costly process, making the 
reformulation of already established drugs with well-
known effects an attractive option for the pharmaceutical 
industry (Issa et al., 2012a; Zerbini, Ferraz, 2011). 
Incorporation of drugs into new pharmaceutical dosage 
forms and different delivery systems have led to 

performance improvements in medications, resolving 
problems such as low absorption and lack of adherence 
to treatment, as well as providing business opportunities 
within existing portfolios that can be extended (Kulkarni 
et al., 2010; Sandner, Ziegelbauer, 2008).

Controlled-release, colonic release, pulsatile, oral 
disintegration and gastro-retentive systems are examples 
of alternatives that have been widely exploited. Among the 
pharmaceutical dosage forms, multiparticulates standout 
for the multitude of options they provide where, besides 
the above-mentioned systems, they can also be used in the 
production of immediate-release drugs and gastro-resistant 
systems (Cram, Bartlett, Heimlich, 2013; Dey, Majumdar, 
Rao, 2008; Greb, 2010; Zerbini, Ferraz, 2011).

Multiparticulates, whose size ranges from 0.05 mm 
to 5 mm, are mainly used in the form of pellets, granules 
or minitablets that can be delivered in capsules or tablets 
(Dey, Majumdar, Rao, 2008; Greb, 2010; Pezzini, Silva, 
Ferraz, 2007; Zerbini, Ferraz, 2011). In these dosage 
forms, the drug dose is divided into smaller subunits, 
which, when administered disperse in the gastrointestinal 
tract. This provides numerous advantages over monolithic 
systems including only minor irritation of the mucosa, 
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reduced variability in absorption and, in the case of 
controlled-release formulations, a lower risk of dose 
dumping (Cram, Bartlett, Heimlich, 2013; Dey, Majumdar, 
Rao, 2008; Santos et al., 2004).

Additionally, technological advantages include the 
obtention of different doses using the same formulation and 
the possibility of incorporation of incompatible drugs into 
a single medication (Pezzini, Silva, Ferraz, 2007; Zerbini, 
Ferraz, 2011). Given their small size, flexible doses and 
the possibility of obtaining oral disintegration systems, the 
use of particulates in formulations for pediatric and elderly 
patients has proven attractive (Cram, Bartlett, Heimlich, 
2013; Dey, Majumdar, Rao, 2008; Grycze et al., 2011; 
Stoltenberg, Breitkreutz, 2011).

According to the type of system employed, 
different technologies may be used in the production of 
multiparticulates (Zerbini, Ferraz, 2011). In the case of 
pellets, extrusion-spheronization (Abdalla, Mader, 2007; 
Beringhs et al., 2012; Kulkarni et al., 2010) and coating 
inert core (Abdalla, Mader, 2007; Kulkarni et al., 2010) are 
the most commonly used processes. For the obtention of 
granules, wet granulation (Cai et al., 2013), melt granulation 
and hot-melt extrusion processes are used (Crowley et al., 
2007; Gryczke et al., 2011; Mašic et al., 2012). In the case of 
minitablets, the granulation methods mentioned above and 
direct compression are used, where this process is carried 
out using a conventional machine equipped with multiple 
punches (Lopes et al., 2006; Zerbini, Ferraz, 2011).

Depending on the chosen technology, several 
variables (formulation, equipment, process) can influence 
the physical and physicochemical properties of the 
multiparticulates. These properties can impact coating, 
compression and the filling of gelatin capsules, as well as 
the behavior of the final product (Gómez-Carracedo et al., 
2009; Mangwandi et al., 2012; Pund et al., 2010; Santos 
et al., 2002; Sonaglio et al., 2012).

Thus, the characterization of these systems is crucial 
to gaining a better understanding of the mechanisms that 
govern the release of the drug for further absorption and 
of aspects related to production. 

Therefore, the objective of the present review was 
to address the most widely used tests and parameters for 
physical characterization of multiparticulate systems as a 
source of information for those who need to characterize 
these types of formulations. 

MULTIPARTICULATE DOSAGE FORMS AND 
DRUG DELIVERY SYSTEMS

By using a variety of processes, different multi
particulate delivery systems can be produced resulting in 

a wide range of applications. Among these, the viability of 
drug association is important (Patel, Dhake, 2011).

 Some example applications reported in the literature 
for pellets, granules and minitablets include:

Pellets

	 Obtention of immediate-release systems, with a 
focus on masking drug flavor (Hamedelniel, Bajdik, 
Pintye-Hódi, 2010; Issa et al., 2012b; Patel, Patel, 
Patel, 2010);

	 Controlled-release (Abbaspour, Sadeghi, Garekani, 
2008; Bialleck, Rein, 2011; Cantor, Hoag, Augs-
burger, 2009a; Cantor, Hoag, Augsburger, 2009b; 
Franc et al., 2015; Ghanam, Kleinebudde, 2011; 
Ghosh, Chakraborty, 2013; Han et al., 2013; Heck-
ötter et al., 2011; Hung et al., 2015; Pezzini, Fer-
raz, 2007; Ríos, Ghaly, 2015; Roblegg et al., 2011; 
Szkutnik-Fiedler et al., 2014; Wang et al., 2015; Xu, 
Liew, Heng, 2015; You et al., 2014);

	 Improvement in dissolution of poorly soluble drugs 
(Abdalla, Mader, 2007; Abdalla, Klein, Mader, 
2008; Chopra, Venkatesan, Betageri, 2013; Ibrahim, 
El-Badry, 2014; Lu et al., 2009; Patel et al., 2016);

	 Gastro-retentive systems/ floating systems (Amrut-
kar, Chaudhari, Patil, 2012; Li et al., 2014; Pagariya, 
Patil, 2013; Qi et al., 2015; Zhang et al., 2012);

	 Enteric release/gastro-resistant systems (Andreo-
Filho et al., 2009; Ghanam, Kleinebudde, 2011; 
Pund et al., 2010);

	 Improvement of plant extract or active ingredient 
stability (Araújo-Junior et al., 2013; Beringhs et al., 
2012; Burke et al., 2013);

	 Combination of different delivery systems (Bialleck, 
Rein, 2011; Liu et al., 2013);

	 High drug loading (Di Pretoro et al., 2010; Pund et 
al., 2010);

	 Colonic release (Di Pretoro et al., 2010; Ferrari et 
al., 2013; Omwancha et al., 2013; Rabiskova et al., 
2012);

	 Bio-adhesive formulation for vaginal application 
(Hiorth et al., 2013).

Granules

	 Controlled-release (Almeida et al., 2011; Grassi et 
al., 2003; Phaechamud, Thongpin, Choncheewa, 
2012; Sharma, Amin, 2013; Tran et al., 2011; Ver-
hoeven, Vervaet, Remon, 2006);

	 Gastro-retentive/floating systems (Malode, Parad-
kar, Devarajan, 2015);
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	 High drug loading in immediate-release systems 
(Cai et al., 2013);

	 Combination of different delivery systems (Dierickx 
et al., 2012; Dierickx, Remon, Vervaet, 2013);

	 Obtention of immediate-release systems, with a 
focus on masking drug flavor (Gryczke et al., 2011; 
Issa et al., 2012b);

	 Improvement in dissolution of poorly soluble 
drugs (Deng et al., 2012; Kalidova, Fischbach, 
Kleinebudde, 2012);

	 Enteric release/gastro-resistant systems (Del Gaudio 
et al., 2015);

	 Bio-adhesive system/increased gastric residence 
time (Pal et al., 2013);

Minitablets

	 Orally disintegrating/fast dissolving tablets (Stol-
tenberg, Breitkreutz, 2011);

	 Controlled-release (Aleksovski et al., 2015; Lopes 
et al., 2006; Tomuta, Leucuta, 2007);

	 Combination of different delivery systems (Souza, 
Goebel, Andreazza, 2013);

	 Colonic release (Vemula, 2015);

	 Ocular bio-adhesives (Bozdag et al., 2010; Weyen-
berg et al., 2003; Weyenberg et al., 2006);

	 Gastro-retentive/floating systems (Goole et al., 
2008; Hauptstein et al., 2013; Katakam et al., 2014);

	 Obtention of immediate-release systems, with a 
focus on masking drug flavor (Eckert, Pein, Breit-
kreutz, 2014);

Regarding the technologies employed in the 
obtention of these delivery systems (Figure 1) for pellets, 
extrusion followed by spheronization are the most 
exploited. For granules, the hot melt extrusion process 
is the most recently studied approach, whereas for the 
production of minitablets, direct compression is a widely 
used option.

Although mult ipart iculates  provide many 
opportunities, their manufacture can involve a host of unit 
operations and variables. Additionally, they are inherently 
higher-cost processes because of their reliance on advanced 
technology. For example, obtaining pellets requires 
equipment such as extruders, a spheronizer and fluidized 
bed, whereas hot-melt extrusion requires screw extruders 
or co-extruders (Dey, Majumdar, Rao, 2008; Dierickx et al., 
2012; Patel, Dhake, 2011; Zerbini, Ferraz, 2011).

FIGURE 1 - Technologies used in production of pellets, granules and minitablets. The information for charts was based on 65 articles 
on multiparticulate systems published in the 2003-2015 period and retrieved from the Science Direct and SciFinder databases.
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Nevertheless, assessment of the possibilities 
provided by these systems, such as the launch of new 
products and acceptance by patients, indicates that 
multiparticulate formulations are set to gain market space 
in the coming years (Greb, 2010).

ASSAYS FOR PHYSICAL CHARACTERIZA-
TION OF MULTIPARTICULATE SYSTEMS

The goal of a system constituted by multiparticulate 
dosage forms is that their small functional units can release 
the drug in a reproducible way. Thus, the homogeneity of 
physical characteristics such as particle size, morphology, 
surface area, porosity and density, among others, is 
essential for the drug to perform as expected (Kulkarni et 
al., 2010; Mehta, 1989).

Besides the release effect, these properties may also 
exert an influence at some stages during processing, such 
as coating, compression and encapsulation (Almeida-
Prieto, Blanco-Mendez; Otero-Espinar, 2007; Santos et 
al., 2002; Sousa et al., 2002a).

Thus, together with tests evaluating a drug, suitable 
physical characterization of these small units must be 
performed at the product development stage, so that some 
properties are also considered in process control testing 
(Mehta, 1989). The knowledge generated and monitoring 
during production contribute to the reliability and yield of 
the batch, ultimately saving resources.

Pellets and granules are conventional systems 
studied for some time, while minitablets, melt granulation 
and hot melt extrusion are relatively new. The most 
common assays and parameters reported in the literature 
for physical characterization of multiparticulates are 
listed below. Some characterization tests are applied to all 
multiparticulate dosage forms, whereas others are specific 
to the process and or release system.

However, assays are commonly adapted according 
to the experience of the researchers and the results used 
to compare formulations. Further studies evaluating 
analytical variables of assays for multiparticulate systems 
are necessary. 

Particle size distribution

Sieving is the most commonly employed method for 
particle size determination of particulate materials. Various 
sieve stirrers are available on the market whose movement 
can be mechanically induced, electromagnetic by 
airstream or ultrasonic pulses at different orientations. The 
meshes used, amount of material, equipment, as well as the 
intensity and duration of stirring, are key variables to be 

considered in this type of assay (European Pharmacopeia, 
2008; Mehta, 1989; United States Pharmacopeia, 2015; 
Wan, 1994).

Mass used, sieves and stirring time are the parameters 
most commonly cited in the literature. In some cases, data 
relating to the intensity, frequency and amplitude are also 
described (Table I). However, assay conditions must be 
selected based on the configuration of the equipment and 
the material to be submitted to analyses. American and 
European pharmacopeia suggest determining the test 
endpoint as when there is no significant weight change 
between the sieves.

Although a very informative and accessible method, 
complementation with other assays such as microscopy 
(optical and electronic) can aid the interpretation of 
inconclusive results, since sieving is unable to detect 
variation in the particle shape (Mehta, 1989).

Apart from these techniques, particle size analyses 
by laser diffraction equipment is also cited in the literature 
for more accurate determination of average pellet diameter 
(Bialleck, Rein, 2011; Pund et al., 2010) and granules (Cai 
et al., 2013; Tissen et al., 2011).

As shown in Table I, the dry method is the most 
used technique for evaluating multiparticulate systems 
by laser diffraction (Ibrahim, El-Badry, 2014; Lin et al., 
2011; Yeung, Rein, 2015). Using compressed air as the 
dispersing agent can be a better alternative than the wet 
method since liquid can partially dissolve the formulation, 
reducing the original size of the material.

Morphology

The quantity, type of drug and processing conditions, 
as well as the excipients used in the formulation, are 
factors that contribute to defining the morphology of 
multiparticulate materials. The shape of the linked units 
can significantly influence the physical and chemical 
properties of the dosage form (Almeida-Prieto, Blanco-
Mendez, Otero-Espinar, 2007; Crowley et al., 2007; 
Gomez-Carracedo et al., 2009).

The particle size distribution based on sieving in 
combination with microscopic analyses techniques were 
originally used for morphological evaluation. Currently, 
analyses are based on geometric parameters calculated 
from the optical microscopic images derived (Almeida-
Prieto, Blanco-Mendez, Otero-Espinar, 2007; Mehta, 
1989), including Feret diameters, circularity and aspect 
ratio (Figure 2). However, the result is highly dependent on 
the image analyses software used, as the same parameter 
can be calculated by different equations generating 
disparate results, thereby hindering the comparison of 
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TABLE I - Example descriptions of parameters used for particle size distribution in multiparticulate systems 

Multiparticulate system Assay conditions Reference
Granules Laser diffractometer, wet module, ethanol as dispersing agent, 10-12% 

obscuration and Franhoufer Theory
Auriemma et al., 2013; Del 

Gaudio et al., 2015
Granules Electromagnetic agitator sieves, 5 minutes of stirring and amplitude 

of 6.0 mm
Cai et al., 2013

Granules Electromagnetic agitator sieves, 700 g of material, 12 minutes of 
stirring, amplitude of 0.7 mm and range of 8 seconds

Rahmanian, Naji, Ghadiri, 
2011

Granules (HME*) Laser diffractometer, dry module and Franhoufer Theory Yeung, Rein, 2015
Pellets Sonic sifter, 5 minutes of stirring, amplitude of 6.0 mm and pulse of 

5 seconds 
Cantor, Hoag, Augsburger, 

2009a
Pellets Electromagnetic agitator sieves, 2 minutes of stirring, 50 Hz frequency, 

amplitude of 2.0 mm
Ferrari et al., 2013

Pellets Mechanical sieve shaker and 5 minutes of stirring Heckötter et al., 2011
Pellets Laser diffractometer, dry method and 300 mg of material Ibrahim, El-Badry, 2014
Pellets Electromagnetic agitator sieves, 2 minutes of shaking, amplitude of 

1.0 mm and range of 10 seconds
Issa et al., 2012b

Pellets Mechanical agitator sieves, 25 g of material and 15 minutes of agitation Keen et al., 2015
Pellets Laser diffractometer, dry module, 4-7% of obscuration and 60 seconds 

of measurement time
Lin et al., 2011

Pellets Electromagnetic agitator sieves, 30 g of material and 5 minutes of 
agitation

Omwancha et al., 2013

Pellets Electromagnetic agitator sieves, 5 minutes of agitation, 50 Hz of 
frequency, amplitude of 1.0 mm

Pund et al., 2010

Pellets Electromagnetic agitator sieves, 50 g of material, 10 minutes of 
agitation and amplitude of 1.0 mm

Xu, Liew, Heng, 2015

*Hot melt extrusion

FIGURE 2 - Geometric parameters calculated in analyses of images of multiparticulate forms. Equations (1 and 2) are the most 
commonly employed - A = area and P = perimeter (Almeida-Prieto; Blanco-Mendez; Otero-Espinar, 2007).

data obtained by different laboratories (Almeida-Prieto, 
Blanco-Mendez,Otero-Espinar, 2007).

Another issue relates to a lack of standardization 
in terminology employed, where in some cases, different 
names can be assigned for the same parameter. For 
example, circularity that can also be denominated shape 
factor, sphericity index and surface factor, etc. (Almeida-

Prieto, Blanco-Mendez, Otero-Espinar, 2007; Mehta, 
1989).

Table II shows examples in the literature of shape 
parameters calculated of multiparticulate systems.

In general, besides optical microscopy, screening 
electron microscopy (SEM) is also performed, where 
images from the former are used to calculate the shape 
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parameters, while the latter is most commonly used for 
surface display of external and internal particles. Pellet 
and granule sizes can also be determined, however, this 
task is somewhat laborious, given the need for individual 
evaluation of various particles to extrapolate particle size 
distribution throughout the batch. It is possible, however, 
to evaluate the presence of agglomerates not detected in 
sieve analysis (Mehta, 1989).

For the analysis of SEM, samples should be 
prepared to facilitate the capture of signals and image 
building. Thus, samples are placed in an aluminum 
support containing a carbon tape and conductivity of the 
material is increased by depositing a thin layer of metallic 
ions such as gold, gold-palladium or platinum in an inert 
atmosphere of argon. Carbon deposition may also be 
used. The accelerating voltage, angle of inclination and 
working distance are example parameters that must be 

adjusted when carrying out this type of assay (Mehta, 
1989). Descriptions found in the literature for conducting 
these analyses are given in Table III.

Specific surface area

Particle size, shape, porosity and roughness 
of particulate materials are factors influenced by the 
conditions employed in the core production step (pellets, 
granules and minitablets) and, according to the variation, 
can result in different surface areas (Mehta, 1989; Lowell 
et al., 2004). A high surface area usually requires additional 
amounts of coating and establishes better contact of the 
dosage form with gastrointestinal fluids, thus promoting 
the dissolution process (Lehmann, 1994; Mehta, 1989).

Among the techniques available for determination of 
specific surface area, gas adsorption is widely employed, 

TABLE II - Shape parameters calculated based on analyses of microscopic images in multiparticulate systems

Multiparticulate system Parameters calculated/Units evaluated/Image analysis program Reference
Granules Sphericity/Image J Auriemma et al., 2013
Granules Sphericity and roughness/200/Image J Del Gaudio et al., 2015
Granules (MG)* Feret diameter, aspect ratio, circularity and projection of sphericity/

AnalySIS®
Mašić et al., 2012

Pellets Circularity and radius ratio/50/Image-Pro® Plus 4.5.0.29 Cespi et al., 2007
Pellets Aspect, average diameter, Feret diameter and sphericity/Image-Pro® 

Plus 4.5.0.29
Andréo-Filho et al., 2009

Pellets Circularity and Aspect ratio/Image J Chopra, Venkatesan, 
Betageri, 2013

Pellets Sphericity and aspect ratio/Leco IA Franc et al., 2015
Pellets Aspect and circularity/Motic Images Advanced 3.2 Ferrari et al., 2013
Pellets Feret diameter, average equivalent diameter, aspect ratio and 

circularity/Leica Qwin
Ghanam, Hassan, 

Kleinebudde, 2010
Pellets Aspect ratio/200/Leica Quantimet 500 Hamedelniel, Bajdik, Pintye-

Hódi, 2010
Pellets Feret diameter and aspect ratio/Leica Qwin Hiorth et al., 2013
Pellets Average diameter, aspect and sphericity/Image-Pro® Plus 4.5.0.29 Issa et al., 2012b
Pellets Feret diameter, aspect ratio and sphericity/300/AnalySIS® Mehta et al., 2012
Pellets Feret diameter, aspect ratio and sphericity/Windox 5.0 Omwancha et al., 2013
Pellets Aspect ratio, form factor and Feret diameter/100/Sonata Seescan Podczeck, Newton, 2014
Pellets Sphericity/200/Leco IA Rabišková et al., 2012
Pellets Feret diameter, aspect ratio and sphericity/Seescan Solitaire 512 Santos et al., 2005
Pellets Sphericity/50/Size Meter® Sonaglio et al., 2012
Pellets Sphericity/40/Seescan Solitaire 512 Sousa et al., 2002a
Minitablets Feret diameter/~300/ Leica QWin Lite v. 3.2 Czajkowska, Sznitowska, 

Kleinebudde, 2015
*Melt granulation
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and the surface analysis methodology and porosity of 
solid materials by the BET equation are commonly used 
approaches (Lowell et al., 2004).

As this calculation takes into consideration 
the volume of gas adsorbed in the sample, different 
materials may be used as adsorbates. Nitrogen is the most 
commonly used adsorbate due to the properties of the 
molecules, which enable interaction with the surface of 
many materials, and because the gas is readily available 
in liquid state (Lowell et al., 2004). In relation to the 
parameters used in this technique, these often include, 
in addition to type of gas, the sample preparation time, 
corresponding to the removal of air from the surface 
of the material under vacuum and at the appropriate 

temperature, freezing and the number of points collected 
(multipoint or single point) to obtain the adsorption-
desorption isotherms.

As depicted in Table IV, the analysis is usually 
performed on a surface analyzer device using nitrogen 
gas due to its availability and low cost. The use of 
krypton was cited in some cases, probably due to its 
intrinsic characteristic of capturing small surface areas 
(Dong et al., 2008; Schrank et al., 2015; Sousa et al., 
2002b).

Grassi et al. (2003) described surface area analysis 
performed using a mercury porosimeter, although this 
technique has the limitation of measuring closed pores 
(Giesche, 2006).

TABLE III - Example descriptions of parameters used in SEM

Multiparticulate system Sample preparation/Assaying condition Reference
Granules Deposition of gold ions (thickness of coating 200–400 Å)/acceleration 

voltage of 20 keV
Auriemma et al., 2013

Granules Deposition of gold ions (thickness of coating 200–400 Å)/acceleration 
voltage of 20 keV 

Del Gaudio et al., 2015

Granules (HME)* Deposition of Platinum ions/increases of 60x and 70x Dierickx et al., 2012
Granules (HME)* Carbon deposition/acceleration voltage of 1-2 kV, working distance 

of 3 and 5 mm at room temperature, and increases of 500x and 5000x
Dong et al., 2008

Granules Deposition of gold-palladium ions/accelerating voltage of 10 kV Grassi et al., 2003
Granules (HME)* Deposition of chromium ions under vacuum/accelerating voltage 

of 5 kV
Jedinger et al., 2015

Granules (HME)* Carbon deposition/1kV acceleration voltage and increases of 150x 
and 2000x

Mašić et al., 2012

Pellets Deposition of gold-palladium ions in an inert atmosphere of argon/
acceleration voltage of 20 kV and increases of 45x to 65x

Amrutkar, Chaudari, Patil, 
2012

Pellets Deposition of gold ions/acceleration voltage of 10 kV and increases 
of 60x to 300x

Beringhs et al., 2012

Pellets Deposition of gold ions (thickness of coating of 10 nm)/acceleration 
voltage of 15 kV and increases of 50x to 750x

Burke et al., 2013

Pellets Deposition of gold ions (coating time – 2 minutes)/acceleration 
voltage of 3 kV and increases of 100x and 200x

Chopra, Venkatesan, 
Betageri, 2013

Pellets Deposition of gold ions under vacuum/acceleration voltage of 10 kV Lu et al., 2009
Pellets Deposition of gold ions under vacuum (thickness of coating of 6 nm)/

acceleration voltage of 1.5 kV and working distance of 10 mm and 
increases of 500x to 2500x

Marković et al., 2014

Pellets Deposition of carbon/acceleration voltage of 10 kV and working 
distance of 7.5-7.8 mm at room temperature, beam diameter of 3 and 
increases of 1000x and 5000x

Omwancha et al., 2013

Pellets Deposition of gold-palladium ions under vacuum/acceleration voltage 
of 10 kV and increase of 60x

Pund et al., 2010

Pellets Deposition of gold ions under vacuum/acceleration voltage of 20 kV Sabin et al., 2011
*Hot melt extrusion



M. G. Issa, N. V. Souza, M. D. Duque, H. G. Ferraz

Braz. J. Pharm. Sci. 2017;53(4):e00216Page 8 / 19

Density and flow behavior

The knowledge of the density of a batch of 
multiparticulates is of great importance in the final stages 
of processing, such as in the mixture of different pellet 
formulations or granules, the coating step on a fluidized 
bed, and in capsule filling or tableting (Mehta, 1989; 
Santos et al., 2006).

Although the density calculation is fairly simple, 
obtained by dividing the mass of the material by the 
volume it occupies, there are several approaches for 
this parameter (Table V), all of which convey different 
information that can be used in any step of production or 
even in elucidating the release profile of the formulation 
(He, 2009; Santos et al., 2006).

True density is a characteristic of the material 
derived from its manufacturing process and related 
to particle size. In this case, the volume adopted for 

calculation takes into account only the solid material, 
discounting the volume occupied by internal or external 
pores and spaces between particles (He, 2009; Lowell et 
al., 2004; Santos et al., 2006). 

Helium pycnometry is the preferred method for 
determining true density, given the small size of the gas 
molecule, which has greater ability to penetrate very 
small pores. If the porosity of the multiparticulate form 
is very low or it possesses pores which may be filled by 
mercury or another liquid in which the material does not 
disintegrate, mercury porosimetry or liquid displacement 
method may also be used (Lowell et al., 2004). 

For apparent density, sometimes called effective 
density, the volume is considered the volume occupied 
by the solid material plus internal pores, which are 
inaccessible. In most cases, mercury porosimetry is the 
method of choice for determining apparent density (Lowell 
et al., 2004). With the true density and apparent density 

TABLE IV - Examples descriptions of parameters employed in specific surface area analysis

Multiparticulate system Assay conditions/ Equation Reference
Granules Degassing of samples for 72 hours at room temperature and under 50 

mTorr vacuum. Nitrogen adsorbate/multipoint BET
Chevalier et al., 2010

Granules (HME)* Krypton adsorbate and nitrogen/multipoint BET Dong et al., 2008
Granules (MG)** Mercury porosimeter – 0.75 g sample and 30 minutes prior degassing/

Rootare-Prenzlow
Grassi et al., 2003

Pellets (HME)* Degassing of samples for 24 hours and freezing with liquid nitrogen 
for 20 minutes. Nitrogen adsorbate/multipoint BET

Bialleck, Rein, 2011

Pellets Degassing of samples for 24 hours under vacuum. Nitrogen adsorbate 
– pressure of 0.05-0.30 psi/ multipoint BET and single point BET

Santos et al., 2004

Pellets Degassing of samples under vacuum and freezing in liquid nitrogen. 
Nitrogen or krypton adsorbate – pressure of 0.05 and 0.2 psi/ BET

Schrank et al., 2015

Pellets Degassing of samples under vacuum and freezing with liquid nitrogen. 
Krypton or nitrogen adsorbate/multipoint BET and single point BET

Sousa et al., 2002b

*Hot-melt extrusion; **Melt granulation

TABLE V - Types of densities used in the evaluation of multiparticulate systems (Lowell et al., 2004; Santos et al., 2006)

Density Definition Method of determination
True Volume of material excluding pores (external/internal) 

and space between particles
	 He pycnometry 

Hg porosimetry 
Fluid displacement

Apparent/ effective Volume of material excluding only external pores and 
space between particles

	 Hg porosimetry 
Fluid displacement

Bulk Volume of material with pores (external/internal) and 
spaces between particles

	 Beaker 
Scott volumeter

Tapped Volume of material excluding spaces between particles 	 Voluminometer – compacted density 
equipment
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data, the percentage porosity of the multiparticulate form 
can be calculated (Ghanam, Hassan, Kleinebudde, 2010; 
Santos et al., 2005), as outlined below.

Bulk and compacted density provide information on 
the space occupied by the formulation and may be used, 
for example, to define batch sizes and equipment used in 
production and selection of capsule size. Furthermore, 
these parameters can indicate the flow of material when 
the compressibility index and Hausner ratio are calculated 
(He, 2009; Mehta, 1989; United States Pharmacopeia, 
2015).

As shown in Table VI, density is a frequently studied 
property in multiparticulate systems.

Angle of repose and flow rate are also extensively 
used to evaluate the rheology of multiparticulate 
formulations. Several methods are available although, in 
most cases, these properties are determined as described 
in U.S. Pharmacopeia, i.e. by using a hopper in which the 
material passes and forms a cone, whereby the inclination 
angle is calculated (United States Pharmacopeia, 2015).

The flow of a material is dependent on several 
factors, such as humidity and the degree of particle 
consolidation, and hence the result may vary according to 
the conditions used for analyses. Thus, different devices 
have emerged for determining flow more accurately, 
which are based on the use of shear forces on the quantity 

TABLE VI - Densities evaluated in multiparticulate systems

Multiparticulate system Properties evaluated Reference
Granules Flow Cai et al., 2013
Granules Bulk, tapped and true densities Chevalier et al., 2010
Granules (HME)* True density Dong et al., 2008; Yeung, 

Rein, 2015
Granules Bulk and tapped densities; Hausner ratio Eckert, Pein; Breitkreutz, 

2014
Granules (HME)* Bulk and tapped densities; compressibility index Grycze et al., 2011
Granules Bulk and tapped densities; compressibility index and angle of repose Roohulaah et al., 2014
Granules Bulk and tapped densities Issa et al., 2012a
Granules Bulk and tapped densities, compressibility index, Hausner ratio, angle 

of repose and flow rate
Lamolha, Serra, 2007

Granules (MG)** Bulk and tapped densities and compressibility index Mašić et al., 2012
Granules (MG)** Bulk and tapped densities, angle of repose and compressibility index Tran et al., 2011
Pellets Bulk and tapped densities, angle of repose and Hausner ratio Amrutkar, Chaudari, Patil, 

2012
Pellets Bulk and tapped densities, Hausner ratio and compressibility index Beringhs et al., 2012
Pellets Bulk and tapped densities, angle of repose, Hausner ratio and 

compressibility index
Chopra, Venkatesan, 

Betageri, 2013; Franc et al., 
2015; Pagariya, Patil, 2013

Pellets Bulk and apparent densities Costa, Pais, Sousa, 2004
Pellets Bulk, tapped and apparent densities Ghanam, Hassan, 

Kleinebudde, 2010
Pellets True density Grassi et al., 2003; Hiorth et 

al., 2013; Issa et al., 2012b
Pellets Bulk and tapped densities, compressibility index and angle of repose Peng et al., 2015
Pellets Bulk, tapped and true densities, compressibility index, angle of repose 

and Hausner ratio
Rabišková et al., 2012

Pellets True and effective densities Santos et al., 2005
Pellets Bulk and tapped densities Sonaglio et al., 2012
Minitablets True density Lopes et al., 2006
*Hot-melt extrusion. **Melt granulation
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of sample and application time, as well as the interactions 
between the particles of the material and the cell used for 
analysis (Amidon, Secreast, Mudie, 2009).

Porosity

Porosity is a property that relates to the release of 
drug from the dosage form, directly influencing the steps 
of disintegration and dissolution. High material porosity 
can lead to low density particles improving the dissolution 
process (D’Arcy, Persoons, 2011). It is determined by 
processing conditions and formulation, especially in the 
case of pellets and granules, due to the volume of liquid 
used in kneading and removal in the drying step (Farber, 
Tardos, Michaels, 2003; Mehta, 1989; Pund et al., 2010).

The size and distribution of pores can facilitate the 
penetration of gastrointestinal fluid in multiparticulate 
systems but these are not the only parameters. Another 
important issue associated with the surface of these units is 
the composition of the formulation, which can affect their 
wettability (Riippi et al., 1998). Furthermore, the presence 
of pores on the surface of the cores may influence coating 
quality, and hence lead to variation in the performance of 
the product (Mehta, 1989; Santos et al., 2006).

Techniques for determining the porosity of 
multiparticulate systems reported in the literature include 
porosimetry by mercury intrusion, determination of 
density by helium pycnometer or deposition of solid 
material, gas adsorption, scanning electron microscopy 
and X-ray computed tomography (XCT) (Table VII). The 
most used of these techniques are mercury porosimetry and 
helium pycnometer. Mercury porosimetry , can provide 
results such as pore size and its distribution volume and 
percentage porosity of the material, as illustrated using the 
densities in Equation 3 (Ghanam, Hassan, Kleinebudde, 
2010; Mehta et al., 2012; Santos et al., 2005).

	 	 (Equation 3) 

ε = porosity, ρa = effective/apparent density, ρh = true 
density

Since porosimetry is dependent on the pressure 
applied and mercury contact angle with the surface of the 
sample, there is a limitation for the evaluation of materials 
having pores of very small size (below 1.5 nm). In these 
cases, nitrogen adsorption technique using the BET 
equation may provide better results (Lowell et al., 2004; 
Santos et al., 2006).

TABLE VII – Example methods used to determine the porosity of multiparticulate systems

Multiparticulate system Method/parameters calculated Reference
Granules (HME)* X-ray tomography/porosity and equivalent pore diameter Almeida et al., 2011
Granules Coating density analyzer/porosity Ansari, Stepanek, 2008
Granules Hg porosimeter/porosity Chevalier et al., 2010
Granules Hg porosimeter and coating density analyzer/porosity Rahmanian et al., 2009
Granules (HME)* He pycnometer/porosity Verhoeven, Vervaet, Remon, 

2006
Pellets (HME)* He pycnometer and Hg porosimeter/relative density Bialleck, Rein, 2011
Pellets He pycnometer/porosity Cespi et al., 2007; Pund et 

al., 2010; Rabišková et al., 
2012; Santos et al., 2002

Pellets He pycnometer and Hg porosimeter/porosity and average pore radius Ghanam, Hassan, 
Kleinebudde, 2010

Pellets Hg porosimeter/pore volume distribution, average pore diameter 
and porosity

Nordström et al., 2013

Pellets Fluid displacement method/porosity Patel et al., 2016
Pellets He pycnometer and Hg porosimeter/porosity Santos et al., 2004
Pellets He pycnometer and Hg porosimeter/porosity, total pore volume, total 

pore area and average pore diameter
Santos et al., 2005

Pellets Hg porosimeter/average pore diameter Sonaglio et al., 2012
Minitablets He pycnometer/porosity Weyenberg et al., 2003
*Hot melt extrusion



Physical characterization of multiparticulate systems

Braz. J. Pharm. Sci. 2017;53(4):e00216 Page 11 / 19

SEM and XCT are options for viewing the pore 
distribution in the multiparticulates. SEM is intended for 
only qualitative determination while XCT also provides 
quantification of pore size and porosity (Farber, Tardos, 
Michaels, 2003; Mehta, 1989).

Mechanical strength

The var ious  uni t  opera t ions  to  which the 
multiparticulate forms are subjected require a certain 
mechanical strength of these small units, particularly when 
steps such as fluidized bed coating and compression are 
involved. Advantageous from an economic standpoint as a 
way of reducing production costs, incorporation into tablet 
is a strategy adopted. However, it is important that the 
drug release properties are maintained after compression, 
for example, the coating film integrity (Cespi et al., 2007; 
Santos et al., 2004; Santos et al., 2006).

As can be seen in Table VIII, mechanical strength 
is constantly evaluated in multiparticulate forms. In the 
case of minitablets, the most common tests already used 
in tablets, such as hardness and friability, are employed 
(Lopes et al., 2006; Tomuta, Leucuta, 2007; Weyenberg 
et al., 2006). For granules and pellets, tensile strength 
(Equation 4) and Young’s elastic modulus, related to the 
stiffness and crushing strength (hardness) of the material, 
are the most frequently determined. For this purpose, a 
strain chart can be obtained by using a texture analyzer 

device, in which the material is exposed to a given load 
against time (Santos et al., 2006; Šibanc et al., 2013; 
Yeung, Rein, 2015).

	 	 (Equation 4)

δ = tensile strength; F = intensity of the force required 
to break; r2 = radius of the particle obtained by Feret´s 
diameter

For friability, different adjustments are performed 
(Table IX), typically using glass or steel balls, in 
order to increase the material´s abrasion and improve 
the sensitivity of the method (Chopra, Venkatesan, 
Betageri, 2013; Issa et al., 2012b; Santos et al., 2006). A 
friabilometer is the equipment used in most cases, where 
sometimes a stirring system is used instead (Chevalier et 
al., 2010; Stoltenberg, Breitkreutz, 2011). Alternatively, 
the approach used by Li et al. (2014) can be adopted, in 
which the material is subjected to drastic conditions in 
the coating equipment.

The result is obtained by determination of the 
percentage mass of the material lost when exposed to 
abrasion, requiring the use of a sieve to separate the fraction 
formed as powder which is weighed during the assay. The 
study of Issa et al. (2012b) reported an alternative in which 
the mass loss is measured by comparing the amounts 
retained in the sieves, where the particle size distribution 
is carried out before and after the assay.

TABLE VIII - Strength properties evaluated in multiparticulate systems

Multiparticulate system Parameters calculated Reference
Granules Tensile strength Cai et al., 2013
Granules Hardness Chevalier et al., 2010
Granules (HME)* Tensile strength Yeung, Rein, 2015
Pellets Elastic limit and elastic modulus Abbaspour, Sadeghi, Garekani, 2008
Pellets Tensile strength Bialleck, Rein, 2011; Podczeck, Newton, 

2014; Santos et al., 2005
Pellets Hardness, tensile strength and relaxation module Cespi et al., 2007
Pellets Hardness Costa, Pais, Sousa, 2004; Ghanam, 

Hassan, Kleinebudde, 2010; Hamedelniel, 
Bajdik, Pintye-Hódi, 2010; Rabišková et 

al., 2012; Rahmaniam, Naji, Ghadiri, 2011
Pellets Tensile strength and elastic modulus Šibanc et al., 2013
Minitablets Hardness Aleksovski et al., 2015; Lopes et al., 

2006; Stoltenberg, Breitkreutz, 2011; 
Tomuta, Leucuta, 2007; Weyenberg et al., 

2006
Minitablets Tensile strength Tissen et al., 2011
*Hot melt extrusion



M. G. Issa, N. V. Souza, M. D. Duque, H. G. Ferraz

Braz. J. Pharm. Sci. 2017;53(4):e00216Page 12 / 19

Disintegration

Given the tendency of the incorporation of 
multiparticulate systems in the form of tablets, for 
example, in the case of a multiple unit pellet system 
(MUPS), disintegration should occur quickly so that 
each unit can operate independently. Thus, this step in the 
release process becomes a key feature and can improve the 
selection of excipients to be used in the formulation, as well 
as the conditions employed in compression (Abbaspour, 
Sadegni, Garekani, 2008; Ghanam, Kleinebudde, 2011; 
Mehta et al., 2012).

For immediate release multiparticulate systems, the 
disintegration process of each subunit is vital because this 
step occurs prior to the dissolution process. The occurrence 
of disintegration problems can affect drug release and 
consequently drug absorption (Mahato, 2007). 

When in tablet form, the assay method is the 
conventional one, evaluating six units using the apparatus 
described in the pharmacopoeias (Abbaspour, Sadeghi, 
Garekani, 2008; Chopra, Venkatesan, Betageri, 2013; 
Mehta et al., 2012). However, assays with small units are 
also described in the literature and, therefore, adjustments 
can be made either by using narrower mesh to ensure 

that the material is stirred and/or by employing down-
sized sample holders (Abdalla, Mader, 2007; Ghanam, 
Kleinebudde, 2011), as well as other devices, such as the 
roller bottle equipment used by Ghosh and Chakraborty 
(2013).

CONCLUSION

The fact that pharmaceutical dosage forms 
can be delivered in small functional unities, makes 
multiparticulates an attractive option for the development 
of new formulations. On the other hand, given the small 
size of these units, physical characterization tests become 
fundamental to understand the process variables and to 
assist the formulator in the selection of excipients and 
parameters used in the various unit operations involved 
in production. Tests are now well known. However, 
as multiparticulates are relatively new compared to 
traditional tablets, some adjustments are needed to improve 
the sensitivity of the techniques used. Adequate physical 
characterization is achieved by combining different assays. 
The most used tests are granulometric distribution by 
the sieving method, morphology by determining shape 
parameters based on microscopy images derived, surface 

TABLE IX - Conditions employed for determination of the friability of multiparticulate systems

Multiparticulate system Conditions employed Reference
Granules 10 g of material in a glass container subjected to 240 oscillations for 

4 min.
Chevalier et al., 2010

Granules 10 g of material, 200 spheres of 4 mm, at 25 rpm for 10 min. Mehta et al., 2012
Pellets 10 g of material, 10 spheres of 5 mm, at 25 rpm for 10 min. Adbdalla, Mäder, 2007
Pellets 10 g of material, at 200 rpm Amrutkar, Chaudari, Patil, 

2012
Pellets 6 g of material, 25 spheres of 2 mm, at 25 rpm for 4 min. Chopra, 

Venkatesan,Betageri, 2013
Pellets 10 g of material, 200 spheres of 4.3 mm, at 25 rpm for 4 min. Issa et al., 2012b
Pellets 5 g of material, atomization pressure of 0.2 bar, air flow of 45 Hz for 

20 min.
Li et al., 2014

Pellets 6 g of material, 25 spheres of 2 mm, at 100 rpm Pund et al., 2010
Minitablets 1 g of material in a glass container, at 25 rpm for 4 min. Eckert, Pein, Breitkreutz, 

2014
Minitablets 1 g of material, 20 spheres of 5 mm, at 25 rpm for 4 min. Gaber, Nafee, Abdallah, 

2015
Minitablets 10 g of material, at 100 rpm Katakam et al., 2014
Minitablets 20 units, at 25 rpm for 4 min. Lopes et al., 2006
Minitablets 1 g of material in a glass container subjected to agitation in a shaker 

and 200 vibrations per minute for 1 hour
Stoltenberg, Breitkreutz, 

2011
Minitablets 10 units, 100 spheres of 4 mm, at 25 rpm for 10 min. Weyenberg et al., 2006
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area analysis by the gas adsorption technique, density 
and porosity by combining pycnometry and porosimetry 
techniques, as well as mechanical strength, especially 
for obtaining breakdown tension, hardness, friability and 
disintegration.
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