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Molecular characterization of the 5S rDNA non-transcribed spacer
and reconstruction of phylogenetic relationships in Capsicum
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Abstract

Capsicum includes ca. 41 species of chili peppers. In this original report we PCR amplified, cloned, sequenced
and characterized the 5S rDNA non-transcribed spacer -NTS- in 23 taxa of nine clades of Capsicum, divergent
at geographical origin and fruit and chromosome traits, and compared the NTS features throughout Solanaceae.
According to GC content, inner variability and regulatory elements, the NTS organizes into three distinct
structural regions; genetic variability at the NTS in Capsicum and related genus clusters into defined taxa
hierarchies. Based on the reconstruction of a maximum-likelihood phylogenetic tree and phylogenetic networks,
NTS sequences of Capsicum and related taxa grouped into well recognized categories -genus, section, clade,
species, variety-. An evolutionary scenario arose from combined genetic and phylogenetic NTS data, in
which monophyly and lineage diversification over time of Capsicum are addressed. Our analysis is original
to include all domesticated species of Capsicum prevailing in germplasm collections and breeding programs,
together with a large group of wild taxa that demanded further genetic characterization. The NTS set up as
a double purpose marker in Capsicum, to directly evaluate genetic variability and reconstruct phylogenetic
relationships to a broad extent, and constitutes a valuable tool for germplasm characterization and evolutionary
studies within Solanaceae.

Key words: chili peppers, genetic variability, molecular double purpose marker, phylogeny, ribosomal NTS.

Resumen

Capsicum incluye ca. 41 especies de ajies. En este trabajo original, el espaciador no-transcrito (NTS) del ADNr
58S fue PCR-amplificado, clonado, secuenciado y caracterizado en 23 taxones de nueve clados de Capsicum,
divergentes en origen, fruto y cromosomas, y comparado a lo largo de Solanaceae. EI NTS se organiza en tres
regiones estructurales distintas de acuerdo a contenido GC, variabilidad y elementos reguladores; la variabilidad
genética del NTS en Capsicum y géneros relacionados se agrupd en categorias taxonomicas definidas. Las
secuencias NTS de Capsicum y taxa relacionados también se agruparon en categorias reconocidas -género,
seccion, clado, especie, variedad- durante la reconstruccion de un arbol filogenético de maxima-verosimilitud y
diversas redes filogenéticas. De la combinacion de datos genéticos y filogenéticos del NTS surge un escenario
evolutivo que considera monofilia y diversificacion de Capsicum a lo largo del tiempo. Nuestro analisis es
original al incluir todas las especies domesticadas de Capsicum, mayoritarias en colecciones y programas,
ademas de un amplio niimero de ajies silvestres que demandaban mayor caracterizacion genética. El NTS
constituye un marcador de doble propdsito en Capsicum, al evaluar directamente variabilidad genética y
reconstruir relaciones filogenéticas extensas, ademas de ser util a la caracterizacion de germoplasma y estudios
evolutivos en Solanaceae.

Palabras clave: ajies, variabilidad genética, marcador molecular de doble proposito, filogenia, NTS ribosémico

! Universidad Nacional de Misiones, Instituto de Biologia Subtropical (UNaM-CONICET) and Instituto de Biotecnologia Misiones, Posadas, Misiones,

Argentina.

? Instituto de Patologia Vegetal, Centro de Investigaciones Agropecuarias (INTA), Cérdoba, Argentina.

* ORCID: <https://orcid.org/0000-0001-7386-4924>. * ORCID: <https://orcid.org/0000-0002-5063-9350>.
* ORCID: <https://orcid.org/0000-0001-6487-5007>. * ORCID: <https://orcid.org/0000-0003-3056-3739>.
7 Author for correspondence: maurograbiele@conicet.gov.ar

" Deceased 05-11-2020



2 de 21

Introduction

Capsicum is a small genus of Solanaceae
with ca. 41 species native to tropical and temperate
regions of America, distributing from Mexico to
Argentina (Carrizo Garcia et al. 2016; Barboza
et al. 2019, 2020). The most important feature
in Capsicum is fruit pungency through varying
degrees including the sweet and hot chili peppers
consumed as vegetables or spices, respectively
(Moscone et al. 2007; Stewart et al. 2007). The
impact of chili peppers in economy is illustrated by
the increasing global production and cultured area
(Jarret et al. 2019; Tripodi & Kumar 2019). Most
economically important species of chili peppers
belong to the Annuum clade -C. annuum, C.
chinense, C. frutescens-, cultivated and consumed
worldwide, added to C. baccatum, C. chacoense,
C. eximium and C. pubescens, mostly appreciated
in small markets of South America.

Variability across Capsicum is large, with
extensive morphological differences, mainly
related to fruit shape, color, and size added to
variation in fruit pungency (Walsh & Hoot 2001;
Carrizo Garcia et al. 2016; Cardoso et al. 2018;
Colonna et al. 2019). Additional variability in the
genus is reflected by marked genome size and
karyotype divergences, this last useful to delimitate
wild and cultivated taxa (Moscone et al. 2007,
Grabiele ef al. 2018; Scaldaferro & Moscone
2019), but of uncertain phylogenetic weight.
Recently, genetic variability and delimitation in
Capsicum were also evaluated by distances at
molecular level, i.e. by repetitive markers such
as microsatellites and ribosomal DNA (Sun et
al. 2014a; Ibarra-Torres et al. 2015; Rivera et al.
2016). Regarding chili peppers classification, the
most comprehensive is the recent evolutionary
approach of Carrizo Garcia et al. (2016). Based
on a phylogenetic reconstruction through genetic
markers, these authors grouped Capsicum species
into eleven well supported clades and discussed the
phylogenetic relevance of typical non molecular
markers to circumscribe chili peppers.

Currently, more than 99% of materials of
major banks belong to the five domesticated
Capsicum, restraining the use of wild taxa in
improvement programs (Barchenger et al. 2019;
Jarret et al. 2019). Horticulture can benefit of
the enclosed variability in wild chili peppers,
however the characterization of their essential
biological, genetic and agronomic features has
to be expanded. To germplasm management and
breeding purposes, characterization of genetic
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variability and evolutionary relationships is
fundamental. In this sense, a genetic marker that
can consider both would be major.

In plant genomes, the ribosomal 5S unit
organizes in tandem repeats of multiple copies, at
single or various loci, with each copy comprising
a gene of 120 nucleotides (nt) and a contiguous
non transcribed spacer (NTS) of 100-900 nt
(Cloix et al. 2002). The gene sequence is vital to
life and holds cis regulatory elements to its own
transcription (Cloix et al. 2002; Szymanski et al.
2003), thus it is conserved throughout kingdoms
and its low substitution rate allows to reconstruct
phylogenetic relationships among distantly related
organisms (Hori ez al. 1985; Hori & Osawa 1987).
On the contrary, the NTS is more variable and
evolves faster in particular at middle region, rather
than 5” and 3’ regions which hold tentative motifs
related to transcription of flanking gene sequences
(Besendorfer et al. 2005). Hence, the NTS sequence
demonstrated useful to do phylogenetic inferences
at such dispair organisms as Triticeae, Crustaceae
or Molluska (Kellogg & Appels 1995; Allaby &
Brown 2001; Perina et al. 2011; Vizoso et al. 2011).
Regarding Solanaceae, the characterization of the
NTS structure and evolution proved sufficient
to evaluate genetic variability and reconstruct
phylogenetic relationships in Nicotiana (Kitamura
et al. 2001; Fulnecek ef al. 2002; Matyasek ef al.
2002; Clarkson et al. 2005) and Solanum section
petota (Volkov et al. 2001). In addition, the
categorization of tomato varieties via a comparative
alignment of gene and NTS sequences was also
reported (Sun et al. 2014b). As to Capsicum,
fluorescent in situ hybridization revealed that the
ribosomal 5S gene comprises thousand copies per
genome (Kwon & Kim 2009) and persistently
map at a single intercalar locus on the short arm
of a metacentric chromosome pair (Aguilera et
al. 2016). A preliminary and fundamental report
depicted the initial characterization of the 5S rtDNA
nucleotide sequences in the five domesticated chili
peppers (Park ef al. 2000). Nevertheless, reference
genomes in the genus did not deal with the 5S
rDNA (Kim et al. 2014, 2017; Qin et al. 2014;
Ahn et al. 2018) and a global characterization of
the NTS structure and evolution is still lacking in
wild taxa and Capsicum as a whole.

In this original report we examine in depth
the nucleotide sequence of the 5S rDNA NTS in
Capsicum and overall Solanaceae, and discuss the
utility of the NTS to evaluate genetic variability and
reconstruct phylogenetic relationships to a broad
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extent in chili peppers. For this purpose, we PCR
amplified, cloned, sequenced and characterized the
NTS in 23 wild and cultivated taxa of nine major
clades of Capsicum, also divergent at geographical
origin and fruit and chromosome traits.

Materials and Methods

Plant materials

Twenty three taxa of Capsicum -including
twenty species, five varieties and three cultivars-
and Lycianthes rantonnei -sister group- used
in this study were identified by Dr. Gloria E.
Barboza (Instituto Multidisiplinario de Biologia
Vegetal, IMBIV, Cordoba, Argentina) and their
respective names, clade belonging to, provenance,
voucher specimen, herbarium, status, fruit traits
and chromosome numbers are detailed in Table 1.

Methods

Isolation, cloning and sequencing

of the 5S rDNA

Total DNA was isolated and purified
from fresh leaves by CTAB method (Rogers &
Bendich 1994). Additionally, a phenol chloroform
purification prior to an ethanol precipitation were
included (Sambrook & Russell 2001). DNA was
assessed for quality by agarose gel electrophoresis
and quantified by spectrophotometry. Nuclear 5S
rDNA gene and NTS were PCR amplified using
primers derived from conserved regions at the
gene, P1 5>GATCCCATCAGAACTCC3’ and P2
5’GGTGCTTTAGTGCTGGTAT3’ (Park et al.
2000) and RT1 5°GGATGCGATCATACCAGC3’
and RT2 5’GAGGGATGCAACACGAGG3’
(Cloix et al. 2002). PCR experiments were planned
to cover the entire span of the NTS unit (Fig. 1a).
In the PCR reactions, the Taq DNA Polymerase
“Sequencing Grade” (Promega, USA) was used
(1 unit of polymerase; 5 ng of template DNA;
0.5 pmoles of each primer; 200 mM of dNTPs;
5 pl of 10X buffer) and 36 cycles (94 °C 1 min,
57 °C 1 min, 72 °C 1 min) with a final extension
at 72 °C 5 min were performed. PCR products
were electrophoresed in 1.4% agarose (Fig. 1b),
gel isolated, purified by the GFX kit (Amersham
Pharmacia, USA), cloned in pCR2.1 TOPO and
transformed into “TOP10 One Shot” E. coli
(Invitrogen, USA) according to manufacturer
instructions. Clones were subsequently grown in
LB media with ampicillin and the obtained cultures
were subjected to plasmidic DNA minipreparations
using the Wizard Plus Minipreps DNA Purification
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System (Promega, USA). Plasmidic DNAs were
then digested with EcoRI (NEB, USA) according
to manufacturer instructions and visualized in 1%
agarose gel to check the stability of the inserts.
Selected clones were bidirectionally Sanger
sequenced at Macrogen (Korea) and BLASTN
searches against the nr/nt nucleotide collection
were conducted with the resulting sequences to
confirm their identities prior to further analysis.
Sequences -and their major annotated features
(see below)- were deposited at DDBJ/ENA/
GenBank (Sayers et al. 2019) under the accessions
MK650892-MK 651009 and JE773766 (Capsicum),
and MK638982-MK 638984 (L. rantonnei). A
summary of the amplification strategy and public
accession of the 5S rDNA sequences is presented
in Table 1.

Sequence analysis

The editing, multiple alignments and annotation
of the nucleotide sequences were performed in
Geneious Pro 11.0.5 (Biomatters Ltd.). The 5S gene
was annotated following preceding criteria (Kellogg
& Appels 1995; Cloix et al. 2002), pointing out
the TFIIIA transcript binding sites and the internal
control regions (Box A, Box C and IE), respectively.
Capsicum 5S gene majority consensus sequence
was obtained through reference mapping of gene
sequences onto tomato X55697. Secondary structure
analysis of the consensus gene was performed at
the RNAfold server (<http://rna.tbi.univie.ac.at/
cgi-bin/RNAWebSuite/RNAfold.cgi>). Pollll
transcription termination site and other putative
regulatory elements at the NTS were annotated
according to preceding criteria (Venkateswarlu et
al. 1991; Drouin & Moniz de S4 1995; Cloix et al.
2002). Whole annotated sequences are available
at <http://dx.doi.org/10.17632/xcrmb7m7y8.1> as
supplementary material (Suppl.) in Mendeley Data
as Capsicum_NTS.gffand Lycianthes NTS.gff files.
Overall Solanaceac NTS sequences at the DDBJ/
ENA/GenBank were retrieved from NCBI and
further characterized as described (Suppl.).

Phylogenetic analysis

An alignment matrix of 553 characters
comprising 255 entire length NTS sequences of
Capsicum and related taxa with comparable NTS
information -Lycianthes, Solanum, Datura, Atropa-
was constructed (Grabiele et al. 2020, Suppl. Fig.
12). MAFFT v.7.388 (Kazutaka & Standley 2013)
multiple sequence alignment was performed via the
E-INS-i algorithm, according to multiple conserved
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Characterization of 5S NTS and phylogeny in Capsicum
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domains and long gaps sequences with scoring
matrix from Kimura’s two parameter model, and
then corrected by eye inspection.

Phylogenetic relationships were inferred via
FastTree 2.1.5 -set at Geneious Pro 11.0.5- using
the MAFFT NTS alignment matrix; this software
infers approximately maximum likelihood (ML)
phylogenetic trees, uses heuristic Neighbor

Grabiele M et al.

Joining, reduces the length of the tree by NNIs
and SPRs, maximizes the tree’s likelihood with
NNIs and finally estimates splits reliability by
Shimodaira-Hasegawa test and 1,000 default
resamples (local support values: 0-1) (Price et
al. 2010). The substitution model General Time
Reversible (GTR) with a gamma -20- distribution
of rates of evolution among sites was selected

TAIABS  BoxA [E BoxC TRIABS TAIABS  BoxA
TRIABS ]

It BoxC TFIIABS
TRIABS

b

1 10 20 30 40 50 60 70 80 90 100 110 120

Consensus G<-Gl__(—GG—___GGI_GGGGI:__G_GGCI(—GGG-_GG-G—
IE= Box C

n

LOGO =
]

ol LA VUYLV VEVELIC VY LLEVWVELIVE VAWV AL ALY AR YA VAL VWY VVA Al

X55697 GGATGCGATCATACCAGCACTAABMGCACCGGATCCCATCAGAACTCCGAAGTTAAGCGTGCTTGGGCGAGAGTAGTACTAGGATGGGTGACCCCCTGGGAAGTCCTCGTGTTGCATCCCT

c

n

dG=-36.10 Kcal/mol

d

Figure 1 — a. Amplification strategy of the 5S NTS in Capsicum via P1/P2 and RT1/RT2 primer pairs; TFIIIA BS
= TFIIIA transcript binding site (Kellogg & Appels 1995); Box A, Box C and IE = internal control regions (Cloix
et al. 2002). b. PCR products of 58S regions; (P1/P2) 1 = C. flexuosum; 2 = C. praetermissum; 3 = C. baccatum var.
umbilicatum; 4 = C. baccatum var. baccatum; 5 = C. annuum var. annuum; 6 = C. annuum var. glabriusculum; 7= C.
Srutescens; 8= C. chinense; 9 = C. chacoense; 10 = C. tovarii; (RT1/RT2) 11 = C. hunzikerianum; 12 = C. schottianum;
13 = C. campylopodium; 14 = C. coccineum; note the typical amplification ladder pattern of the repetitive 5S region;
arrowhead point out to purified products; M, marker (Kbp); (-), negative control. c. Consensus and LOGO 58S gene
sequences in Capsicum. d. Secondary structure of the consensus 5S gene in Capsicum displaying the usual eukaryote
mode (Szymanski et al. 2003); red to blue colours scale correspond to high to low probabilities, respectively.
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after submission of the alignment matrix to MEGA
7.0.26 (Kumar et al. 2015) to find best model via
Bayesian information criterion (Grabiele et al.
2020, Suppl. Tab. 4). Pseudocounts criterion was
selected according to the highly gapped alignment
matrix, so as to ML and minimum evolution rounds.
Furthermore, a phylogenetic network of sequences
was constructed via SplitsTree4 (Huson & Bryant
2006) employing the NTS alignment matrix, the
Neighbornet algorithm, the uncorrected P distance
and 100 bootstrap replicates. Finally, nucleotide
substitution rates at the NTS were calculated
after submission of the alignment matrix to
MEGA 7.0.26 in which nucleotide diversity ()
estimates of phylogenetically relevant groups were
obtained -substitution model K2+G; 100 bootstrap
replicates- and by considering evolutionary
divergence times -million years ago, MYA- in
Solanaceae. For this purpose we followed the
approach of Sarkinen et al. (2013), in which splits
times are unambigously stated on the tree, instead
of the recalibrated times for Solanaceae of De-Silva
et al. (2017); both phylogenies share similar node
support and topology, but lineages ages are ca.
25% older on average in the most recent analysis
(De-Silva et al. 2017). Nomenclature on clades
in Capsicum follows preceding criteria (Carrizo
Garcia et al. 2016).

Results and Discussion

Molecular characterization of the NTS:

genetic variability in Capsicum

and Solanaceae

The entire span of the NTS unit of the 5S
rDNA gene was sequenced in twenty three taxa
of Capsicum and L. rantonnei, comprising three
to eight paralog copies for each taxon (Tab. 1;
Grabiele et al. 2020, Suppl. Tab. 1). Primary and
secondary structures of the 5S gene of Capsicum
are also shown (Fig. 1c¢,d). An exhaustive multiple
alignment of the 126 NTS sequences -including
previous data (Park ez al. 2000)- (Fig. 2) allowed
to recognize three major structural regions (SRI-
IIT) according to nucleotide composition, inner
variability and regulatory elements related to
transcription of upstream and downstream 5S
gene. In addition, main structural features were
identified that cluster into well known clades of
Capsicum (Carrizo Garcia et al. 2016). A summary
of main features at the NTS is shown in Table 2,
considering individual taxon variability, that is
paralog diversity, and that of Capsicum as a whole,
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through estimates of pairwise identity, mean GC
bases content and mean nucleotide lenght for
each SR and the full NTS sequence. In addition, a
particular ribosomal related sequence (JF773766)
containing an AuSINE member of transposable
elements detected in the expected NTS was further
characterized (Grabiele et al. 2020, Suppl. Fig. 3).

The SRI in Capsicum is particularly AT rich
(35% mean GC content) and variable in length,
ranging from 40.3 to 199.9 nucleotides long (nt),
with a mean of 68.8 nt among taxa. SRI of C. fovarii
-and also the NTS- is the largest in Capsicum due
to a major insertion of 123 nt which consists of a
repeated region at 5” and 3’ associated to a region
fairly similar to a 5S gene, probably originated
by unequal crossing over within the ribosomal
region (Fig. 3; Grabiele ef al. 2020, Suppl. Fig.
12). Capsicum chacoense exhibits an insertion (7
nt) of repetitive nature at a poly(T) stretch (Fig. 3;
Grabiele et al. 2020, Suppl. Fig. 12), a distinctive
marker among taxa of Baccatum clade. The poly(T)
stretch at 5” end SRI, tentative PolllI transcription
termination site of the 5S gene (Drouin & Moniz
de Sa 1995; Cloix et al. 2002), is also variable in
length among chili peppers (635 nt). This poly(T)
sequence is typically 6-7 nt long but unusually
larger in members of Tovarii, Baccatum and
Annuum clades, which also display a distinctive
deletion of 5 nt (TGTCG) downstream this region
(Fig. 2; Grabiele et al. 2020, Suppl. Fig. 12).
Further, members of Atlantic Forest clade present
a major deletion (21 nt), without affecting the
poly(T) stretch, at 5° end of SRI. Meiotic unequal
exchange may help to explain the loss of segments
in groups above described (Fig. 4). Moreover, all
chili peppers, with the exception of the Andean
clade taxa, display a CT block at 3* end SRI and
this region is absent in L. rantonnei (Fig. 2).

The SRII in Capsicum is highly GC rich
(70.3% mean GC content), averaging 76.2 nt long
among taxa, and the most variable in length at the
NTS. Hence, this region is ca. 120 nt in members
of Andean clade, which display a major insertion
(13 nt) of repetitive nature at the middle SRII (Fig.
3; Grabiele et al. 2020, Suppl. Fig. 12). In contrast,
the remarkably short 8 nt SRII of C. coccineum
(Bolivian clade) -almost entirely deleted- which
contains a unique repeated motif CGGAGG,
probably arose by unequal exchange of similar
motifs at this region (Fig. 2; Grabiele et al. 2020,
Suppl. Fig. 5). In addition, C. flexuosum presents
a large deletion of around 28 nt at the middle SRII
and C. praetermissum contains a large purine-rich
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123 TTECCTAR RAKKATAGRRTI GGAGTGGIGGRRTGR
123 TGRS - CRATARTAGARTI GGAGY CETUCGRATGAR
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Figure 2 — Structural characterization of the 5SS NTS in chili peppers. Multiple alignment and annotation of 126
sequences linked to 23 taxa of Capsicum and L. rantonnei. SR = structural regions. Functional features related to
transcription of upstream (polyT) and downstream (-30 TATA, -12 GC, -1 C/T) 5S CR are shown. 1-3: L. rantonnei
(Sister group); 4-8: C. rhomboideum; 9-12: C. geminifolium; 13-16: C. pereirae; 17-21: C. villosum; 22-25: C.
friburgense; 26-33: C. schottianum; 34-37: C. recurvatum; 38-43: C. campylopodium; 44-51: C. hunzikerianum;
52-56: C. flexuosum; 57-62: C. coccineum; 63-68: C. pubescens; 70-73: C. eximium; 74-80: C. tovarii; 81-84: C.
chacoense; 85-90: C. praetermissum; 91-93: C. baccatum var. baccatum; 94-97: C. baccatum var. umbilicatum; 98-101:
C. baccatum var. pendulum; 103-107: C. frutescens; 109-113: C. chinense; 115-119: C. annuum var. glabriusculum;
120-125: C. annuum var. annuum. 69, 102, 108, 114 and 126 correspond to cultivated taxa under AF217950-4 (Park
et al. 2000). Major insertions at C. chacoense, C. tovarii and Andean clade taxa added to sites over 90% gaps are
hided. Note main structural features defining clades at Capsicum.
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Figure 3 — Structural characterization of the 5S NTS in chili peppers. Major insertion segments as useful markers
at C. tovarii (123 nt), Andean clade taxa (13 nt) and C. chacoense (7 nt). Note the unusually large SRI of C. fovarii
that contains a repeated region at 5” and 3’ (light green) associated to a region fairly similar to a 5S gene (light red),
probably originated by unequal crossing over within the ribosomal region.

» 55Gene SRI
1 CCTCGTGTTGCATCCCTCCTTTTTGTCGAAATTCGGTTTAATTTTGCCGGTTCGATCGGCGAATCTTTTTGTTTTTCCTCTT
CCTCGTGTTGCATCCCTCCTTTTTGTCGAAATTCGGTTTAATTTTGCCGGTTCGATCGGCGAATCTTTTTGTTTTTCCTCTT

Del

2 CCTCGTGTTGCATCCCTCCTTTTTGTCGAAATTCGGTTTAATTTTGCCGGTTAGATCGGCGAATCTTTTTGTTTTTCCTCTT
CCTOGTGTTGCATCCCTCCTTTTTGTCGAAATTCGGTTTAATTTTGCCGGTTEGATEGGCGAATCTTTTTGTTTTTCCTCTT

Figure 4 —a-b. Probable scenario on the origin of the current SRI —a. of Atlantic Forest clade members; b. that shared
by Tovarii, Baccatum and Annuum clades taxa. 1: simplified depiction of usual homologous chromosomes pairing

at the ribosomal region. 2: same region misaligned by repeated sequences suffering an unequal exchange (orange
triangles) with loss of segments (Del). 3: resultant SRI.
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block deletion of 12 nt near the start of its SRII
(Fig. 2; Grabiele et al. 2020, Suppl. Figs. 4; 5).
Considering the three varieties of C. baccatum,
the central part of the SRII reveal as the utmost
divergent (Fig. 2; Grabiele et al. 2020, Suppl.
Fig. 1). Further, the middle portion and 3 end
of the SRII are the most variable in length at the
NTS of members of Atlantic Forest clade (Fig. 2;
Grabiele et al. 2020, Suppl. Fig. 2). At this point,
the observed extreme length variation at the SRII in
Capsicum agree with the hypothesis that the middle
region of the NTS in plants is prone to accumulate
more insertions and deletions (indels) than the
rest of the spacer, probably associated to the lack
of inherent regulatory elements (Besendorfer
et al. 2005). Particularly, the SRII of the NTS
in Capsicum appears to evolve via duplication,
deletion and base substitution of CGGGG-like
motifs.

Finally, the SRIII in Capsicum is distinctly
AT rich (35.1% mean GC content) and the most
conserved considering length (ca. 30 nt long) and
overall pairwise identity (81.6%). On the contrary,
overall pairwise identity at the SRI and SRII of
the NTS in Capsicum is ca. 50%. The SRIII of
chili peppers encloses similar motifs to those
found in other flowering plants at the NTS 3’ end,
which are suggested to affect Pollll transcription
of downstream 5S gene. In this sense, common
but less conserved AT rich sequences at ca. -26,
assumed to function in the manner of the -10
box of bacterial promoter TATAAT (Reznikoff
et al. 1985) instead as a typical eukaryote TATA
box, were earlier addressed (Venkateswarlu et al.
1991). Later, the motif TATATA at ca. -30 was
recognized in Arabidopsis NTS as necessary for
in vitro transcription of the 5S gene (Cloix ef al.
2002). In accordance, around the position -30 in
Capsicum NTS, a consensus 92% AT rich stretch
of 13 nt -TTTAATAGAATTT- is found, annotated
here as TATA like sequence (Fig. 2; Grabiele et
al. 2020, Suppl. Fig. 11). This motif is highly
conserved throughout examined chili peppers,
presenting an overall pairwise identity of 83.7%.
Further expected transcription regulatory elements
were found downstream the TATA like sequence in
Capsicum NTS, i.e. the GC dinucleotide at -12 and
afinal C at-1 of the transcription initiation site (Fig.
2). In some cases a tetranucleotide motif GCGC
is found at -14 (C. friburgense, C. flexuosum, C.
eximium) and solely paralog copies of C. pubescens
diverge at this region exhibiting GC or GCGC at
position -14 (Fig. 2; Grabiele et al. 2020, Suppl.
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Figs. 2; 5). Differenttoa3’Cat-1, the NTS of some
chili peppers -members of Andean, Atlantic Forest,
Flexuosum and Bolivian clades- terminate with a
T nucleotide (Fig. 2; Grabiele et al. 2020, Suppl.
Figs. 2; 5; 6) as previously reported for Nicotiana
(Fulnecek et al. 2002).

To highlight the phylogenetic relevance
of overall NTS traits associated to chili pepper
identification, 5S ribosomal NTS sequences of
Solanaceae available in the literature were revisited
in view of the original features found in Capsicum
and Lycianthes. To this end, earlier addressed
central features from the NTS of Solanum section
petota (Volkov et al. 2001), separate sections of
Nicotiana (Kitamura et al. 2001; Fulnecek et al.
2002; Matyasek et al. 2002; Clarkson et al. 2005;
Fulnecek & Kovarik 2007) and Atropa belladona
(Volkov et al. 2017) were reanalyzed together
with partially defined NTS of Petunia (Frasch
et al. 1989; Venkateswarlu et al. 1991) and NTS
sequences of Cestrum (Sykorova et al. 2003),
Datura (Carles et al. 2005) and Solanum section
Lycopersicon (Sun ef al. 2014b) that lack further
characterization. At this regard, detailed multiple
alignments of the NTS sequences in those taxa of
Solanaceae -Datura, Solanum, Atropa, Nicotiana,
Petunia, Cestrum (Grabiele et al. 2020, Suppl. Tab.
2, Suppl. Figs. 7-10)- which split from Capsicum
and Lycianthes 18 to 30 MYA ago (Sarkinen ef al.
2013) and their overall comparison, allowed to
recognize common and divergent features among
nightshades. Our results suggest that Solanaceae
NTS typically organizes in three distinct structural
regions (SRI-IIT) according to differences on the
GC content, internal variability and regulatory
elements associated to transcription of flanking
5S gene (Fig. 5). Estimates of pairwise identity,
mean GC bases content and mean nucleotide
length for each SR and the full NTS sequence
of Solanaceae are summarized in Grabiele et al.
(2020), Suppl. Tab. 3. The NTS is variable in
length among compared genera, ranging from ca.
138 ntin Atropa to 415.2 nt in Nicotiana, while the
NTS of C. coccineum -99 nt- and N. tabacum -527
nt- are the most asymmetrically variable in length.
The SRI and SRIII are highly to moderate AT rich,
with a mean GC content ranging from 17.6% in
Atropa to 37.7% in Lycianthes for the former, and
24.6% in Solanum to 40.0% in Datura for the latter
region. On the other hand, the SRII exhibits the
highest GC content among taxa, reaching 46.8%
in Petunia to 70.3% in chili peppers and varies
greatly in length from 8 nt in C. coccineum to 304
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nt in N. otophora and N. cordifolia. Contrary to
Capsicum, the length and nucleotide composition
of the poly(T) stretch are quite constant features
all over Solanaceae NTS. Hence, comparable short
motifs comprising five to seven nt long are regular,
i.e. TTTTT (Cestrum), CTTTTT (Lycianthes,
Petunia, Nicotiana), TCTTTT (Datura), CTTTTTT
(Atropa) and CCTTTTT (Solanum), as detailed in
Grabiele et al. (2020), Suppl. Figs. 7-10. According
to the multiple alignment of 311 informative
sequences from eight analyzed genera, the SRIII
(69.3% AT rich) reveals as the most conserved
NTS segment regarding length (ca. 30 nt long)
and overall pairwise identity (78.3%) throughout
Solanaceae. Comparable structural features at the
SRIII considering each genera and full Solanaceae
-majority consensus and LOGO sequences- and
key functional traits related to transcription of
downstream 5S gene, i.e. -30 TATA like, -12
GC, -1 C, are illustrated at Grabiele et al. (2020),
Suppl. Fig. 11. The consensus SRIII of Solanaceae
encompasses a 92% AT rich stretch of 13 nt identical
to that of Capsicum -TTTAATAGAATTT-, highly
conserved throughout the examined taxa, with
Petunia displaying the major deviation from this
motif. The dinucleotide motif GC at position -12
is common to three genera while four genera own
the tetranucleotide GCGC at -14 and solely Atropa
display GC at -14. Finally, at position -1 of the

Grabiele M et al.

transcription initiation site C or T nucleotides were
found, and motifs GAC, GAT and GTC are usual
terminal trinucleotides for the NTS in Solanaceae.
At this point, the molecular variability at
the NTS demonstrates useful to classify a broad
collection of wild and cultivated chili peppers at the
specific and clade levels, and even identify related
genera of Solanaceae compared among each other,
constituting a marker of phylogenetic relevance.

Reconstruction of phylogenetic
relationships in Capsicum and related
Solanaceae via the NTS

An exhaustive multiple alignment of 255
entire length NTS sequences from Capsicum and
related taxa of Solanaceae that hold comparable
NTS information -Lycianthes, Solanum, Datura,
Atropa- was further achieved via MAFFT and
manual curation. The resultant matrix of 553
characters exposed ancient blocks of nucleotides
and novel divergent segments among considered
taxa (Grabiele et al. 2020, Suppl. Fig. 12) facilitating
the NTS based phylogenetic reconstruction in chili
peppers.

To begin, a bootstrap phylogenetic network
of the NTS sequences of Capsicum and comparable
related taxa in Solanaceae was constructed
employing the NTS matrix (Fig. 6). As a first
outcome NTS sequences clustered into well
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Figure 5 — Structural characterization of the 5S NTS in Solanaceae. Note the consensus sequences for each taxa and
their comparable annotated functional features related to transcription of upstream (poly(T)) and downstream (-30
TATA-like, -12 GC, -1 C/T) 5S gene added to the NTS organization in three structural regions (SRI-III) according
to differences on the GC content and inner variability. For details see Grabiele et al. (2020), Suppl. Figs. 7-10.
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defined taxa hierarchies, i.e. genus, section, clade.
At this regard, paralog copies in each species
of Capsicum also grouped together, with the
exception of some related to the Atlantic Forest
clade, commented below. Respect to the NTS
network at Solanum, section Dulcamara shown
sister to sections Petota and Lycopersicon -which
include potato and tomato- as expected (clade
Potato; Sarkinen et al. 2013). Further, Capsicum
emerges as monophyletic as in previous analysis
(Walsh & Hoot 2001; Buso et al. 2002; Carrizo
Garcia et al. 2016), though its ancient NTS node is
right close to Lycianthes. In accordance, Capsicum
and Lycianthes hold a complex relationship that
justify further consideration (Sarkinen et al. 2013).
Among chili peppers, three major lineages are
recognized, 1) Andean clade, basal and sister to
2) a superclade comprising Flexuosum, Bolivian
and Atlantic Forest clades, and 3) a superclade

<¢rop?
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involving Pubescens and Purple Corolla clades
sisters to Tovarii, Baccatum and Annum clades, in
which Tovarii is sister to the latter two.
Subsequently, a ML phylogenetic tree
of the NTS sequences of Capsicum, and those
comparable related taxa in the family, was also
built via the NTS matrix, displaying acceptable
main support values, in a range from moderate
to high (0.70-0.99) (Fig. 7; Grabiele et al. 2020,
Suppl. Fig. 13). As in the NTS network, overall
sequences fall into recognized categories, i.e.
species, genus, section, clade, except from some
paralog copies of Atlantic Forest clade members,
next discussed. Topology of outgroups to Capsicum
is also equivalent, including that within Solanum,
and monophyly of chili peppers is supported too
(0.87). In addition, the NTS ML tree shows that
the non pungent Andean clade is highly supported
(0.91) -and basal as previously reported (Walsh &

Figure 6 — Bootstrap phylogenetic network of the 5S NTS sequences of Capsicum and comparable related taxa
-Lycianthes, Solanum, Datura, Atropa-. The network was constructed via SplitsTree4 employing the NTS alignment
matrix of Grabiele et al. (2020), Suppl. Fig. 12, the Neighbornet algorithm, the uncorrected P distance and 100
boostrap replicates. Note the major lineages comprising Capsicum. * = C. schottianum paralogs; ** = C. villosum
paralogs. Scale bar indicates the scale of the network branches.
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Hoot 2001; Carrizo Garcia et al. 2016)-, so as too
the Atlantic Forest clade (0.99) and a super cluster
formed by the rest of Capsicum (0.92). Both NTS
network and tree support the hypothesis that x =
13 evolved twice and independently in Capsicum,
in the Andean clade and in the Atlantic Forest
clade of pungent members (Moscone et al. 2007;
Carrizo Garcia et al. 2016). A well supported group

5
Solanum

Grabiele M et al.

(0.99) with identical topology to that of the NTS
network is formed by Pubescens, Purple Corolla,
Tovarii, Baccatum and Annum clades (P-PC-T-
B-A), concordantly to earlier results of Carrizo
Garcia et al. (2016), solely that here C. pubescens
and C. eximium appear clustered with high support
(0.98) and displaying observable synapomorphies
(Grabiele et al. 2020, Suppl. Fig. 5). At this regard,

e ?lreirae Seq2
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. villosum seq4

. pereirae seq2 "
3 S
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Figure 7 — ML phylogenetic tree of the 5S NTS sequences of Capsicum and comparable related taxa -Lycianthes,
Solanum, Datura, Atropa-. Phylogenetic relationships were inferred via FastTree 2.1.5 employing the NTS alignment
matrix of Grabiele ef al. (2020), Suppl. Fig. 12, the GTR+G model and 1,000 resamples. Selected support values
are shown side to main branches and those below 50% are condensed. For a detailed support values depiction see
Grabiele ef al. (2020), Suppl. Fig. 13. Note the grouping of the NTS sequences at expected clades in Capsicum.
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on their phylogenetic analysis in Capsicum from
AFLP data, Ibiza ef al. (2012) also reported a high
support grouping (85% bootstrap) of C. pubescens
and C. eximium. The well supported phylogenetic
group P-PC-T-B-A is based on x = 12 and includes
to the main consumed chili peppers worldwide
-C. annuum, C. chinense, C. frutescens- and in
South America -C. baccatum, C. chacoense, C.
eximium, C. pubescens- that can cross hybridize
to diverse extent (Walsh & Hoot 2001; Onus &
Pickersgill 2004), and constitute the most valuable
genetic resources in germplasm banks and breeding
programs (Jarret et al. 2019; Tripodi & Kumar
2019). On the other hand, the placement of the
variable pungent C. flexuosum as sister of P-PC-
T-B-A group is moderately sustained (0.70) in
the NTS ML tree. At this point, it is worth noting
that the phylogenetic positions of Flexuosum and
Bolivian clades with respect to the Atlantic Forest
clade and the P-PC-T-B-A cluster differ considering
the NTS tree or network approaches (Fig. 6 vs.
7). In this sense, similar incongruences were also
pinpointed before on the DNA based phylogenetic
reconstruction of Capsicum considering maximum
parsimony or bayesian analysis (Carrizo Garcia
et al. 2016). The true phylogenetic position of
C. flexuosum -x = 12- and C. coccineum -x =
?- is a relevant tool to future breeding programs
aiming to introduce useful genetic traits to main
consumed chili peppers based on x = 12, directly
or even via x = 13 Atlantic Forest clade members
intermediates, if it is possible. Currently, studies
on the reproductive biology of C. flexuosum and C.
coccineum are lacking or incipient (Carrizo Garcia
2011). Regarding C. tovarii, the moderate support
(0.74) as sister of terminal clades Baccatum (C.
baccatum, C. praetermissum, C. chacoense) and
Annuum (C. annuum, C. chinense, C. frutescens)
-highly supported (0.93)- at the NTS ML tree
coincides with the low to high support found in
previous analysis (Carrizo Garcia et al. 2016).
Capsicum tovarii is a pungent chili pepper also used
as a spice (Eshbaugh et al. 1983) and is particular
in that solely produce fertile seeds when cross
hybridizes with members of the Baccatum clade
than to the Annuum clade -in spite of the above
stated- or even C. pubescens and C. eximium (Tong
& Bosland 1999).

The germplasm of major consumed
domesticated chili peppers -C. pubescens, C.
baccatum var. umbilicatum, C. baccatum var.
pendulum, C. frutescens, C. chinense, C. annuum
var. annuum- and their related wild varieties
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-C. baccatum var. baccatum, C. annuum var.
glabriusculum- was further investigated through a
multiple alignment of 43 NTS sequences (Grabiele
etal. 2020, Suppl. Fig. 1) and a subsequent bootstrap
phylogenetic network (Fig. 8a). As a central result,
different species could be discriminated according
to sequence traits such as SNPs -fixed and majority-
and indels. In agreement, NTS sequences at the
network also clustered into well recognized species
categories, including previous data (Park et al.
2000). What is more, ancestral and derived traits
at the middle SRII on paralogs of C. pubescens
did not disrupt their clustering. In addition, NTS
sequences of C. annuum fall into two groups, 1)
wild variety paralogs and 2) all domesticated plus
wild variety paralogs, as evidence of selection
processes during domestication (Fig. 8a). With
respect to C. baccatum, both sequence traits and
network analysis proved useful to discriminate
among varieties umbilicatum and pendulum
whereas -as expected for selection- wild variety
paralogs separated in those groups. Hence, NTS
based variety discrimination in chili peppers
constitutes a promising tool, similar to tomato (Sun
et al. 2014b). Further, worth noting here that the
discrimination value of the NTS extends to overall
major consumed chili peppers, including the wild
C. chacoense and C. eximium.

Atlantic Forest clade members are distinct
in having small pungent yellowish green fruits,
in addition to 2n = 26 chromosomes and highly
variable karyotypes useless to solve species
relationships (Pozzobon et al. 2006; Moscone
et al. 2007). Analysis on taxonomy and partial
phylogeny of its species were also reported (Buso
etal. 2002, 2003; Barboza & Bianchetti 2005). The
most complete analysis also found difficulties to
unambiguously solve species relationships in this
clade, arguing that it is in an scenario of apparent
phase of rapid speciation (Carrizo Garcia et al.
2016).

In this work, the Atlantic Forest clade
revealed as well supported, however both global
NTS phylogenetic approaches found the same
question to solve species relationships (Figs. 6; 7).
In an effort to clarify this issue, we performed an
additional multiple alignment of 39 NTS sequences
of this clade, which was reference compared to
Lycianthes in order to identify synapomorphies
(Grabiele et al. 2020, Suppl. Fig. 2) and further
built a bootstrap phylogenetic network for the
seven species (Fig. 8b). Twelve synapomorphic
traits were found and sequences clustered into an
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ancestral state group -C. pereirae, C. villosum,
C. friburgense- and a derived state group -C.
recurvatum, C. campylopodium, C. hunzikerianum-
while C. schottianum paralogs fall into both groups.
Despite the coexistence of sequences combining
ancestral and derived traits in the rDNA array,
synapomorphies indicate that C. schottianum is
closely related to C. recurvatum, C. campylopodium
and C. hunzikerianum than to others.

At this point, the NTS revealed useful to
circumscribe the Atlantic Forest clade into two
phylogenetically relevant groups of species. In
this sense, our contribution is major since Atlantic
Forest clade species could be attractive as a source
of variability, however studies regarding potentially
valuable genes, i.e. disease resistance and abiotic
stress tolerance, reproductive biology, and fruits and
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their uses, are still lacking for this group. Further,
cross hybridization attempts between an Atlantic
Forest clade member (as C. buforum; probably
misinterpreted n = 12) and chili peppers of distinct
clades were reported as unsuccessful (Tong &
Bosland 2003), analysis that should be extended to
the whole group. In this scenario, gene transference
between the Atlantic Forest clade members and
the main consumed chili peppers based on x = 12
could be overcome biotechnologically, i.e. by the
embryo rescue technique (Tripodi & Kumar 2019).

Combined data on genetic variability
and phylogeny of the NTS in Capsicum
Sequence information of each structural
region (SRI-IIT) was further integrated onto the
NTS ML phylogenetic tree. In this sense, combined

reci |\rec4
rec? rec3

b

000

Figure 8 —a-b. Bootstrap phylogenetic network of the 5S NTS sequences of domesticated and their related wild varieties
of Capsicum, and of Atlantic Forest clade members- a. of domesticated and their related wild varieties of Capsicum; b.
of Atlantic Forest clade members. Networks were constructed via SplitsTree4 employing the NTS alignment matrices of
Grabiele et al. (2020), Suppl. Fig. 1 (for a.) and Grabiele et al. (2020), Suppl. Fig. 2 (for b.), the Neighbornet algorithm,
the uncorrected P distance and 100 boostrap replicates. pub and pubAF217954 = C. pubescens; bac = C. baccatum var.
baccatum; umb and bacAF217951 = C. baccatum var. umbilicatum; pen= C. baccatum var. pendulum; fru and fruAF217952
= C. frutescens; chi and chiAF217953 = C. chinense; gla= C. annuum var. glabriusculum; ann and annAF217950 = C.
annuum var. annuum; per = C. pereirae; vil = C. villosum; fri= C. friburgense; sch= C. schottianum; rec = C. recurvatum;,
cam = C. campylopodium; hun = C. hunzikerianum. Scale bar indicates the scale of the network branches.
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data revealed main evolutionary features at the
NTS of Capsicum, and this molecular variability
that includes insertions, deletions and substitutions,
proved useful to circumscribe species or group of
species (Fig. 9).

To further integrate the NTS ML phylogenetic
tree with another component of the molecular
variability, nucleotide substitution rates at the
NTS of Capsicum and comparable related taxa
were estimated in view of phylogenetically
relevant groups and their splits time (Sarkinen ef
al. 2013) (Fig. 10). This way, substitution rate at
the split of the non pungent Andean clade and the
rest of Capsicum (3.33e-08) occurring 9.8 MYA
is significantly lower -near half- than post split
rates averaging 6.00e-08 (4.65e-08 to 8.45e-08).
In this sense, there appear to emerge a correlation
between accelerated substitution rates at the NTS
and the recent diversification of the genus (5.38-
3.44 MYA). This diversification, gave birth to the
Atlantic Forest, Flexuosum, Bolivian, Pubescens
and Purple Corolla clades, so as to the common
ancestor of Tovarii, Baccatum and Annuum clades
(TBA). Then, substitution rates remain constant
during the divergence of TBA group, to which indels
also contributed. Meanwhile, an almost invariable
substitution rate through a period of 3.66 million
years (5.09e-08 to 4.65e-08) and a nucleotide
diversity value (= 0.080) that is the lowest among
analyzed groups support the proposed scenario of
current rapid speciation at the Atlantic Forest clade.
Contrary, substitution rate at the NTS increased
significantly (1.04e-07) at the recent diversification
of the Andean clade 3.09 MYA, and also at the
Annuum clade (8.45¢-08) during the course that led
to the three major cultivated species of Capsicum. In
a broad sense, the clockwise scenario of expansion
and diversification of chili peppers hypothesized
by Carrizo Garcia et al. (2016) is supported here
through combined NTS structural and evolutionary
features, which reinforces the value of the SS NTS
as a marker with phylogenetic relevance.

Our analysis is original since includes all
domesticated species of Capsicum prevailing in
germplasm collections and breeding programs,
together with a large group of wild chili peppers
that demanded further genetic characterization.
The 5S rDNA NTS demonstrated as a reliable and
efficient genetic marker to characterize variability
among chili peppers. NTS nucleotide sequences
and their structural evolutionary traits such as indels
and single nucleotide polymorphisms (SNP) alone

Rodriguésia 72: e02062019. 2021

17 de 21

proved useful to circumscribe taxa. In this sense,
the attained comprehensive multiple alignments,
now available to the interested community, serve

L Outgroups

Figure 9 — Main evolutionary features at the 5S NTS
of Capsicum onto the ML phylogenetic tree. a =3’ end
SRI: novel CT block; middle SRII: novel CGGG motif.
b =Middle SRII: major insertion (13 nt). ¢ = 5" end SRI:
major deletion (21 nt) not affecting polyT stretch; CT
block CTCTCC-type. d = SRII: almost entire deletion (C.
coccineum); CT block MCTCTC-type. e = Middle SRII:
partial deletion; CT-block CGTTCTGT-type. f = Near
5’ end SRII: TT to two purines. g = SRII: major block
deletions, CGGG to CGGGG and two purines insertion
at 3’ end; SRIII: GAT to GAC at 3’ end; CT block
CCTCTT-type. h = Middle SRI: AATTT to GATTT,
CT insertion, GCG to GTG; Near 5’ end SRII: C to G. i
= SRI: deletion of TGTCG and insertion of a large poly T
stretch (16 nt group parsimony) upstream ancestral poly T
stretch (CCTTTTT). j = SRI: major insertion (123 nt) of
a 5S related stretch near 3° end. k = Middle SRIII: AGA
to GGA. 1= SRI: polyT stretch insertion of 16 to 21 nt
(group parsimony). m = SRI: polyT stretch insertion of
16 to 12 nt (group parsimony); T to A at 3” end of polyT
stretch. n = SRI: insertion (7 nt) of repetitive nature at
polyT stretch (C. chacoense). o =Near 5 end SRII: major
purine-rich block deletion (12 nt; C. praetermissum).
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Figure 10 — Nucleotide substitution rates at the 5S NTS of Capsicum and comparable related taxa -Lycianthes

Solanum, Datura, Atropa-. Nucleotide diversity (D) of phylogenetically relevant groups was estimated in MEGA
7.0.26 employing the NTS alignment matrix of Grabiele et al. (2020), Suppl. Fig. 12, the K2+G model and 100
bootstrap replicates. Evolutionary divergence times in Solanaceae are considered (Sarkinen ef al. 2013). SR =
substitution rate; s.e. = standard error; MY A = million years ago; ROT = rest of taxa; ROC = rest of clades; CA =

common ancestor. Vertical bars correspond to s.e. of SR.

as a taxa identification toolkit for chili peppers:
it depends only in traditional and cost effective
PCR amplification and Sanger sequencing,
providing a set of valuable markers to germplasm
managers and breeders. At the same time, the
NTS is a valuable tool to reconstruct evolutionary
relationships in Capsicum to a broad taxonomical
range, via classical phylogenetic tree and alternative
phylogenetic network approaches. The evolutionary
scenario based on the NTS confirm monophyly,
independent origin of both x = 13 lineages, major
clades subdivision and diversification in Capsicum.
Horticulture of chili peppers can benefit of this
double purpose genetic marker, as well also the
germplasm characterization and evolutionary

studies within Solanaceae.
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