Acessibilidade / Reportar erro

Radar absorbing materials based on titanium thin film obtained by sputtering technique

Abstract:

Titanium thin films with nanometer thicknesses were deposited on polyethylene terephthalate (PET) substrate using the triode magnetron sputtering technique. It was observed that the titanium thin film-polymeric substrate set attenuates the energy of the incident electromagnetic wave in the frequency range of 8 to 12 GHz. This result allows to consider this set as a radar absorbing material, which may be employed in automobile, telecommunication, aerospace, medical, and electroelectronic areas. Results of the reflectivity show that the attenuation depends on the thin film thickness, as a determining factor. Thin films with 25 to 100 nm thickness values show attenuation of the electromagnetic wave energy from around 20 to 50%. Analyses by Rutherford backscattering spectrometry provided information about the thickness of the thin films studied. Hall effect analyses contributed to better understand the influence of the thin film thickness on the electron mobility and consequently on absorption properties.

Keywords:
Radar absorbing material; Magnetron sputtering; Thin film; Titanium

Full text is available only in PDF.

REFERENCES

  • Balanis, C.A., 1989, "Antenna Theory: analysis and design". John Wiley Sons, New York, USA.
  • Bhat, K.S., Datta, S.K. and Suresh, C., 1998, "Electrical and microwave characterization of kanthal thin films: temperature and size effect", Thin Solid Films, Vol. 332, No. 1-2, pp. 220-224. doi:10.1016/S0040-6090(98)01103-1.
    » https://doi.org/10.1016/S0040-6090(98)01103-1
  • Biscaro, R.S., Rezende, M.C. and Faez, R., 2008, "Influence of doped polyaniline on the interaction of Pu/PAni blends and on its microwave absorption properties", Polymers for Advanced Technologies, Vol. 19, No. 2, pp.151-158. doi: 10.1002/pat.990.
    » https://doi.org/10.1002/pat.990.
  • Bosman, H., Lau, Y.Y., Gilgenbach, R.M., 2003, "Microwave Absorption in a Thin Film", Applied Physics Letters, Vol. 82, No. 9, p.1353. doi:10.1063/1.1556969.
    » https://doi.org/10.1063/1.1556969
  • Bosman, H., Lau, Y.Y., Gilgenbach, R.M., 2004, "Power absorption by thin films on microwave windows", IEEE Transactions on Plasma Science, Vol. 32, No. 3, pp. 1292-1297. doi:10.1109/TPS.2004.827579.
    » https://doi.org/10.1109/TPS.2004.827579
  • Bregar, V.B., 2004, "Advantages of Ferromagnetic Nanoparticle Composites in Microwave Absorbers", IEEE Transactions on Magnetics, Vol. 40, No. 3, pp. 1679-1684. doi: 10.1109/TMAG.2004.826622.
    » https://doi.org/10.1109/TMAG.2004.826622
  • Bubert, H., Jenett, H., 2002, "Surface and Thin film Analysis", Institute of Spectrochemistry and Applied Spectroscopy (ISAS), Wiley-VCH, Germany, 336p.
  • Doolittle, L.R., 1985, "Nuclear Instrument Method - Rump simulation code", B9, pp. 344-351.
  • Folgueras, L.C., Rezende, M.C., 2007, "Hybrid multilayer structures for use as microwave absorbing material" Proceedings of the SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference, Brazil, pp. 483-487.
  • Fontana, L.C., Muzart, J.L.R., 1998, "Characteristics of triode magnetron sputtering: the morphology of deposited titanium films", Surface and Coatings Technology, Vol. 107, No. 1, pp. 24-30. doi:10.1016/S0257-8972(98)00576-3.
    » https://doi.org/10.1016/S0257-8972(98)00576-3
  • Fortunato, E., Nunes, P., Costa, P.D., Brida, D., Ferreira, I. and Martins, R., 2002, "Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates", Vacuum, Vol. 64, pp. 233-236. doi:10.1016/S0042-207X(01)00319-0.
    » https://doi.org/10.1016/S0042-207X(01)00319-0
  • Hashsish, E.A., 2002, "Design of wideband thin layer planar absorber", Journal of Electromagnetic Waves and Applications, Vol. 16, No. 2, pp. 227-241. doi: 10.1109/APS.2011.5997137.
    » https://doi.org/10.1109/APS.2011.5997137
  • Ishii, N., Yasaka, Y., 2004, U.S.Patent Nº 6823816. Available at: www.patents.com/us-6823816.html
    » www.patents.com/us-6823816.html
  • Kaiser, K.L., 2004, "Electromagnetic Compatibility Handbook", CRC Press, Boca Raton, USA.
  • Machlin, E.S., 1998, "Materials Science in Microelectronics", Elsevier, 2a ed., New York, Vol. 2, pp. 1-70.
  • Mayes, E., 2006, U.S. Patent Nº 6986942. Available at: www.patents.com/us-6986942.html
    » www.patents.com/us-6986942.html
  • Mikhailovsky, L.K., 1999, "Solution of actual problems of electromagnetic compatibility by means of Spin (Non-Current) Electronics and Non-phase Electrodynamics", Proceedings of the VIII International Conference on Spin Electronics - Section of International Conference on Gyromagnetic Electronics and Electrodynamics, Vol. 13-16, Moscow Region, Fisanovka, Rússia, pp. 327-349.
  • Nicolson, A. M., Ross, G. F., 1970, "Measurement of the Intrinsic Properties of Materials by Time Domain Techniques", Instrumentantion and Measurement, Vol. 19, pp.377-382. doi: 10.1109/TIM.1970.4313932 .
    » https://doi.org/10.1109/TIM.1970.4313932
  • Nie, Y., et al, 2007, "The electromagnetic characteristics and design of mechanically alloyed Fe-Co particles for electromagnetic-wave absorber", Journal of Magnetism and magnetic materials, Vol. 310, pp.13-16. doi:10.1016/j.jmmm.2006.07.021
    » https://doi.org/10.1016/j.jmmm.2006.07.021
  • Nohara, E.L., 2003, "Materiais Absorvedores de Radiação Eletromagnética (8 -12 GHz) Obtidos pela Combinação de Compósitos Avançados Dielétricos e Revestimentos Magnéticos". Ph.D. Thesis, Technological Institute of Aeronautics, São José dos Campos, S.P., Brazil.
  • Ohring, M., 1991, "The Materials Science of Thin Films", Stevens Institute of Technology, Departament of Materials Science and Enginnering, Hoboken, New Jersey, Academic Press, San Diego, pp. 531.
  • Rezende, M.C., Silva, F.S. and Martin, I.M., 2000, "Materiais absorvedores de radiação eletromagnética", Spectrum, Vol. 2, pp. 17-20.
  • Salmon, L.G., 1993, "Evaluation of thin film MCM materials for high-speed applications", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 16, No. 4, pp. 388-391. doi: 10.1109/33.237934.
    » https://doi.org/10.1109/33.237934.
  • Serway, R.A., 1998, "Principles of Physics", Saunders College Texas, Fort Worth, London.
  • Shubin, V.A., et al, 2000, "Local electric and magnetic fields in semicontinuous metal films: beyond the quasistatic approximation", Physical Review B, Vol. 62, No. 16, pp. 11230-11244. doi: 10.1103/PhysRevB.62.11230.
    » https://doi.org/10.1103/PhysRevB.62.11230.

Publication Dates

  • Publication in this collection
    Sep-Dec 2011

History

  • Received
    17 Feb 2011
  • Accepted
    25 Aug 2011
Departamento de Ciência e Tecnologia Aeroespacial Instituto de Aeronáutica e Espaço. Praça Marechal do Ar Eduardo Gomes, 50. Vila das Acácias, CEP: 12 228-901, tel (55) 12 99162 5609 - São José dos Campos - SP - Brazil
E-mail: submission.jatm@gmail.com