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ABSTRACT: The focus of this study is to evaluate the 
effect of carboxyl and amino functionalization of multi-
walled carbon nanotubes on the mechanical property of 
the epoxy resin filled with modified carbon nanotubes. The 
carbon nanotubes were treated with sulfuric and nitric 
acids and also with hexamethylenediamine. The presence 
of acid and amine chemical groups on the carbon nanotube 
surface was confirmed by X-ray photoelectron spectroscopy. 
The composites were produced with epoxy resin and 
modified carbon nanotubes.  Vickers hardness tests were 
carried out on the composites and neat resin. The results 
showed an increase of hardness in the composite prepared 
with functionalized carbon nanotubes. This phenomenon is 
due to the fact that the chemical interaction between 
modified carbon nanotube and epoxy resin is much stronger 
than between pristine carbon nanotube and epoxy resin. 
This stronger interaction is related to the presence of 
functionalized carbon nanotubes.

KEYWORDS: Epoxy matrix composite, Carbon nanotubes, 
Vickers hardness.
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INTRODUCTION

Carbon nanotubes (CNTs) were discovered in 1991 by Sumio 
Iijima (Iijima, 1991) and they have attracted a worldwide attention 
due to their outstanding thermal, electronic and mechanical 
properties (Shin et al. 2013; Wang and Liew 2015). Therefore, 
one of the most promising applications is as reinforcing fillers 
(Shen et al. 2007; Bhuiyan et  al. 2013). 

The introduction of CNTs in the polymer matrix started 
in 1994. Since then, investigations have been addressed to 
improving the polymer properties when compared to the base 
polymer (Saeb et al. 2015). The effects of CNTs on rheological, 
thermal, electrical and mechanical properties of thermoset 
polymers are well known, but in the recent years epoxy resin 
have brought more attention due to its extremely good chemical 
and corrosion resistance, acceptable adhesion behavior and 
remarkable mechanical characteristics (Li and Shimizu 2009; 
Chen et al. 2014). 

The composite filled with CNTs have attracted the attention 
of aeronautics industries, since it offers a great weight reduction 
if a metallic material is replaced by nanocomposites. The 
superior strength-to-weight ratio provided by this material 
results in the reduction of fuel consumption, which is one of 
the major challenges for the aerospace industry, such as military 
and commercial aircrafts, space vehicles, satellites, and others 
(Gohardani et al. 2014).

However, the CNT application as polymer filler has been 
hindered by some difficulties in the dispersion and low 
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adhesion to matrix (Disfani and Jafani 2013). These facts 
limit significantly the CNT applications, since CNT tend to 
agglomerate due to Van der Waals force (Ratna et al. 2013). 
Researchers have added functional groups on the CNT 
surface to improve its dispersion. Many different kinds of 
CNT functionalization have been reported, such as carboxyl 
and amino groups, and these functionalizations improved 
the CNT dispersion in polymers (Wang et al. 2007; Qiu and 
Wang 2010).

The focus of this paper is to evaluate the effect of 
carboxyl and amino functionalization of CNTs on the 
mechanical property of the epoxy resin filled with modified 
CNTs. The functionalized CNTs were characterized by 
X-ray photoelectron spectroscopy (XPS). Moreover, 
functionalized CNTs were added to the polymer matrix and 
the Vickers hardness tests were carried out on the neat resin, 
composite with pristine CNT and composites with modified 
CNTs.

EXPERIMENTAL
Materials

The CNTs used in this study were acquired from Laboratório 
Associado de Sensores e Materiais – Instituto Nacional de 
Pesquisas Espaciais (LAS/INPE) and prepared by a chemical 
vapor deposition method, as described in a previously study 
(Antunes et al. 2011). CNT was purified, performed an 
oxidative acid treatment and then the functionalization step 
was performed (Jin et al. 2011). The functionalized sample was 
labeled as CNT-H. 

Surface Modification and 
Functionalization of Carbon Nanotubes

A quantity of CNT-H (0.8 g) was added to 90 mL of sulfuric 
acid (H2SO4, Merck, 98%) and 30 mL (v/v 3:1) of nitric acid 
(HNO3, Vetec, 70%), in an ultrasonicator bath with power of 
225 J/s for 6 h at room temperature. This specimen was called 
CNT-Ac.

The specimen CNT-Ac (0.3 g) was dispersed in 150 mL 
of hexamethylenediamine (HMDA, NH2(CH2)6NH2, Aldrich, 
70%). The mixture was maintained under stirring and heating 
at 100 °C for 4 days. Then, the modified CNTs were filtered 
through 0.45 µm of polytetrafluorethilene (PTFE) and they 
were named as CNTHMDA. Figure 1 presents an illustration 
of surface modification.

Preparation of Nanocomposites and 
Neat Resin

The nanocomposites (CNT-H/epoxy, CNT-Ac/epoxy and 
CNT-HMDA/epoxy) and the neat resin (epoxy) were synthesized 
with epoxy resin diglycidyl ether of bisphenol A (DGEBA), 
diaminodiphenylmethane (DDM) and 0.2% wt of CNT.

Characterization and Measurements
XPS analysis of the CNT samples was carried out on a 

commercial spectrometer (UNI-SPECS UHV), with Mg Kα line 
(hν = 1253.6 eV) and a pass energy set at 10 eV. Vickers hardness 
measurements were carried out on samples in a diamond Vickers 
indenter Tester FM-700, where a 0.2 kgf load was applied for 
10 s. The hardness value HV (in GPa) was calculated from the 
indentation load and the diagonal of the Vickers imprint. Thirty 
two indents were made on each surface keeping an appropriate 
distance from the sample edges and between indentation marks, 
avoiding boundary effects (confidence intervals: 95%). The entire 
computational environment was developed in R program, a 
statistical computational and graphical environment. 
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Figure 1. Surface modification and functionalization.
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RESULTS AND DISCUSSION

Figure 2 shows the XPS analysis on the samples CNT-H, 
CNT-Ac and CNT-HMDA. The deconvolution of XPS C 1s 
spectra shows a main component at 284.4 eV, which is related 
to aromatic carbon bonding (C-C sp2) from the hexagon walls 
of the CNTs. The peak centered at 285.2 eV refers to C-CH sp3 
bond, which is related to defects in the aromatic structure and 
that ranging 285.2 – 285.9 eV may be related to hydrocarbon from 
surface contamination. In addition, other peaks may be assigned 
to chemical bindings of C-O at 286.3 eV, C=O at 287.7 eV and 
O-C=O at 289 eV. The plasmon π-π* peak has placed at 291 eV. 
The deconvolution of XPS N 1s spectra (Fig. 2d) shows three 
peaks: C-NH2 at 399.1 eV; N-C at 400.3 eV and N-O at 402 eV.

The evidence on the XPS spectra in Figs. 2a and 2b is that 
the sample CNT-Ac has a higher percentage of C-O, C=O and 
O-C=O groups than the sample CNT-H, which indicates the 
presence of carboxyl group on the CNT-Ac surface. In addition, 
Fig. 2c shows the presence of C-N chemical group, indicating 
the presence of nitrogenated functional group on the CNT 
surface. The deconvolution of XPS C1s spectra (Figs. 2a, 2b 
and 2c) shows that the amount of chemical groups related to 
peak at 285.2 eV (C-CH sp3) increases in the following order: 

CNT-H < CNT-Ac < CNT-HMDA. This increase is related to 
an increase in the defects on the CNTs wall, which contributes 
for adding functional groups on the CNT-Ac and CNT-HMDA 
surfaces (Figs. 2b and 2c) (Komarova et al. 2015).

The distribution of hardness results can be seen in Fig. 3. 
It is noticed that the hardness measurements are randomly 
distributed in the confidence intervals, where the data normality 
(p-value < 0.001) was admitted. 

Figure 4 shows the box-plot of different composites  
(CNT = 0.2 wt.%). It is noticed from Figs. 4a and 4b that the adding 
of CNT in the resin without surface modification produces a slight 
increase in the average hardness from 21.33 to 21.69 HV (significantly 
same values; p-value = 0.487). It is known that functionalized CNTs 
have more disorganized microstructure compared to pristine CNT, 
which leads to greater dispersion of CNTs, hence functionalized 
CNTs have better interfacial bonding with the polymer matrix 
(Cividanes et al. 2012). In addition, Figs. 4c and 4d show an 
increase in the average hardness of about 30% in the composite 
prepared with CNT-Ac. Afterwards, in the CNT-HMDA sample, 
the hardness increased from 27.95 to 29.56 (statistically different 
values; p-value = 0.06). It may be attributed to the presence of 
amine functional groups onto CNT surfaces (Liu and Wagner 
2005; Martinez-Hernandez et al. 2010; Gkikas and Paipetis 2015). 
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Figure 2. XPS spectra regarding (a) CNT- H C 1s; (b) CNT- Ac C 1s; (c) CNT- HMDA C 1s; (d) CNT- HMDA N1s.
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Figure 4. Vickers hardness of the samples: (a) Epoxy; 
(b) CNT- H/epoxy; (c) CNT- Ac/epoxy; (d) CNT- HMDA/epoxy.

On the other hand, it appears that CNT additions 
significantly increase the composite sample variability in 
the hardness (p-value < 0.001). The high variability of the 
hardness results may be attributed to CNTs dispersion in the 
polymer matrix, which can affect the final nanocomposite 
properties (Song and Young 2005; Bal and Samal 2006; 
Cividanes et al. 2012).

The average hardness of the CNT-HMDA/epoxy composite 
is higher than the average hardness of the CNT-Ac/epoxy 
composite. However, if we analyze the maximum deviation 
values, both hardness seem to be closer.

CONCLUSIONS

The CNTs functionalized with acid and HMDA were 
submitted to XPS analysis and it was observed the presence of the 
carboxyl and amine groups, which confirms the functionalization 
success. The results showed that the neat resin and CNT-H 
composite have almost the same hardness. The functionalization 
has increased the hardness of CNT-Ac and CNT-HMDA 
composites, regardless of the maximum deviation values of 
CNT-Ac and CNT-HMDA composites are almost the same, 
although the amine-functionalized composite has presented 
the highest average hardness value among all composites.  

ACKNOWLEDGEMENTS

The authors acknowledge Conselho Nacional de 
Desenvolvimento Científico e Tecnológico (CNPq — Grant 
141197/2014-5) and Fundação de Amparo à Pesquisa do Estado 
de São Paulo (FAPESP — Grant 2013/20218-0, 2013/23042-0) for 
financial support, as well as Laboratório Associado de Sensores 
e Materiais – Instituto Nacional de Pesquisas Espaciais and 
Laboratório de Espectroscopia de Fotoelétrons – Universidade 
Estadual Paulista, for collaboration.

SS
.1

 O
rd

er
ed

 d
at

a

Normal quantities

-1 0 1 2 -2-2 -1 0 1 2-2 -1 0 1 2-2 -1 0 1 2

-2

-1

0

1

-1

0

1

2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-1

0

1

2

3

(a) (b) (c) (d)

H
ar

dn
es

s [
H

V
]

20

a b c d

25

30

35

Figure 3. Normal QQ Plot. (a) Epoxy; (b) CNT- H/epoxy; (c) CNT- Ac/epoxy; (d) CNT- HMDA/epoxy.
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