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ABSTRACT: This study aimed to analyze the time series 
behavior of the Southern Oscillation Index through techniques 
using Fast Fourier Transform, computing the autocorrelation 
function, and the calculation of the Hurst coefficient. The 
methodology of Hurst Exponent calculation uses different 
lags, which are computed in the time series of Southern 
Oscillation Index. The persistent behavior in the time series 
can be characterized by calculating the Hurst Exponent, 
seeking for more behavioral information, as the existence 
of persistence and/or terms of long-range memory in the 
series. The results show a persistence of the climate in terms 
of long-memory Southern Oscillation Index time series, which 
can help to understand a complex dynamic behavior in climate 
effects at global-scale level and specifically its influence in 
northeastern Brazil, in the region of the Alcântara Launch 
Center. The R package tseriesChaos was used in the analysis 
of the Southern Oscillation Index time series, estimating the 
largest Lyapunov exponent, which indicates the existence of 
chaotic behavior in time series. The resampling technique was 
used in a permutation test between the surface wind data 
in the São Luís airport, Maranhão State, and the Southern 
Oscillation Index. The permutation test results showed that 
the time series of monthly average wind speed in the São 
Luís airport is correlated with the variability of Southern 
Oscillation Index, statistically correlated to the confidence 
interval at the 5% level. The results showed the possibility of 
using autoregressive models to represent average variable 
meteorology in the behavior analysis as well as trends in the 
climate, more specifically a possible climatic influence of El 
Niño-Southern Oscillation in wind strength in the Alcântara 
Launch Center.

KEYWORDS: Time-series analysis, Hurst Exponent, 
Permutation test.
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INTRODUCTION

Sea surface temperature conditions in the tropical Pacific are 
important drivers of the atmospheric circulation and can have 
a major influence on the global climate. The El Niño-Southern 
Oscillation (ENSO) is a key component of the climate system 
(Capotondi 2013) and it is important to understand possible 
changes in its variability, which may be due to natural processes, 
such as the decadal variability of climate or anthropogenic effects.

The dynamic behavior of ENSO is very complex, and it 
is difficult to predict its time series variations. The Southern 
Oscillation Index (SOI) time series signal is composed of a set 
of geophysical forcing with different temporal scales, some of 
long time as the cycles of solar activity and/or the interaction 
atmosphere-ocean, involving a planetary scale. The Southern 
Oscillation is a seesaw in surface air pressure between the 
tropical eastern and the western waters of the Pacific Ocean. 
SOI is calculated as the standardized anomaly of the surface 
air pressure difference between Tahiti, in the Pacific Ocean, 
and Darwin, Australia, in the Indian Ocean.

The Southern Oscillation is a dynamic coupled ocean/
atmosphere process that influences the planetary scale. It 
characterizes certain phases: when the situation is positive, it 
means that there are higher pressure values in Tahiti and lower 
ones in Darwin (La Niña); the negative phase is when the pressure 
values are lower in Tahiti and higher in Darwin (El Niño); 
and in the neutral phase there are no significant values. ENSO 
is a planetary-scale phenomenon that occurs naturally in 
the tropical Pacific with global and highly-relevant impacts, 
affecting greatly the human society. El Niño refers to the heating 
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above normal in the tropical Pacific Ocean, which occurs with 
a frequency of 2 –7 years. Its opposite phase, when the tropical 
Pacific Ocean is colder than normal, is known as La Niña. These 
sea surface temperature changes affect the weather with values 
above or below the climatological ones. 

Capotondi et al. (2015) improved the determination and 
understanding of ENSO, its predictability and the existence of 
teleconnections. However, given the complexity and impacts 
of ENSO, a better analysis of the spatial patterns and their 
evolution is required. Newman (2007) concludes that the long-
term predictability exists; however, due to complex characteristics 
of the dynamic system in the planetary circulation, the canonical 
ENSO and the Pacific Decadal Oscillation (PDO) patterns, the 
influence of the interaction of these systems creates a complex 
structure, which consists of 2 stationary eigenmodes that are 
weaklier damped. These eigenmodes can represent different 
effects: the canonical ENSO (Barnston and Ropelewski 1992; 
Gershunov and Barnett 1998; Takahashi et al. 2011) between the 
years 1900 – 2002 may represent the influence of anthropogenic 
nature and multidecadal fluctuations of a pattern that is 
potentially a natural decadal variability. The predictability of 
these stationary eigenmodes is significantly increased by the 
coupling of these eigenmodes between the North Pacific region 
and its tropical oceanic part.

Gershunov and Barnett (1998) showed that the PDO has a 
modulatory effect on climatic patterns creating ENSO events. As 
a result, there are important characteristics to be observed: when 
the phase is El Niño, that stage is likely to be more intense when 
the PDO is highly positive; on the other hand, the La Niña 
phase is more intense when the PDO is strongly negative. This 
behavior does not mean that the PDO physically controls the 
dynamic ENSO, but the resulting climatic patterns show 
the interaction between them.

The influence of the Southern Oscillation in the northeastern 
Brazil climate has already been well-studied in the literature 
(e.g. Enfield and Mayer 1997; Uvo et al. 1998; Andreoli and 
Kayano 2006; Gonzalez et al. 2013). It is known that negative 
anomalies of SOI (El Niño) are associated with decreasing rainfall 
in northeastern Brazil.The study of SOI time series can provide 
guidance to understand the associatedin the atmospheric ity of 
theiated ocean/atmosphere coupling dynamics in the Pacific 
Ocean and its influence on the Walker and Hadley circulations. 
Changes in position and intensity of the Hadley and Walker 
cells are associated with changes in the large-scale atmospheric 
circulation patterns, which directly affects the meteorological 

conditions over the northeastern region of Brazil. This study 
aimed to interpret possible stationary signals, associated with 
a repetitive behavior in terms of long-range memory in SOI 
time series, as well as their influence on temporal variability of 
climate conditions in northeastern Brazil — Alcântara Launch 
Center (ALC).

METHODOLOGY
Southern Oscillation Index Data

SOI data were obtained from the web page of the National 
Weather Service - Climate Prediction Center (www.cpc.ncep.noaa.
gov/data/indices/). Monthly data normalized in the 1951 –2015 
period were used. The AutoSignal© software version 1.6 
for Windows was employed to compute the autocorrelation 
function, which was calculated using the Fast Fourier Transform 
(FFT; Temperton 1985). The same software was used to estimate 
the Hurst Exponent (H) and generate graphs for analysis.

Figure 1 shows SOI time series analyzed to calculate H, using 
the rescaled range (R/S) analysis. H is used to represent the 
behavior of time series, which presents persistence of features 
associated with a memory effect. 

Figure 1. SOI from January 1951 to August 2015.
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Table 1 presents statistical values of SOI time series. The raw 
data of this series were treated in Microsoft® Excel, in which the 
values of statistical information were generated. The coefficient of 
variations (CV), which is the standard deviation divided by the 
mean, is about 701.55%. The series features high dispersion relatively 
to the standard deviation. The first and second modes represent 
positions in SOI time series with greater frequency, characterizing 
the dynamic displacement between these 2 points within the time 
series. The statistical information in Table 1 indicates that SOI 
time series does not show a dynamic Gaussian Classic behavior.
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HURST EXPONENT — R/S METHOD

For a sequence (Xt)
n t=1 of a time series, consider a 

partial sum Yk = ∑k t=1 Xt— 1≤ k ≤ n and a sample variance 
S2 

n = (n – 1)–1 ∑n t=1 (Xt – Xn)2, where Xn = n–1 ∑n t=1  Xt is a sample 
mean. Rescaled adjusted range statistic R/S introduced by Hurst 
(1951) is defined as:

distribution with a mean equal to 0, the signal is set to be 
Gaussian white noise.

A normally-distributed or Gaussian sequence may have a 
cumulative white noise and is known as regular Brownian motion 
or random walk (Kac 1947; van Horne and Parker 1967). The 
range or distance covering a variable in the normal Brownian 
motion will increase in proportion to the square root of time. 
To calculate the growth that may exist in a time series, a type of 
time-scaling ratio is used by the partitioning elements (number 
of observations) and generates an average of the other groups. 
The use of R/S analysis allows to obtain the statistic of fractal 
noise process and offers it as an alternative to the traditional 
Gaussian normal distribution.

The H variability of behavior can be assigned as the value 
calculated by the physical behavior of the analyzed time series; 
an H value equal to 0.5 would indicate no long-term memory. 
Higher H values indicate a growing presence of such an effect 
in the series. The duration of this memory effect is often visible 
as persistent and can be cyclic or not. An H value of 0.5, which 
features in its accumulated data series, is a random walk or pure 
Brownian motion. The dataset analyzed consists of true white 
noise in which each observation is completely independent of 
all previous observations, and the estimated autocorrelation 
series is essentially 0 everywhere, except at the 0 lag. Since 
H is less than 0.5, the temporal series have an anti-persistent 
behavior. Each value in the series tends to be more likely to 
have a negative correlation with the previous values.

These data series revert the signals more often than would 
be true for the white noise. Such systems are rare in geophysical 
time series. Much more common in nature are time series that 
present estimates of H values above 0.5. These characteristics 
in the behavior of the series, which are persistent, contain 
a memory effect. Therefore, each value of the series may be 
associated with a number of previous values of the same series. 
The modeling of autoregressive processes depends on exactly this 
purpose. For a persistent series, the series with autocorrelation 
tend to decrease their autocorrelation to 0. Both the analysis by 
estimating H and the correlation mapping show the memory 
effect on time series under review.

The hurstexp (x) function of the R package PRACMA version 
3.2.2 (2015), from the R Foundation for Statistical Computing, 
calculates H. This relationship was derived from the MATLAB® 
code of Weron (2002), published in the MATLAB® central. 
This function returns a list of different definitions of H with 
different adjustments in their calculations, which are defined 

Statistic Parameters Value

Mean 0.135

Median 0.1

First mode 0.2

Second mode −0.1

Standard deviation 0.944

Mean deviation 0.738

Variance 0.892

Table 1. Statistical data of SOI series, with n = 775 values.

(1)

Observe that the numerator Range (R) in Eq. 1 can be 
viewed as a range of partial sums of Xt – Xn — t = 1, …, n — or, 
equivalenttly, as the sum of the maximal and minimal distance 
of the partial sums Yk — k = 1, …, n — from a line passing 
through Y0 = 0 and Yn. The range (R) should be divided by the 
standard deviation (S) of the elements of time series to produce 
a standardized sequence R/S or resized value range. Thus, R/S 
is a measure of flutuations of the parcial sums of (Xt)

n t=1 scaled 
by the standard deviation of observations. 

The H estimate is a measure of long-term memory in time 
series. It relates to the autocorrelations of the time series and 
the rate at which the autocorrelation function decreases with the 
lag as the distance between pairs of values increases. An 
important aspect is that H serves as a measure of the fractal 
dimension of a data series. A white noise can be a discrete 
signal whose samples are considered as a sequence of random 
variables uncorrelated series with 0 mean and finite variance. 
Depending on the context, it may also require that these samples 
be independent and have the same probability distribution. In 
a particular situation, if each of the samples possess a normal 
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with the following components: Hs — simplified approach R/S; 
Hrs — simplified approach corrected H; He — empirical H; 
Hal — corrected empirical H; and Ht —theoretical H. These 
different approaches are estimates of the H method, the corrected 
R/S method and the corrected empirical method. The results 
are sometimes very different, depending on the series analysis 
in the study, which can be interpreted as estimates with highly-
questionable values. 

FRACTAL DIMENSION

The random walks can be readily generalized to characterize 
fractal processes (Mandelbrot 1977, 1982) by introducing an 
additional parameter: H (0 < H < 1). The variance is proportional 
to Δt2H. In a fractal process, successive increments are correlated 
with coefficient of correlation ρ, independently of the time 
step h, where ρ is defined by the formula, using the moment 
technique of order 2 (Hastings and Sugihara 1993):

the largest Lyapunov exponent of a given scalar time series 
using the algorithm of Kantz (Hegger et al. 1999) and function 
lyap computes the Lyapunov regression coefficients for the 
time series segment given as input, in this case, SOI data. Tools 
to evaluate the maximal Lyapunov exponent of a dynamic 
system from a univariate time series provide a parameter that 
characterizes the dynamics of an attractor. It measures the rate 
of divergence of neighboring orbits within the attractor and 
thus quantifies the dependence or system sensitivity to initial 
conditions. The existence of at least 1 positive Lyapunov exponent 
is a strong indication of the presence of chaos in the system.

PERMUTATION TEST

The permutation test is used to analyze the relationship 
between the signals in the temporal series of SOI and the 
monthly means of surface wind and monthly means of maximum 
surface wind, from January 1951 to December 1999 (Good 2005; 
Collingridge 2013). The wind data used were from the São Luís 
Airport near the ALC. By definition, the vector P is the wind 
monthly mean and J (N × 1) is the monthly value of SOI. The 
test seeks to make random permutations of J, keeping P fixed. 
For each permutation, the correlation between vectors P and 
J was calculated, resampling the series in the order of 10,000 
times, thus building the distribution of correlations (r). From 
these distributions, the value that represents the confidence 
interval at the 5% level of the correlations in the upper or lower 
tail of distributions (r critical) can be obtained. The critical value 
of the correlation at 10,000 times is permuted, ordered from the 
smallest to the largest value; the calculated value at the 9,500º 
position is the critical one at the 5% level in the reconstructed 
distribution (in the upper tail) or in the lower tail; the critical 
value is that in the 500º position. The time series contains 587 
monthly values of wind average speed and maximum wind 
average values. The permutation test method is statistically 
more robust than the classical one to test the correlation signal 
between different series that have low correlation values.

RESULTS

Figure 2 shows the behavior of the autocorrelation function, 
in which the time series decays to 0 for a 13-month period 
(lag 13). The autocorrelation function exhibits positive correlation 

(2)

where: ρ = 0; H = 0.5, which is a random process.
Mandelbrot (1983) and Goldberger (1996) created a definition 

of fractal dimension: it is an index that seeks to characterize 
patterns, whose order is fractal sets or the quantification of that 
nature in its complexity as a reason applied to change his own 
scale. The fractal dimension can be measured in 2 different 
ways; one of which is geometrically and the other is carried 
out by probability space. More useful to signal analysis is the 
definition of fractal dimension that uses probability space 1/H. 
By this definition, a time series with a memory effect will have 
a fractal dimension between 1.0 and 2.0.

LYAPUNOV EXPONENT

The R package TSERIESCHAOS version 3.2.2 (2015), 
from the R Foundation for Statistical Computing, is available 
on https://cran.r-project.org/web/views/TimeSeries.html. The 
‘tseriesChaos’ algorithms generate analysis for non-linear time 
series. These algorithms were developed by Di Narzo (2013) 
and are available on https://cran.r-project.org/web/packages/
tseriesChaos/index.html (Hegger et al. 1999; Rosenstein et al. 
1993). Two functions are used:  function lyap_k (ʎ1) estimates 
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Table 2. Results of the function hurstexp (x) from R package.

Hurst exponent Value

Simple R/S Hurst estimation 0.694

Corrected R over S Hurst exponent 0.775

Empirical H 0.762

Corrected empirical H 0.739

Theoretical H 0.533

of about 0.14 for the return times (persistence characteristics) 
between 25 and 40 lag (2 –3 years) and between 52 and 64 lag 
(5 – 6 years), with higher significance for the latter. In the analysis 
of autocorrelation function in a time series, with a magnitude of 
the order of 0.14, this value should not be interpreted as a 
simple randomness in the time series but as a value of relative 
significance. It may represent possible temporal scale influences 
with periods of 2 – 3 and 5 – 6 years, respectively. The results 
were similar to those obtained by An and Wang (2000) using 
another method: wavelet analysis. They showed that the period 
of oscillation has increased from 2 – 4 years (high frequency), 
in 1962 – 1975, to 4 – 6 years (low frequency), in 1980 – 1993. 

or highly-periodic behavior. The results for H calculation 
were: H = 0.561; S = 0.013;  fractal dimension 1/H = 1.78 and  
coefficient of determination R2  = 1 − (SSE/SSM) = 0.911, 
where SSE is the sum of squared errors (residuals) and SSM 
is the sum of squares around the mean; weighted H = 0.704; 
weighted S = 0.007;  weighted fractal dimension 1/H = 1.420 
and R2, weighted by S, was:  R2 = 1 − (SSE/SSM) = 0.998. The 
coefficient of correlation ρ = 0.088, in the time series, has a 
fractal correlation value of about 10%, and the coefficient of 
correlation weighted by S is 0.326.

Figure 3. H of SOI time series calculation between 1951 
and 2015, normalized by S.

Figure 2. Series of autocorrelation of SOI values between 
1951 and 2015.
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Jin et al. (1996), analyzing ENSO and the existence of annual 
and sub-harmonic cycles of frequency block and aperiodicity, 
observed the transition and the occurrence of chaotic regimes 
close to 4 years and with a quasi-biennial peak, being produced 
by a dynamic of non-linear interactions.

In the study of Chang et al. (1995), on the interactions 
between the seasonal cycle and ENSO in an intermediate 
coupled Ocean-Atmosphere model, the ENSO cycle falls within 
a sandwiched regime between 3- and 2-year frequency-locking 
regimes. When the existence of a strange attractor for SOI with 
a fractal dimension of 2.5 to 6 (with a value close to 5.2) had 
been estimated, the analysis was performed by a simulation of 
1,000 years using the values of monthly SST time series. The 
observations in their study suggest a change of frequency, and 
this was accompanied by a significant change in the structure of 
coupled ENSO mode. This result shows the trend of persistency 
in decadal time series. 

Figure 3 shows the statistic range and suggests a positive 
long-range autocorrelation. The distribuition shows persistent 

SOI time series with the H calculation presents a long-range 
memory with persistence, with values of H = 0.561 and 1/H of 
about 1.78 with fractal dimension. These results can be interpreted 
as the relative tendency of a time series to strongly regress to 
its mean or to be grouped in 1 direction (Kleinow 2002). The 
results in Table 2 show that the H estimates using the function 
hurstexp (x) in R produce values above 0.5, characterizing a 
time series with long-range memory. 

Figure 4 shows the result of the function lyap_k with positive 
values in different time steps of SOI time series. The function 
lyap estimated with Lyapunov regression coefficient for SOI 
time series is ʎ1 = 0.40. These results show that SOI time series 
presents a chaotic behavior, which is consistent with Chang et al. 
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(1995), who propose that the ENSO irregularity can be viewed 
as a chaotic low-order process driven by the seasonal cycle. 
The main characteristic of the behavior of chaotic systems is a 
high sensitivity in the initial conditions, which implies that the 
evolution of the system can be modified by small disturbances 
in the system.

In the years of El Niño occurrence (negative SOI), the 
characteristics of dynamic systems in the equatorial region 
(the Hadley and Walker circulations) presented significant 
alterations, and their effects influence atmospheric behavior 
in the Brazilian northeast. Operationally, this would influence 
directly the ALC, with greater intensity to the wind profile 
near the surface.

Marques and Oyama (2015) conducted a study on the 
interannual variability of precipitation in ENSO-neutral years 
for the ALC. Using various gridded datasets for the 1951 – 2010 
period, the authors observed that, below average precipitation, 
it was related to strong east-norteasterly low-level winds 
(925 hPa) and northward of the interhemispheric gradient of the 
sea surface temperature anomalies over Atlantic (GRAD), as well as 
that, for El Niño conditions, northward GRAD would intensify the 
negative precipitation anomalies in the northern-northeastern Brazil.

Figure 6 presents, in a similar manner, the test shown in Fig. 
4, but the results show the correlation between SOI series and the 
monthly average of the wind maximums. The results statistically 
showed a correlation between the signals of the time series with 
a significant confidence interval at the 5% level. The averages of 
the monthly maximum winds would be higher in months with 
negative SOI (El Niño). The calculated correlation (−0.191) is 
displaced in the lower position of the tail of the distribution than 
the critical r value (−0.069).

Figure 6. Distribution of correlations between the monthly 
average maximum wind and SOI.
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Figure 4. The largest Lyapunov exponent for SOI time series.

Figure 5 shows the result of the permutation test between 
SOI and the resulting monthly mean of zonal and meridional 
wind components from São Luís Airport surface station in 
the Maranhão State. The calculated result shows statistical 
evidence that the temporal series has a significant correlation 
with the 5% level of confidence interval. The correlation 
calculated (−0.230) is more displaced in the lower position 
of the tail of the distribution than the critical r value (−0.068) 
in the lower tail. The monthly mean wind can be associated 
with SOI variation signal, as the correlation was negative, 
showing that, in the months when SOI is negative (situation 
with El Niño), wind average would be higher.

Figure 5. Distribution of correlations between the monthly 
average of the wind and SOI.

DISCUSSION

The application of the H methodology can capture the trends 
of SOI time series with significant results. This indicates that 
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the H method can be used as an alternative technique, allowing 
to show that SOI time series presents a long-range memory 
which is persistent throughout the lag range series. Using FFT, 
a significant signal was obtained, suggesting a persistence in 
the time series. This methodology has shown strong evidence 
that the H estimative is above 0.5, as the H value can represent 
a measure of the fractal dimension. A low fractal dimension 
presents greater coherence in time series and is more predictable; 
on the other hand, with high fractal dimension, it will have a 
behavior with less predictability.

The H calculation allows in its methodology to estimate 
a fractal dimension of SOI time series of about 1.78. This 
result can indicate chaotic behavior in SOI time series, thus 
quantifying the dependency or the sensitivity of the system 
to the initial ENSO conditions. Also, the ENSO irregularity 
can be viewed as a chaotic low-order process driven by the 
seasonal cycle.

CONCLUNDING REMARKS 

The results show the importance of Ocean-atmosphere 
interaction, where there are non-linear interactions. Associated 
teleconnections effects create complex dynamics, influencing 
and modulating the climatic indexes such as SOI. 

In El Niño occurrence (negative SOI), there is a statistical 
correlation with the monthly mean wind and its maximum 

monthly mean, as well as a tendency to influence the average 
wind profile behavior near the surface, which operationally affects 
the ALC. El Niño characterizes a situation with stronger winds 
and predominant direction (east-northeasterly). Northward 
GRAD would intensify the negative precipitation anomalies 
in the northern-northeast Brazil.

The series features long-range memory behavior; therefore, 
this preliminary analysis indicates that autoregressive models 
can be used in the seasonal forecast for the Brazilian northeast 
and for trend studies with interest in seasonal variability 
range for the ALC. The knowledge of the SOI behavior and its 
association with wind variability allows a better prediction of 
wind intensity and, consequently, an improvement in the safety 
of ALC launch activities.
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