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ABSTRACT: Boundary layers over concave surfaces may become unstable due to centrifugal instability that manifests itself as 
stationary streamwise counter rotating vortices. The centrifugal instability mechanism in boundary layers has been extensively 
studied and there is a large number of publications addressing different aspects of this problem. The results on the effect of 
pressure gradient show that favorable pressure gradients are stabilizing and adverse pressure gradient enhances the instability. 
The objective of the present investigation is to complement those works, looking particularly at the effect of pressure gradient 
on the stability diagram and on the determination of the spanwise wave number corresponding to the fastest growth. This study 
is based on the classic linear stability theory, where the parallel boundary layer approximation is assumed. Therefore, results 
are valid for Görtler numbers above 7, the lower limit where local mode linear stability analysis was identifi ed in the literature 
as valid. For the base fl ow given by the Falkner-Skan solution, the linear stability equations are solved by a shooting method 
where the eigenvalues are the Görtler number, the spanwise wavenumber and the growth rate. The results show stabilization 
due to favorable pressure gradient as the constant amplifi cation rate curves are displaced to higher Görtler numbers, with the 
opposite effect for adverse pressure gradient. Results previously unavailable in the literature identifying the fastest growing mode 
spanwise wavelength for a range of Falkner-Skan acceleration parameters are presented.

KEYWORDS: Götler vortices, Boundary layer, Pressure gradient, Linear stability analysis, Centrifugal instability.

INTRODUCTION

Th ere is a large body of publications addressing centrifugal instability of boundary layers over concave surfaces. Centrifugal 
instability in boundary layers results in the development of counter rotating vortices known as Görtler vortices. Th e review papers 
by Floryan (1991) and Saric (1994) describe the main conclusions about this subject. Many eff ects that aff ect the development of 
Görtler vortices have been studied in the last two decades (Goulpié et al. 1996; Zhang and Fasel 1999; Souza 2003; Mitsudharmadi 
et al. 2006; Schrader et al. 2011; Sescu and Th ompson 2015). Th ese studies address eff ects such as compressibility, surface roughness, 
non-linearity and secondary instability, among others. Görtler vortices development in boundary layers with pressure gradient is 
also under study since the late 1990s. A detailed review can be found in Rogenski (2015), who used direct numerical simulation 
to study nonlinear eff ects in the development of Görtler vortices on boundary layers with constant pressure gradient and linear 
varying pressure gradient.

Th e study of Ragab and Nayfeh (1981) was one of the fi rst studies to consider the eff ect of pressure gradient on the development 
of Görtler vortices. Besides the eff ect of pressure gradient, they also studied the eff ect of the displacement thickness on the base 
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flow, and showed that it significantly changes the stability results even for the Blasius boundary layer profile. Ragab and Nayfeh 
(1981) present neutral stability curves for Falkner-Skan type boundary layers with pressure gradient. Their results show that 
favorable pressure gradients are stabilizing while adverse pressure gradients are destabilizing, especially for low wavenumbers. 
For large values of the acceleration parameters, all wavenumbers bellow a certain limit seem to be unstable. Ragab and Nayfeh 
(1981) also studied the stability of boundary layers of variable curvature walls, computing the boundary layer velocity profiles 
with a marching scheme. The authors show that the results are different than those obtained with a local similarity solution due 
to the choice of initial conditions, especially in favorable pressure gradient regions.

The few results presented by Ragab and Nayfeh (1981) for variable wall curvature boundary layers are significant for flows over 
airfoils, as shown by the work of Mangalam et al. (1985). They performed experimental measurements on the concave surface 
of an airfoil, but no details of the pressure gradient distribution were given. Their results show that, as for constant free stream 
velocity and constant pressure gradient, once the spanwise wavenumber is established they remain fixed downstream up to the 
nonlinear and saturation region.

In 1994, Finnis and Brown (1994) presented another experimental study of the effect of pressure gradient on the development 
of Görtler vortices. They considered only favorable pressure gradient and showed its stabilizing effect as well as the fact that the 
spanwise wavenumber does not change due to the flow acceleration. Comparisons of experimental results and linear stability 
theory results for the streamwise velocity component were made, showing that for the range of parameters considered, the linear 
stability theory results provide a good approximation. A comparison between the local linear stability theory and a streamwise 
marching technique was presented by Goulpié et al. (1996). They considered base flows given by the Falkner-Skan solution and 
confirmed previous results, where favorable pressure gradient are stabilizing and adverse pressure gradient are destabilizing. 
Their study was motivated by the work of Otto and Denier (1993), who reported a stabilizing effect of adverse pressure gradient 
on the development of Görtler vortices computed with a marching analysis. Goulpié et al.’s conclusion was that the marching 
technique depends on the starting computation position downstream of the leading edge of the plate and on the proper choice 
of initial conditions, which may only be correctly specified after a receptivity analysis. The results of a marching analysis are also 
dependent on the criterion used to define the neutral point. Therefore, the concept of a single neutral curve is not tenable. Based 
on the disputed validity of the linear stability theory for low spanwise wavenumbers, they question the conclusion that Görtler 
vortices below a certain wavenumber are always unstable, as inferred by Ragab and Nayfeh (1981).

Non-parallel effects can be accounted for using series expansion in terms of powers of one over the square of the Reynolds 
number for certain specific cases, as done by Itoh (2001) for the stagnation point flow. The formulation results in a critical Görtler number 
for a finite value of the spanwise wavenumber which is accurate from the solution of the lowest order expansion even for relatively 
low Reynolds numbers.

With an interest in flow control, the combined effect of pressure gradient and suction or blowing was studied by Matsson (2008) 
using a non-linear, non-local downstream marching model. He used the saturation amplitude as an indication of stabilization by 
favorable pressure gradient and suction. Both concave and convex walls can be unstable for adverse pressure gradient if a base flow 
has an overshoot in the velocity profile. The base flow considered by Matsson (2008) was of the Falkner-Skan family including cases 
with overshoot similar to wall jet flows. Pressure gradient and suction and blowing change not only the boundary layer thickness, 
but also the lateral spreading of the characteristic mushroom-like structures of the Görtler vortices. These changes in topology 
are accompanied by changes in the saturation amplitude and growth rates and after saturation the amplitude decays to a lower 
constant level, followed by secondary instability. Matsson’s results also show that favorable pressure gradient results in stronger 
vortices in the nonlinear region. The vortices grow stronger with higher kinetic energy in the nonlinear region, and maintain 
their structure further downstream before saturation. In other words, the vortices strength increases, but not their instability, as 
they remain coherent further downstream. Matsson (2008) associated this higher kinetic energy with instability, but in reality, 
maintaining the vortical structure without saturation or breakdown for a longer streamwise extent is actually associated with 
higher stability of the mushroom structure (secondary instability). Adverse pressure gradient results are more unstable on the 
linear region, saturate earlier and at a lower amplitude compared to the Blasius results. These results depend also on the spanwise 
wavenumber, but only two wavenumbers were tested by the author. Taking the Blasius boundary layer solution as reference, the 
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smaller wavenumber (β = 0.22) chosen by Matsson (2008) is more unstable than their higher wavenumber (β = 0.52), showing that 
the former is closer to the wavenumber associated with the maximum amplification. That pattern was the same for either suction/
blowing and pressure gradient, in a sense that suction and favorable pressure gradient are stabilizing. The greatest stabilization 
was obtained with both suction and favorable pressure gradient.

The results for the nonlinear development and saturation of Görtler vortices obtained by Matsson (2008) can be compared 
with the results obtained by Souza and his group (Rogenski et al. 2013; 2016a; 2016b), who have been using direct numerical 
simulation (DNS) to study the development of Görtler vortices in boundary layers with pressure gradient. In a first paper Rogenski 
et al. (2013) studied the effect of curvature variation on the nonlinear development of Görtler vortices as a way to control their 
growth and consequent transition to turbulence. They show the stabilizing effect of a convex surface downstream of the concave 
wall that generates the primary counter rotating vortices. For a concave surface followed by a flat wall the results show the slow 
decay rate of the vortices on the flat wall region.

In a second paper Rogenski et al. (2016a) address the question of variable pressure gradient, with more details about the 
free stream condition than that given by Mangalam et al. (1985). A zero pressure gradient boundary layer was used as reference 
condition and three conditions were studied, constant pressure gradient, constant Hartree parameter and linear varying pressure 
gradient. Both favorable and adverse pressure gradients were considered. The results show that the adverse pressure gradient 
destabilizes the flow. The growth rate for constant adverse pressure gradient is larger than the growth rate for constant Hartree 
parameter, which may be explained by the fact that a constant Hartree parameter corresponds to a decaying adverse pressure 
gradient downstream. For constant pressure gradient, the higher the pressure gradient the higher the growth rate, but the higher 
adverse pressure gradient Hartree parameter does not result in the highest amplification.

According to Rogenski et al. (2016a), the effect of pressure gradient depends on the vortices spanwise wavenumbers. By 
considering three different values of spanwise wavenumber they observed that large spanwise wavenumbers are more unstable 
when the pressure gradient is favorable. For adverse pressure gradient the opposite is true, small spanwise wavenumbers are more 
unstable. These results suggest that the fastest growing spanwise wavenumber changes with the pressure gradient. This is one of 
the investigations proposed in the present paper. The present investigation tries to clarify the effect of pressure gradient on the 
fastest growing mode in order to justify the stronger instability of the large spanwise wavenumber vortices in a favorable pressure 
gradient, confirm the explanation offered by Rogenski et al. (2016a) based on the size of the vortices, thickness of the shear layer 
and velocity gradients.

Rogenski et al. (2016a) also considered cases where the pressure gradient went from adverse to favorable and from favorable 
to adverse. Again, by considering the same three distinct values of spanwise wavenumbers, they show that vortices with different 
spanwise wavelength respond differently to pressure gradient, but regardless of the wavelength, going from favorable to adverse 
pressure gradient results in greater instability than going from adverse to favorable pressure gradient.

The non-linear regime was further explored by Rogenski et al. (2016b). They studied the development of Görtler vortices up to 
the nonlinear breakdown stage in boundary layers with pressure gradient. They use the energy of the fundamental Fourier mode 
and of the mean flow distortion as an indication of saturation to show that adverse pressure gradient anticipates saturation while 
favorable pressure gradient delays saturation. The energy at the saturation point is also higher for adverse pressure gradient. Three 
different spanwise wavenumbers were tested by Rogenski et al. (2016b), Λ = 160, 305 and 450. They show that the saturation point 
depends also on the wavenumber. For all spanwise wavenumbers tested, adverse pressure gradient promotes earlier saturation of 
the Görtler vortices, while favorable pressure gradient results in latter saturation and saturation at a lower kinetic energy level. 
Saturation takes place earlier for the lower spanwise wavenumber. The kinetic energy at the saturation point is higher for the larger 
spanwise wavelength, except for Λ = 450, where the kinetic energy is lower than for Λ = 305. The results also indicate a possible 
correlation between adverse pressure gradient and the development of secondary instability of the varicose type.

The objective of the present investigation is to extend previous results, undertaking a more detailed analysis on the effect of 
pressure gradient on the stability diagram and on the fastest growing spanwise wavenumber. Previous studies considered only a 
limited number of spanwise wavenumbers. The location of a given wavenumber with respect to the fastest growing wavenumber 
is an important aspect which has not been considered in previous works. Even the results from Goulpié et al. (1996) considered a 
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limited number of Λ, and 210 is shown to be the fastest growing mode among the spanwise wavenumber tested, but no conclusion 
of the actual fastest mode can be drawn.

This study proposes to investigate the location of the fastest growing wavenumber for different pressure gradient conditions 
in order to create a map of growth rate versus pressure gradient that gives a more complete picture of the stability condition. The 
location of the neutral curve and the levels of growth rate will be used as references to define stabilization or destabilization due 
to pressure gradient when compared to the zero pressure gradient base flow.

The paper is organized such that the section on the methodology presents the formulation for the base flow and for the stability 
equations. The section on the results presents comparisons between neutral curves for different pressure gradient conditions, 
along with the stability diagrams, showing the displacement of the constant growth rate curves due to pressure gradient and the 
location of the fastest growing spanwise wavenumber. A summary of the findings and conclusions are presented in the last section.

METHODOLOGY

The stability of boundary layers over concave surfaces can be studied using linear stability, normal modes formulation. But 
this approach is not valid for low Görtler numbers, which is the nondimensional controlling parameter in centrifugal instability 
on boundary layers. That is so because the growth of the disturbances is of the same order as the growth of the boundary layer 
and the flow cannot be considered parallel. For Görtler numbers lower that 7 the problem is parabolic and upstream dependent 
as shown by Bottaro and Luchini (1999) and Hall (1983). Nevertheless, the local, normal modes approach is useful to undertake 
a parametric study and results are reliable to Görtler numbers higher than Go = 7, identified by Bottaro and Luchini (1999) as the 
value above which the local normal mode approach is valid. Therefore, the present investigation only considers neutral curves 
for Görtler numbers above this threshold and no attempt is made in order to define a critical Görtler number. Also, the concept 
of the fastest growing spanwise wavenumber has been validated by experimental results in quiet test facilities, where no preferred 
wavelength is excited (Bippes 1978; Winoto et al. 1979; Aihara and Koyama 1981; Mangalam et al. 1985).

BASE FLOW
In the present investigation the base flow will be given by the solution of the Falkner-Skan similarity profile for different values 

of the pressure gradient parameter βfs. The choice for the base flow given by the Falkner-Skan boundary layer profile follows Floryan 
(1991). The author presented an order of magnitude analysis showing that, for a concave plate with radius of curvature much 
larger than the boundary layer thickness, at first order approximation the base flow is that given by the boundary layer equations 
without any curvature terms and that the curvature effects are present only on the stability equations.

The Falkner-Skan similarity requires that (Eq. 1)
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The similarity transformation in the normal to the wall direction is (Eqs. 2 and 3)
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and the resulting ordinary differential equation is (Eq. 5)

βfs = m, (4)
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et al. [1996]. This equation is solved by classical shooting methods, using a fourth order Runge-

Kutta method to integrate from the wall to a position far on the free stream.

The Boundary conditions for this equation are no slip and impermeability at the wall

and imposed free stream velocity away from the wall.

2.2 Local, Normal Modes Analysis

The centrifugal stability equations can be derived by decomposing the flow velocities as a base

component and a disturbance [Floryan, 1991].

u(x, y, z, t) = U(y) + u′(x, y, z, t), (6)

Normal modes solutions are sought assuming that the disturbances may be represent as
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û+ αUxû
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û′′ −
(
Uα + β2 + Ux

)
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û+ αUxû
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û+ αUxû
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where ′ represent eigenfunction u and v derivation with respect to the normal direction and

the subscript y and x represent derivation of the base flow with respect to the corresponding

normal and streamwise directions.

These equations are written in nondimensional form, using as reference length scale in

the streamwise direction the distance from the leading edge x and in the normal and spanwise

directions the boundary layer thickness parameter δ, as suggested by Floryan [1991], such that

using subscript d to indicate dimensional quantities,

α = αd x, and β = βd δ. (10)

The velocities are also scaled differently, with U representing the free stream velocity

away from the wall and Re the Reynolds number defined in Eq. 12

u =
ud

U
, v =

vd
U
Re, w =

wd

U
Re. (11)

Choosing δ =
√

νxd/U as the reference length scale in the spanwise and normal direc-

tions, the Görtler number is defined as

Go2 = kδRe2, Re =
Uδ

ν
. (12)

The boundary conditions are no slip at the wall and exponential decay away from the

wall.

u = v = v′ = 0 em y = 0, (13)

u, v → 0 para y → ∞. (14)

The problem posed by Eqs. 8 and 9 and by the boundary conditions above, results in

an eigenvalue problem where the dispersion relation is f(Go, β, α) = 0.

The non-parallel terms Ux, Uxy, V, Vx and Vy will be neglected. For accelerating or decel-

erating flows due to pressure gradient, the first order boundary layer solution normal velocity

9

where ′ represent eigenfunction u and v derivation with respect to the normal direction and

the subscript y and x represent derivation of the base flow with respect to the corresponding

normal and streamwise directions.

These equations are written in nondimensional form, using as reference length scale in

the streamwise direction the distance from the leading edge x and in the normal and spanwise

directions the boundary layer thickness parameter δ, as suggested by Floryan [1991], such that

using subscript d to indicate dimensional quantities,

α = αd x, and β = βd δ. (10)

The velocities are also scaled differently, with U representing the free stream velocity

away from the wall and Re the Reynolds number defined in Eq. 12

u =
ud

U
, v =

vd
U
Re, w =

wd

U
Re. (11)

Choosing δ =
√

νxd/U as the reference length scale in the spanwise and normal direc-
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This is the Falkner-Skan similarity equation written in the same form used by Goulpié et al. (1996). This equation is solved by 
classical shooting methods, using a fourth order Runge-Kutta method to integrate from the wall to a position far on the free stream.

The Boundary conditions for this equation are no slip and impermeability at the wall and imposed free stream velocity away 
from the wall.

LOCAL, NORMAL MODES ANALYSIS
The centrifugal stability equations can be derived by decomposing the flow velocities as a base component and a disturbance 

(Eq. 6) (Floryan 1991).

Normal modes solutions are sought assuming that the disturbances may be represent as (Eq. 7)

where α is the growth rate and β is the spanwise wavenumber and û is a complex amplitude.
Substitution of the decomposition and the normal mode solution Eq. 7 back in the incompressible Navier-Stokes equations, 

the following stability equations (Eqs. 8 and 9) are derived

and

where ́  represents eigenfunction u and v derivation with respect to the normal direction; the subscripts y and x represent derivation 
of the base flow with respect to the corresponding normal and streamwise directions.

These equations are written in nondimensional form, using as reference length scale in the streamwise direction the distance 
from the leading edge x and in the normal and spanwise directions the boundary layer thickness parameter δ, as suggested by 
Floryan (1991), such that using subscript d to indicate dimensional quantities (Eq. 10),

The velocities are also scaled differently, with U representing the free stream velocity away from the wall and Re the Reynolds 
number defined in Eq. 11

Choosing                                 as the reference length scale in the spanwise and normal directions, the Görtler number is defined 
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as (Eq. 12)
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The boundary conditions are no slip at the wall and exponential decay away from the wall (Eq. 13 and 14).

The problem posed by Eqs. 8 and 9 and by the boundary conditions above results in an eigenvalue problem where the dispersion 
relation is f (Go, β, α) = 0.

The nonparallel terms Ux, Uxy, V, Vx and Vy will be neglected. For accelerating or decelerating flows due to pressure gradient, 
the first order boundary layer solution normal velocity component V grows or decays continuously outside the boundary layer. 
This is inconsistent with the hypothesis that the disturbance decays exponentially away from the wall when the base flow velocity 
components are constant. In order to avoid this problem, Ragab and Nayfeh (1981) have proposed an optimal coordinate system 
based on the streamlines of the potential flow, such that for large values of the normal coordinate the normal velocity tends to a 
constant. The present investigation neglect these nonparallel terms.

RESULTS

On the following sections the neutral curves for boundary layers with favorable and adverse pressure gradients are compared 
to the stability diagram for a Blasius boundary layer. The constant amplification curves are compared for different values of the 
Falkner-Skan acceleration parameter. Also, The position of the fastest growing spanwise wavenumber Λmax on each diagram will 
show the relation between Λmax and pressure gradient.

NEUTRAL CURVES
It is well known that adverse pressure gradients destabilize the boundary layer and favorable pressure gradients have stabilizing 

effect. Figure 1 shows a comparison between the neutral curves for different values of the Falkner-Skan acceleration parameter 
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Figure 1. Comparison of neutral curves for different Falkner-Skan acceleration parameters. Solid line = Blasius boundary layer; 
dashed lines = favorable pressure gradient; dotted lines = adverse pressure gradient. Above Go ≈ 10 the instability region of 
the favorable pressure gradient flow is larger than that of the adverse pressure gradient flow.
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βfs. Below Go ≈ 10 the unstable region is reduced for favorable pressure gradient and increased for adverse pressure gradient. 
Above Go ≈ 10 this trend is reversed, as seen in Fig. 2. This result was also reported by Goulpié et al. (1996), but one has to take 
into consideration that the position of the neutral curve is not the only aspect to take into account when judging the stability of 
a given flow. It is also needed to compare the growth rates and the most dangerous mode amplification.
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Figure 2. Comparison of neutral curves for different Falkner-Skan acceleration parameters. Detail of Fig. 1 in the range where 
the favorable pressure gradient has a larger range of unstable spanwise wavenumbers β than the adverser pressure gradient.

STABILITY DIAGRAMS
The following results show the stability diagrams including lines of constant amplification α in order to evaluate the effect of 

pressure gradient. The reference case is the stability diagram for the Blasius boundary layer shown if Fig. 3.

Figure 3. Görtler vortices stability diagram, zero pressure gradient boundary layer.

The eigenvalue solution stability diagrams presented in Figs. 3 to 12 show constant amplification rate curves for different values 
of α in the Go, β plane. The straight lines correspond to the fastest growing spanwise wavenumber. For the Blasius boundary 
layer the non-dimensional spanwise wavenumber of the fastest growing mode is Λ = 212 according to the criterion adopted here, 
where (Eq. 15)

 0.1

 1

 10

 100

 0.1  1  10

βfs = 0.1, 0.2, 0.3, 0.4, 0.5

βfs = -0.02, -0.04, -0.06, -0.08, -0.09

G
o

β

Figure 1: Comparison of neutral curves for different Falkner-Skan acceleration parameters.

Solid line, Blasius boundary layer. Dashed lines, favorable pressure gradient. Dotted lines,

adverse pressure gradient. Above Go ≈ 10 the instability region of the favorable pressure

gradient flow is larger than that of the adverse pressure gradient flow.

to the fastest growing spanwise wavenumber. For the Blasius boundary layer the nondimen-

sional spanwise wavenumber of the fastest growing mode is Λ = 212 according to the criterion

adopted here, where

Λ =
Uλ

ν

√
kλ = Go

(
2π

β

)3/2

, (15)

and λ = 2π/β is the dimensional spanwise wavelength.

Since Ue = Ue(x) for boundary layers with pressure gradient, unlike in the Blasius

boundary layer, Λ varies downstream even for walls with constant curvature k and constant

spanwise wavelength λ. Following a line of constant λ corresponds to the following variations

of Go, β and Λ from a given starting position indicated by the subscript i, according to the

following relations.

11

(15)

and λ = 2π/β is the dimensional spanwise wavelength.
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Figure 4. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = 0.1.

Figure 5. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = 0.2.

Figure 6. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = 0.3.
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Figure 7. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = 0.4.

Figure 8. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = 0.5.

Figure 9. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = −0.02.
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Figure 10. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = −0.041

Figure 11. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = −0.06.

Figure 12. Görtler vortices stability diagram, Falkner-Skan boundary layer with βfs = −0.08.
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Since Ue = Ue(x) for boundary layers with pressure gradient, unlike in the Blasius boundary layer, Λ varies downstream 
even for walls with constant curvature k and constant spanwise wavelength λ. Following a line of constant λ corresponds to the 
following variations of Go, β and Λ from a given starting position indicated by the subscript i, according to the following relations 
(Eqs. 16 to 18).
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Figure 2: Comparison of neutral curves for different Falkner-Skan acceleration parameters.

Detail of Fig. 1 in the range where the favorable pressure gradient has a larger range of

unstable spanwise wavenumbers β than the adverser pressure gradient.
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Two criteria were adopted to identify the fastest growing mode. One base on the spanwise

wavenumber β that has the largest growth rate at Go = 7. The other one base on the largest

amplification marching downstream from Go = 7 to Go = 14 along a path of constant spanwise

wavelength λ. The amplification is computed according to equation 19.

12

 4

 6

 8

 10

 12

 14

 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

G
o

β

βfs = 0
0.5

-0.08

Figure 2: Comparison of neutral curves for different Falkner-Skan acceleration parameters.

Detail of Fig. 1 in the range where the favorable pressure gradient has a larger range of

unstable spanwise wavenumbers β than the adverser pressure gradient.

β

βi

=

(
x

xi

)(1−m)/2

(16)

Go

Goi
=

(
β

βi

)(3+m)/[2(1−m)]

(17)

Λ

Λi

=

(
β

βi

)2m/(1−m)

(18)

Two criteria were adopted to identify the fastest growing mode. One base on the spanwise

wavenumber β that has the largest growth rate at Go = 7. The other one base on the largest

amplification marching downstream from Go = 7 to Go = 14 along a path of constant spanwise

wavelength λ. The amplification is computed according to equation 19.

12

 4

 6

 8

 10

 12

 14

 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

G
o

β

βfs = 0
0.5

-0.08

Figure 2: Comparison of neutral curves for different Falkner-Skan acceleration parameters.

Detail of Fig. 1 in the range where the favorable pressure gradient has a larger range of

unstable spanwise wavenumbers β than the adverser pressure gradient.
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Two criteria were adopted to identify the fastest growing mode. One base on the spanwise

wavenumber β that has the largest growth rate at Go = 7. The other one base on the largest

amplification marching downstream from Go = 7 to Go = 14 along a path of constant spanwise

wavelength λ. The amplification is computed according to equation 19.
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The values for the fastest growing nondimensional wavenumber Λmax depends on the

choice for the downstream extent considered (in this case, 7 < Go < 14), because a line of

constant λ does no follow exactly the line of minimum Go for a given constant growth rate

curve.

Figures 3 to 12 also show two values of Λ, one at the starting point Go = 7 and one

for the last streamwise position at Go = 14, along the path of constant λ. For the Blasius

boundary layer Λ is constant according to Eq. 15.

The stability diagrams for favorable pressure gradients are presented in Figs. 4 to 8.

The lines of constant growth rate α are displaced upward as the acceleration parameter βfs is

increased. The value of Λ for the fastest growing mode decreases as βfs increases, according to

the criterion base on the amplification from Go = 7 to Go = 14. This result is shown in Tab.

1. The criterion base on the highest growth rate at Go = 7 shows that Λmax levels off after

βfs = 0.4, increasing slowly afterward.

The opposite trend is observed for the adverse pressure gradient stability diagrams as

shown if Figs. 9 through 12. Lines of constant growth rate α are displaced downward, indicating

that higher amplification rates are reached earlier, at a lower Go. The fastest growing mode

Λmax increases continuously as summarized in Tab. 1.

Figures 13 and 14 show the variations the nondimensional spanwise wavelength Λ and

the amplification rate α along the path of the fastest growing modes for different values of the

Falkner-Skan acceleration parameter βfs, including the values of the Blasius boundary layer.

They complement and summarize the conclusions taken from the stability diagrams regarding

the values of Λmax and stability characteristics for different pressure gradient conditions. The

growth rates increases continuously as the Falkner-Skan parameter goes from βfs = 0.8 to

βfs = −0.8

These results confirm previous results on the effect of pressure gradient on the stability

of Görtler vortices, but cover a larger range of parameters. The nondimensional spanwise

wavenumber Λ of the Blasius boundary layer associated with the fastest growing mode, reported

in a range around Λmax = 210, is often used as a reference for different studies. The present

results show that Λmax varies considerably with pressure gradient. The values of Λmax for
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Two criteria were adopted to identify the fastest growing mode. One based on the spanwise wavenumber β that has the largest 
growth rate at Go = 7. The other one based on the largest amplification marching downstream from Go = 7 to Go = 14 along a 
path of constant spanwise wavelength λ. The amplification is computed according to Eq. 19.

The values for the fastest growing nondimensional wavenumber Λmax depends on the choice for the downstream extent 
considered (in this case, 7 < Go < 14), because a line of constant λ does no follow exactly the line of minimum Go for a given 
constant growth rate curve.

Figures 3 to 12 also show two values of Λ, one at the starting point Go = 7 and one for the last streamwise position at Go = 14, 
along the path of constant λ. For the Blasius boundary layer Λ is constant according to Eq. 15.

The stability diagrams for favorable pressure gradients are presented in Figs. 4 to 8. The lines of constant growth rate α are 
displaced upward as the acceleration parameter βfs is increased. The value of Λ for the fastest growing mode decreases as βfs increases, 
according to the criterion based on the amplification from Go = 7 to Go = 14. This result is shown in Table 1. The criterion based 
on the highest growth rate at Go = 7 shows that Λmax levels off after βfs = 0.4, increasing slowly afterward.

The opposite trend is observed for the adverse pressure gradient stability diagrams as shown if Figs. 9 to 12. Lines of constant 
growth rate α are displaced downward, indicating that higher amplification rates are reached earlier, at a lower Go. The fastest 
growing mode Λmax increases continuously as summarized in Table 1.

Figures 13 and 14 show the variations the non-dimensional spanwise wavelength Λ and the amplification rate α along the path 
of the fastest growing modes for different values of the Falkner-Skan acceleration parameter βfs, including the values of the Blasius 
boundary layer. They complement and summarize the conclusions taken from the stability diagrams regarding the values of Λmax 
and stability characteristics for different pressure gradient conditions. The growth rates increase continuously as the Falkner-Skan 
parameter goes from βfs = 0.8 to βfs = −0.8

These results confirm previous results on the effect of pressure gradient on the stability of Görtler vortices, but cover a larger 
range of parameters. The non-dimensional spanwise wavenumber Λ of the Blasius boundary layer associated with the fastest growing 
mode, reported in a range around Λmax = 210, is often used as a reference for different studies. The present results show that Λmax 
varies considerably with pressure gradient. The values of Λmax for different values of the acceleration parameter βfs are reported.
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Table 1. Fastest growing mode spanwise wavenumber parameter Λ for different Falkner-Skan acceleration parameter βfs. 
Second and third columns integrated amplitude criterion. Forth column, maximum growth rate at Go = 7 criterion.

adverse dp/dx favorable dp/dx

βfs Λi (Go = 7) Λf (Go = 14) Λ βfs Λi (Go = 7) Λf (Go = 14) Λ

0.0 212 212 185 0.0 212 212 185
–0.01 216 214 187 0.1 183 200 172
–0.02 220 216 188 0.2 165 197 166
–0.03 225 219 191 0.3 152 196 163
–0.04 230 221 194 0.4 141 197 161
–0.05 236 225 197 0.5 133 199 161
–0.06 243 229 200 0.6 127 202 161
–0.07 251 235 205 0.7 121 206 161
–0.08 260 241 211 0.8 116 210 162
–0.09 275 253 220 0.9 112 212 164
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Figure 13. Variation of Λ along the path corresponding to the fastest growing wavelength. 
Favorable and adverse pressure gradients.

Figure 14. Variation of the growth rate α along the path corresponding to the fastest growing wavelength. 
Favorable and adverse pressure gradients.
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CONCLUSIONS

The present work presents further information on the effect of pressure gradient on the development of Görtler vortices in 
boundary layers over concave surfaces. The study was conducted based on the linear stability theory, which is valid for Görtler 
numbers above 7. Stability diagrams for values of the Falkner-Skan similarity solution acceleration parameter βfs ranging from 
favorable to adverse pressure gradients were compared to the stability diagram of the Blasius boundary layer. The results show 
the destabilizing effect of adverse pressure gradient and the stabilizing effect of favorable pressure gradient, as already reported 
in the literature. The constant growth rate curves are displaced upward or downward on the stability diagram depending on 
the pressure gradient, such that higher growth rates are encountered latter downstream or earlier upstream, respectively. The 
growth rates along the path in the streamwise direction are shown to increase with decreasing favorable pressure gradient or 
increasing adverse pressure gradient. The main focus of this work was on the determination of the fastest growing modes spanwise 
nondimensional wavenumber parameter Λmax. A range of Falkner-Skan acceleration parameters was investigated and the values 
of Λmax were identified. The effect of pressure gradient on the development of Görtler vortices reported in previous investigations 
can be further understood when the relation between the reported wavelength on those works and the fastest growing mode for 
the given acceleration parameter is considered.
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