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Abstract — This paper presents an encoding scheme adapted for 

Fiber Bragg Grating (FBG) optimization using metaheuristics. The 

proposed encoding scheme uses spline approximations in order to 

build softened refractive index profiles from few encoded 

parameters. This approach is suitable for Fiber Bragg Grating 

(FBG) synthesis because it ensures both the reduction of the 

problem dimensionality and the respect of important restrictions 

associated to the FBG manufacture. Simulations are shown where 

an ES using the spline encoding was able to converge faster and 

produce more interesting filters, when compared with conventional 

encoding schemes.  
  

Index Terms — FBG, Evolution Strategies, spline, chromosome, encoding.  

I. INTRODUCTION 

Fiber Bragg Gratings (FBGs) are flexible components. By adjusting the parameters that describes 

their refractive index profile, it is possible to obtain filters showing reflectance spectrum adapted to 

almost any type of application. Unfortunately, this procedure (FBG synthesis) is not a trivial problem 

and several techniques have been proposed with some degree of success. 

For example, if only weak gratings are considered, the refractive index profile can be obtained from 

the Fourier Transform of the reflection coefficient. This was the approach used by Winick and Roman 

[1] with interesting but inaccurate results. On the other hand, other techniques like these based on 

Layer Peeling (LP) [2] [3] are capable of very accurate solutions in terms of reflectance spectrum, but 

have as side effect the generation of large and complex refractive index profiles that are difficult to 

built using Ultra Violet (UV) mask manufacture techniques [4]. In order to attend all restrictions 

associated to the FBG manufacture, Askanes et al [5] proposed a hybrid method that combines 

classical optimization techniques and the LP algorithm.  

Other interesting design alternatives are those based on Evolutionary Algorithms (EA). Genetic 

Algorithm (GA) [6] and Particle Swarm Optimization (PSO) [7] allow achieving satisfactory results 

even under heavy restrictions imposed by the manufacture process. For example, in [8], a pioneer 

article about the use of GAs for FBG synthesis, feasible Wavelength Division Multiplexing (WDM) 

filters with negligible dispersion are obtained. In [9], the FBG synthesis is performed using the 

Covariance Matrix Adapted Evolution Strategy (CMAES) with relative great success. Similar results 

are achieved in [10] using PSO. In [11], a GA is applied in the synthesis of Triangular FBGs 

(TFBGs). In [12], the TFBG synthesis is performed again, but using the CMAES. 
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Although literature shows that metaheuristics can be used to synthesize FBGs, they suffer because 

of the high number of parameters needed to represent a FBG properly. Using the modeling based on 

uniform sections presented in [13], an apodized FBG one centimeter long could be well represented 

by about one hundred uniform sections, each one modeled by four parameters. Even considering a 

single parameter by section, about one hundred in total must be used to represent the entire FBG. This 

high dimensionality can make the metaheuristic optimization scheme not practical. Frequently in the 

literature a FBG is designed using a reduced number of uniform sections. For example, in [10], only 

20 sections are considered. The use of a reduced number of sections can generate mismatches large 

enough to work like mirrors inside the FBG, which can create several cavities along the grating. In 

this case the reflectance spectrum can result noisy and full of undesired lobes, affecting the 

metaheuristic convergence. 

Therefore, it is interesting to produce softened refractive index profiles and find a way to do that 

using as few parameters as possible. Fortunately, according to the information theory, softened signal 

formats shall carry naturally less information and, consequently, it is possible to use less parameter to 

encode them. This article explores the use of spline approximations to create softened profiles from 

few points stored in ES individuals (chromosomes) [14]-[16]. Section II presents the basic FBG 

model. Section III presents the usual way to encode a FBG and the proposed spline encodings. 

Section IV presents the ES algorithm. Section V compares the performance of several encoding 

schemes through computer simulations. Finally, Section VI presents the conclusions. 

II. FBG MODEL 

Following the matrix formulation from [13], the refractive index profile is given in function of the 

axial distance z: 
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where neff is the effective refractive index, δn the modulation parameter and λB is Bragg wavelength. 

Using the coupled mode theory, it is possible to calculate a 2x2 matrix F that represents a uniform 

section of length ∆z: 
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where R(z) and S(z) stand for the field amplitude functions of the propagating and back propagating 

modes respectively. Hence, R(0) and S(0) represent the field amplitudes before the section at z = 0 

and, at z = ∆z, R(∆z) and S(∆z) represent the field amplitudes after the section. The transfer matrix F is 

calculated in function of δn, λB, ∆z, and neff, all of them considered constant along the section. Indeed, 

in this work, neff will be considered always constant for the entire grating. 
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A non uniform Bragg Grating can be modeled as a sequence of M uniform short gratings (uniform 

sections). Let Fk be the transfer matrix of the k-th section, where k = 0 for the first section at z = 0. 

The total transfer matrix for the apodized grating of length L = M × ∆z can be obtained by multiplying 

all its M section matrices: 

1 2 1 1 0... ...
T M M k k− − −= × × × × ×F F F F F F F . (3) 

Now (2) can be rewritten in function of the total matrix FT: 
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where R(L) and S(L) represent respectively the field amplitudes of the propagating and back 

propagating modes at z = L. 

The FBG reflectance is given in function of FT elements by: 
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An apodized FBG can be represented in a vector form like ( δn0, δn1,…, δnk,…, δnM–2, δnM–1, λB 0, λB 1, 

…, λB k, …, λB M–2, λB M–1, ∆z0, ∆z1,…, ∆zk, ∆z M–2, ∆z M–1), which is also a natural way to represent a FBG as 

an individual in metaheuristics. In practical terms, not all parameters should be present in the vector 

because they could be constant or known for the entire grating. For example, the representation in the 

format ( δn0, δn1, …, δnk–1, δnk, δnk+1, …, δnM–2, δnM–1 ) was essentially the way chosen in [12] to 

represent individuals in the CMAES.   

III. ENCODING STRATEGIES 

Let us consider to be enough to represent ES individuals as Y = ( y0, y1, …, yk–1, yk, yk+1, …, yM–2, 

yM–1 ), where yk could be any parameter among δnk, λB k or ∆zk. This encoding scheme will be referred 

here as direct encoding (DE), where the number of search space dimensions is equal to M, the same 

number of uniform sections. Satisfactory FBG representations make use of at least 20 sections for a 

centimeter long grating [10]-[12]. 

An interesting way to reduce the number of dimensions is through some sort of indirect encoding, 

where the individuals store few parameters in a vector form like X = ( x0, x1, …, xj–1, xj, xj+1, …, xm–2, 

xm–1 ) with m < M. Any yk can be calculated from X using linear interpolation: 
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And j = floor(dk), with the function floor( ) returning the closest integer below the argument. The 
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encoding scheme given by (6) and (7) will be referred as linear encoding or LE. 

Another approach is to replace the linear interpolation by a spline approximation. This paper 

explores quadratic and cubic splines [16]. For the quadratic spline encoding (QSE), yk can be 

calculated from X by  

1
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where dk is given by (7), j = round(dk) and t = dk – j + ½. The function round( ) returns the nearest 

integer from the argument. 

For the cubic spline encoding (CSE), the relationship between yk and X is given by: 

3 2 2 3(1 ) 3 (1 ) 3 (1 )
k

y A t Bt t Ct t Dt= − + − + − +  (9) 

where dk is given by (7), j = trunc(dk) and t = dk – j. The parameters A, B, C and D are given 

respectively by: 

1
1 16

4 , 0 ( 1)

, otherwise

j j j

j

x x x j m
A

x

− +
  + + < < −  

= 


, (10) 

( )1
13

2 , ( 1)

, otherwise

j j

j

x x j m
B

x

+
 + < −

= 


, (11) 

( )1
13

1,

2 , ( 1)

otherwise

j j

m

x x j m
C

x

+

−

 + < −
= 


, 

(12) 

and  

( )1
1 26

1

4 , 3

, otherwise

j j j

m

x x x j m
D

x

+ +

−

 + + < −
= 


. (13) 

For m < 3 the cubic spline approximation shall be replaced by linear interpolation and yk shall be 

calculated using (6) and (7). 

Examples of curves constructed by using LE, QSE and CSE are shown in the Fig. 1. The vector 

(0.0, 0.25, 0.1, 0.7, 1.0, 0.7, 0.1, 0.25, 0.0) with m = 9 was used to produce these curves, each one 

with 200 points (M = 200). As one can see, the spline approximations are smoother than LE and the 

CSE is the most. 

IV. EVOLUTION STRATEGY 

Evolution Strategies, among other meta-heuristics like GA, evolve individuals applying nature 

inspired operators. Back in 1970s, ES used to evolve a single individual by creating only one child 
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each generation [17]. Modern versions of ES use a population of parents and differ from GA basically 

in the encoding and selection schemes [18]. 
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Fig. 1. δnk profiles calculated using LE, QSE and CSE for M = 200, obtained from a test curve with m = 9. 

 
 

 

 

 

 

 

 

 

Fig. 2. ES algorithm. 

 

The adapted version of ES used in this article should be better defined as a (SA, SB) – ES, where SA 

and SB are respectively the sizes of parent and child populations [19]. The algorithm is shown in Fig. 

2. It starts creating two populations, A and B, to store respectively SA and SB individuals. Inside the 

generation loop (line 5), each individual of B is replaced by a new one made by the application of the 

01. Start A with SA random individuals; 

02. Start B with SB (SB > SA) individuals; 

03. Calculate the fitness for all individuals of A; 

04. Store the A best individual in Abest; 

05. For each generation: 

06.  For each B individual from B: 

07.   Select a random individual A1 from A; 

08.   B = A1; 

09.   If r < Aga( A1, PC ) : 

10.    Select a random individual A2 from A; 

11.    B = Crossover( A1, A2 ); 

12.   B = Mutation( B, Aga( A1,  δ ) ); 

13.   Calculate the fitness of population B; 

14.  Replace A by SA best individuals from B; 

15.  If Abest worse than A best: 

16.   Update Abest; 

17.  If Abest better than A best 

18.   Insert Abest in A; 
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intermediate crossover and Gaussian mutation. r in line 9 represents a uniform random value between 

0 and 1. In this same line the function Aga( ) returns the crossover probability based on A1 rank, using 

Adaptive Genetic Algorithm (AGA) procedure defined in [20]. Thus, the intermediate crossover 

operator is optionally applied in line 11 using A1 and A2 (A2 ≠ A1) as parents. In line 12 the Aga( ) 

function is used again in order to feed Gaussian mutation with its standard deviation [18]. In the line 

14 all individuals of population A are replaced by the SA best individuals copied from B. The iteration 

is complete after the elitist procedure from 15 to 18. Note in the line 18 the individual Abest being 

inserted in A, what set the population size temporally to SA + 1 until A be reset in line 14 in the next 

generation. The fitness calculations in lines 3 and 13 are based on the sum of squared errors between a 

target curve and the FBG reflectance spectrum. Let Ri be the i-th reflectance value calculated for 

wavelength λi and Ti be the respective target value. The fitness value f for each individual can be 

calculated by 
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where N represents the number of samples used to build the reflectance curve and Ri is calculated 

using (5). Since the fitness function is an error value, the ES of Fig. 2 minimizes f. 

The Aga( ) function used in lines 9 and 12 can be defined as 
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where rank(A) returns the rank of the A individual inside population A (it returns zero for the best and 

(SA – 1) for the worst), h is the rank of the individual whose fitness value is closest to the average, α is 

the control parameter. Aga( ) returns zero for the best ranked individual in the population and α for 

the worst. 

 

V. SIMULATIONS 

In order to validate the proposed encoding schemes, the ES defined in the previous section was 

applied using direct encoding, LE, QSE and CSE. All following results were obtained using SA = 10, 

SB =40, mutation deviation and crossover probability given by AGA using α equals to 0.01 and 1.0 

respectively. The maximum number of generations of 10000 was used as stop criteria. 

Two projects were used to compare the proposed techniques. The first one was a FBG centered in 

1.55µm and the second was a TFBG from 1.5495µm to 1.5505µm. The target curves of both are 

shown in Fig. 3. Note that the target curve for the FBG is not continuous. The interval from 1.5498µm 

to 1.5502µm has two gaps of 0.05nm left and right. They offer accommodation space for reflectance 

curves once abrupt targets are very difficult to fit. 

The fitness in all simulations was calculated using (14) with number of samples N set to 100. 
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Samples are spaced uniformly in terms of wavelength inside the target region. If one sample drops 

inside a gap in the FBG target, it is not considered in the sum of (14). In all simulations the number of 

uniform sections used was 50 (M = 50). 

For each project and for each encoding, the ES was tested 20 times with different random initial 

populations. 
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Fig. 1. Target curves for FBG and TFBG projects. 

 

A. FBG project 

For the FBG project, all sections have the same parameters ∆z and λB respectively set to 200µm and 

1.55µm. Indirect encoding schemes used m = 5 for δn. Both direct and indirect encodings used 0 < δnk 

<5×10
-4

. 

Fig. 3 compares the δn profile and reflectance curve for the most ranked Bragg reflectors 

synthesized using LE, QSE and CSE. The linear interpolation was the worst among all indirect 

encoding schemes. QSE and CSE schemes gave almost same results. Fig. 4 compares the results 

obtained for QSE and DE. Direct encoding achieved the best reflectance curve, but the δn obtained 

profile was not as smooth as others obtained using QSE and CSE. It is interesting to observe how all 

profiles are near each other. 

Fig. 5 shows the average evolution of fitness in function of generation number for ES using DE, 

QSE and CSE. Direct encoding has poor performance since spends more generations to reach 

convergence. This behavior was expected because here DE dealt with 10 times more dimensions in 

search space than indirect encodings. The number of generations can be used safely as performance 

measurement parameter because the fitness function is called exactly 40 times each generation. 

Furthermore, the computational time spent in interpolations and spline approximations were 
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negligible next the processing time spent in fitness calculations. 

Table I shows performance parameters: the best final fitness found in all 20 runs, worst fitness 

found, the mean fitness and the standard deviation. It also shows the convergence number, i.e., the 

average number of generations necessary to grant fitness value with an error of 0.1% in comparison to 

the last fitness value. 

 

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

x 10
-4

k

δ
n

k

(a)

 

 

1.549 1.5492 1.5494 1.5496 1.5498 1.55 1.5502 1.5504 1.5506 1.5508 1.551
-70

-60

-50

-40

-30

-20

-10

0

Wavelength [µm]

R
ef

le
ct

an
c
e 

[d
B

]

(b)

 

 

LE

QSE

CSE

 

Fig. 2. δn profiles (a) and reflectance spectra (b) for FBGs synthesized using LE, QSE and CSE encoding schemes. 
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Fig. 3. δn profiles (a) and reflectance spectrum (b) for FBG synthesized using QSE and DE. 
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Fig. 6. Average curves of fitness value in function of generation number for QSE, CSE and DE. 
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TABLE I. FBG PERFORMANCE PARAMETERS 

Parameter DE LE QSE CSE 

Best 0.0286 0.05667 0.03690 0.03870 

Mean 0.0314 0.05671 0.03692 0.03872 

Worst 0.0424 0.05674 0.03695 0.03875 

Deviation 1.76×10-5   1.98×10-5  1.60×10-5 1.63×10-5 

Convergence 2634 208 185 141 

 

B. TFBG project 

For the TFBG project, all sections used ∆z = 400µm and linear chirp defined by the variation of λB 

in function of k. As stated in [12], the linear chirp is necessary in order to achieve the desired 

bandwidth of 1nm. However, differently from [12], where the linear chirp was fixed, here it was 

defined by ES itself by encoding λB k in individuals always using LE with m = 2. The parameter δnk 

was encoded using m = 7 for indirect encoding schemes. Thus, individuals were represented as a 

vector of 9 dimensions for indirect encoding schemes and of 52 dimensions for DE. All encoded 

schemes used 0 < δnk <5×10
-4

 and 1549nm < λB k < 1551nm. 

Fig. 7 compares δn profiles and reflectance spectra of best ranked FBGs synthesized using LE, QSE 

and CSE schemes for the TFBG project. Fig. 8 compares only the results obtained by using QSE and 

DE encodings. As observed in the Bragg reflector project, the linear interpolation brings the worst 

results among all studied indirect encoding schemes. QSE and CSE are very similar to each other in 

terms of reflectance but inverted in terms of profile. Indeed, the chirp obtained for DE, LE, QSE and 

CSE were respectively 1.1536nm/cm, 1.4206nm/cm, 1.4254nm/cm and −1.4188nm/cm. The CSE 

minus signal indicates a decreasing λB k toward the last section of the FBG. Since no restrictions were 

imposed concerning the inclination of λB k curves, negative and positive values were obtained evenly 

for all encodings. Fig. 9 shows the average evolution of the fitness value in function of generation 

number for ES using direct encoding, LE, QSE and CSE. Table II shows some performance 

parameters for TFBG project. As observed in the FBG project, the DE resulted again the best among 

all encoding schemes in terms of fitness function. The DE superiority is not so obvious in terms of 

reflectance as one can see in Fig. 8. As expected, the optimization process using DE spends more 

generations to converge. However the difference between DE and indirect encodings is not so deep as 

observed in the FBG project.  
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Fig. 7. δn profiles (a) and reflectance spectrum (b) for TFBG synthesized using LE, QSE and CSE. 

 

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5
x 10

-4

k

δ
n

k

(a)

1.549 1.5495 1.55 1.5505 1.551
0

0.2

0.4

0.6

0.8

1

Wavelength [µm]

R
ef

le
c
ta

n
c
e

(b)

 

 

DE

QSE

 

Fig. 8. δn profiles (a) and reflectance spectrum (b) for TFBG synthesized using QSE and DE. 
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Fig. 9. Average curves of fitness value in function of generation number for DE, LE, QSE and CSE. 

 

TABLE II. TFBG PERFORMANCE PARAMETERS 

Parameter DE LE QSE CSE 

Best 0.1218 0.1425 0.1326 0.1339 

Mean 0.1456 0.2356 0.2354 0.2454 

Worst 0.2035 0.2585 0.2723 0.3130 

Deviation 0.0179 0.0396 0.0597 0.0642 

Convergence 872 513 572 492 

 

VI. CONCLUSIONS 

Spline encodings combined to a modified evolutionary strategy have been successfully applied in 

the FBG synthesis. Two projects have been considered and comparisons involving quadratic and 

cubic spline encodings, direct encoding, and linear encoding have been provided. It has been shown 

that spline schemes are able to reduce the number of dimensions and generate attractive softened 

refractive index profiles. 

Quadratic spline encoding (QSE) should always be considered in detriment of cubic encoding 

(CSE) because it is simpler, has comparable performance and give better results. 

However, spline encodings are not free of issues. If the search space is too much simplified, the 

possible solutions can lose its flexibility. As result, the direct encoding overcame the indirect 

encoding schemes. Nevertheless the results from spline schemes are more attractive due its simpler 
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profiles. An interesting possibility to conciliate performance and flexibility would be to use spline 

encoding to achieve an initial solution for further application of a direct encoded meta-heuristic or 

another suitable optimization technique. 

The definition of m parameter in indirect encodings was accomplished based on a trial and error 

procedure. A better way to do that could be through a progressive spline encoding scheme where the 

number of parameters m would be increased gradually whenever the population diversity drops below 

a threshold. This technique would require the insertion of new random parameters in individuals in 

the middle of optimization process, probably in a very similar way as performed in [21]. 
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