
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 11, No. 1, June 2012 

Brazilian Microwave and Optoelectronics Society-SBMO received 28 Nov. 2011; for review 29 Nov. 2011; accepted 21 May 2012 

Brazilian Society of Electromagnetism-SBMag © 2012 SBMO/SBMag ISSN 2179-1074

 

122

 

Abstract— This paper presents a computational model of electrons 

dynamics and gain in four-level two-electron atomic systems. 

These systems, submitted to an electromagnetic wave, are 

governed by Pauli Exclusion Principle and they are modeled using 

the Time-Domain Transmission Line Matrix (TLM) method with 

the symmetrical condensed node (SCN) with novel voltage sources. 

The development of the proposed model is based on the 

incorporation, in Maxwell’s equations, of the coupled rate 

equations with Pauli Exclusion Principle, taking into account the 

dynamic pumping in the TLM formulation. The scattering matrix 

characterizing the SCN with the new voltage sources is provided 

and the numerical results are compared with those of the literature 

or with the theoretical ones.  
  

Index Terms— Atomic media, TLM method, Pauli Exclusion Principle. 

I. INTRODUCTION 

During the propagation of an electromagnetic (EM) wave in a medium, it can be submitted to three 

processes: spontaneous emission, stimulated absorption and emission. These processes contribute, 

according to the rate equations, to the evolution of the population densities of electron energy states 

during propagation [1]. On the other hand, the space-time evolution of EM waves, during 

propagation, obeys Maxwell’s equations, and depends on the macroscopic polarization density owing 

to the response of the medium to the EM wave. When the field has a low intensity, the polarization 

density is supposed proportional to the electric field intensity. This kind of non-linear interaction 

allows the exchange of energy between EM waves and the electrons of the medium. Several papers 

have modeled these interactions using FDTD method [2]-[5], in particular the approach based on the 

auxiliary differential equation (ADE), to study absorption in two-energy level atomic systems and 

gain of four-level systems [2]. By coupling Maxwell’s equations and the rate equations describing 

electrons population, this method can model EM wave propagation in random gain media [3]. It was 

also used, by including Pauli Exclusion Principle and the dynamic pumping, to study EM wave 
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interaction with four-level two-electron atomic systems [4] and multi-level multi-electron atomic 

systems [5]. 

The Transmission Line Matrix (TLM) method [6]-[11] was rarely used for modeling this kind of 

phenomena, the first approach modeling quantum properties of two energy level atomic systems were 

proposed in [8]. In order to explore this field and to contribute to the development of a novel 

numerical model using the Time-Domain TLM method with the symmetrical condensed node (SCN), 

we have introduced novel voltage sources to this node [9]-[11] by including Pauli Exclusion Principle 

and dynamic pumping. This new model describes the space-time evolution of electrons populations’ 

densities in each energy level and gives the frequency evolution of the gain in the atomic system of 

four-level two-electron. Furthermore, the scattering matrix characterizing the SCN with the new 

voltage sources is provided and the simulation's results are compared to those of the literature or 

obtained by the theoretical solutions. 

II. FORMULATION 

The propagation of EM waves in atomic systems induces a time depending dipolar moment in the 

different atoms [1]. This shows the importance of the dipolar radiation theory which allows to give a 

simple interpretation of several phenomena related with EM waves interactions with material in the 

classical model. In addition to Maxwell’s equations which govern EM wave propagation in this 

medium, it is necessary to take into account the equations of the oscillations due to wave and material 

interactions, and also the energy level population rate equations, which allow to predict the number of 

electrons in each energy level, coupled with Pauli Exclusion Principle. 

A. Macroscopic polarization equations 

Electron transitions in atomic systems with four energy levels iE  and respective normalized 

densities iN (i = 0, 1, 2, 3) are considered as in a simplified model of two oscillating dipoles: aP  for 

1E  to 2E
 
transitions with a frequency aω and bP

 
for 0E to 3E  transitions with a pumping  frequency 

bω illustrated in Fig. 1. 

 
Fig. 1.Four-level two-electron model. 
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The equations of macroscopic polarization are [4]: 
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=  are the radiative energy decay rates.  

aω∆ and bω∆ are the total energy attenuation rate which describe the spectral line width of the 

transition taking into account the energy loss by pumping and relaxation effects. 

B. Pauli Exclusion Principle 

In an atom having many electrons, we must take into account Pauli Exclusion Principle which 

forbids two electrons to have the same quantum state.  This principle allows to determine electron 

distributions in the different energy levels. In a four-level two-electron atomic system, submitted to a 

dynamic pumping, this principle appears through the rate equations describing electrons populations’ 

densities in each energy level by introducing a factor (1-N), where N is the normalized density of the 

population in the lower energy level. In this case, the modified rate equations are given by [4]: 
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(2) 

Where iN is the normalized density of electrons populations in the energy levels iE (i = 0, 1, 2, 3)  and 

ijτ is the life-mean -time of electrons between energy levels iE  and jE . 

C. TLM Model for a Four-Energy-Level Two-Electron Atomic Systems 

In order to implement a numerical model for the simulation of the interaction of EM wave with four-

energy level two-electron atomic systems using the TLM method with the SCN and novel voltage 

sources, we combine  the equations (1) and (2) with those of Maxwell: 

a b
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(3) 

Let’s consider an EM wave propagating in a 3D regular mesh (∆x = ∆y = ∆z) , Maxwell’s equations 

time-discretization with a time step ∆t gives at a time nt = n∆t , the following expressions: 
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Where t t tP (i, j, k) = P (i, j, k) P (i, j, k)+ . 

 The TLM approach modeling EM wave interactions with atomic systems governed by Pauli 

Exclusion Principle is formulated from the equations given below. In these equations, we have 

replaced the EM parameters (E, H) by their equivalent voltages and currents (V, I): 

0V = E. L, I = H. L and V = Z .I∆ ∆   (5) 

Where ∆l is the space step and 0Z is the intrinsic impedance of vacuum. Thus,  the equations (4) 

become: 
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 The fields (E, H) in the curls of  equations (6) are converted into local incident and scattered voltage 

pulses V
i
 and V

r
 on the faces of the SCN of the TLM Method [6]-[7]. Thus making use of charge and 

energy conservation principle through the transmission lines forming the SCN, and imposing the 

continuity conditions on the electric and magnetic fields [6], we obtain at time n∆t  the following 

scattering matrix of the SCN with voltage sources: 
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(7) 

The obtained matrix models EM wave propagation in an atomic system taking into account the 

physical effects related with the medium polarization with the voltage sources  sx sx sx(V , V , V ) which 

are expressed as follows: 
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Where u=x, y, z. n+1P is the medium’s polarization at time n+1t = (n+1)∆t . Its expressions are deduced 

from the time discretization of equations (1): 
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(9) 

 The TLM method with voltage sources algorithm implementation is based on a recursive 

computation of n+1
auP (i, j, k) and n+1

buP (i, j, k) given by the equation (9). This allows to update voltage 

sources given by (8), n+1V (i, j, k)  from (6)  and to determine the population densities n+1
iN  with i=0, 

1, 2, 3 given by (2). Local scattered voltage pulses rV  at the SCN are obtained from the scattering 

matrix expressed in (7). Finally, we establish connections between nodes along the spatial TLM 

lattice. 

III. NUMERICAL RESULTS 

The proposed model was used to simulate the effect of an incident EM wave on a four-level two-

electron atomic system. This allows to predict the electrons dynamic between energy levels by the 

modified rate equations, by introducing Pauli Exclusion Principle and pumping dynamic as well as the 

incident signal amplification by this system. The physical parameters characterizing this atomic 

system of four energy levels 0 1 2 3E E E E< < <  with two electrons are [2]: 14
aω = 2π.10 rad/s , 

16
ω = 2π.10 rad/sb , 12

aω = = 4π.10 rad/sbω∆ ∆ , with the electron life-time between energy levels 

-10
32τ = 0,99.10 s , -7

21τ =1,35.10 s , -9
10τ =1.10 s , -10

30τ =1.10 s , and initial normalized electrons 

population densities in the energy level 0 1N = N =1 and 2N = 0.  The spatial TLM lattice considered is 

(1,1,1000)∆l , with ∆l  is the mesh width taken to be -23.10 µm.  The atomic system spans the cells 

located between 8∆l  and  208∆l  in the z direction. The air-system interface is excited first with a 

sine wave of amplitude 2.10
8
V/m and frequency 1.10

14 
Hz. In order to prove the efficiency of the 

proposed model, we present in Fig. 2 the time evolution of the population difference 12 1 2∆N = N -N  at 

z=108∆l . The results obtained from TLM method show good agreement with FDTD method [2]. 
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Fig. 2. Comparison of population difference as computedted by SCN-TLM and FDTD methods. 

 

In the beginning of the dynamic pumping, the electrons move from 1E  to 0E , then to 3E  and finally 

to 2E . The population in level 1E  starts to decrease and the population in level 2E starts to increase. 

The time evolution, of the electrons population densities in the different energy levels, is shown in 

Fig. 3.  
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Fig. 3. (a) Time variation of the population densities N0, N1, N2 and N3. 
                                                 (b) The inversion between energy levels E1 and E2. 

 
 

Figure 4 illustrates the space evolution of the population densities after 8000 time step. 1N decreases 

and 2N increases quickly at 2z = 24.10  µm− which corresponds to the air-system interface. Through 

the TLM mesh, 1N and 2N vary slightly about the same limit value 0.5 in the opposite direction, 

which indicates the saturation of the EM transition. 
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 Fig. 4. Evolution of the population densities along the TLM  mesh after 8000 time step. 

  

In the second part, we have excited the air-system interface using a Gaussian wave of 

amplitude 1V/m and frequency 1.10
14

 Hz [2]. The values of the electric field magnitudes in 

the two edges, air-system and system-air, allow to evaluate the amplification factor as shown 

in Fig. 5. Here again, the TLM method generates results in very good agreement with those 

of [2] and with the theoretical ones [1]. 
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Fig. 5. Comparison of amplification factor versus frequency as computed by theory, FDTD and SCN-TLM methods. 

IV. CONCLUSION 

We have developed a novel modeling approach for EM wave propagation in four-level two-electron 

atomic systems, using the SCN-TLM method, with new voltage sources including Pauli Exclusion 

Principle and dynamic pumping coupled with the population rate equations. In order to illustrate the 

validity of this novel model combining both classical electrodynamics with quantum mechanics, we 

have simulated the electrons dynamic between two energy levels through the variation of populations’ 

densities by the modified rate equations with Pauli Exclusion Principle, pumping equation and 

computing the incident field amplification. The good agreement between the novel TLM approach 
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results and those available in the literature proves its validity and efficiency. Hence, this study 

contributes to the widening of the field of the problems treated by the TLM method. 
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