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Abstract— This paper presents Artificial Neural Network 

(ANN) implementation for the Radio Frequency (RF) and 

Mechanical modeling of lateral RF Micro Electro 

Mechanical System (MEMS) series micro machined Single 

pole double through (SPDT) switch. We propose an efficient 

approach based on ANN for analyzing the losses in ON and 

OFF state of lateral RF MEMS series switch by calculating 

the S-parameters.  The double beam structure has been 

analyzed in terms of its return, isolation and insertion losses 

with the variation of its passive circuit component values. 

The effect of design parameters has been analyzed and the 

lateral switch was realized with low insertion loss, high 

return and isolation losses. ANN model were trained with 

five different training algorithms namely Levenberg-

Marquart (LM), Bayesian Regularization (BR), Quasi – 

Newton (QN), Scaled Conjugate Gradient (SCG) and 

Conjugate Gradient of Fletcher – Powell (CGF) to obtain 

better performance and fast convergence. The results from 

the neural model trained by Levenberg-Marquardt back 

propagation algorithm are highly agreed with the 

theoretical results available in the literature. The neural 

networks shows the better results with the highest 

correlation coefficient which measures the strength and 

direction of linear relation between two variables (actual 

and predicted values) (0.9998) along with lowest root mean 

square error (MSE) of (0.0039). 

 
Index Terms— Artificial neural networks, Micro electro 

mechanical systems, Training algorithms, correlation 

coefficient. 

I. INTRODUCTION 

 
Micro Electro Mechanical System (MEMS) is the integration of mechanical elements, sensors, 

actuators and electronics on common silicon substrate by micromachining process [1]. The 

advancements in the field of designing sensors, micro machines and control elements have facilitated 

much attention in the rapid developments of radio frequency (RF) MEMS. The first MEMS switch 

was demonstrated in 1971 using electrostatic actuation used to switch low frequency electrical signals 
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[2]. When compared to the performance of MEMS switches, traditional integration of PIN diode and 

GaAs FET in switching circuits are degraded because of high insertion and low isolation losses in 

high frequency (GHz) [3] range. They are suffering from high power consumption and significant 

inter modulation product due to nonlinear  characteristics [4].  

On the other hand, the recently developed RF MEMS switches exhibit excellent switching 

characteristics over wideband from RF to mm–wave frequencies (0.1 to 100GHz) with the following 

remarkable advantages: extremely low insertion loss (0.1dB) and very high isolation up to 100GHz, 

near zero power consumption (10-200nJ/switching cycles), simple biasing circuit, potential for low 

cost and no inter modulation product (30-50dB better than PIN or FET switches) [4,5].  

These superior qualities of RF MEMS switch make them viable structure for various applications 

such as signal routing in transceivers applications [8], phase shifters in phase array antenna [3], 

impedance matching networks [6], wide band tuning networks, reconfigurable antennas, filters and 

related circuits [9]. MEMS concepts have been successfully applied in the development of RF 

switches to be used in the phase shifters which are having the benefits of low loss, low parasitic and 

high linearity [10]. 

Based on direction of motion, MEMS switches can be classified into two main categories: vertical 

and lateral switches. Most of the reported works are based on vertical switch which performs in wafer 

plane displacement and surface contact [6]. But the lateral switch performs in wafer plane 

displacement and side wall contact. The vertical switches have the drawbacks of stiction problem 

during the moveable structure release. But in the case of lateral switches, the actuators, contacts, 

support structures and conducting paths can be fabricated in a single step and hence have the benefit 

of co-fabrication. Besides, it is easy to get mechanical force in opposing direction even when 

electrostatic designs are used [6, 7].  

In microwave and millimeter wave communication systems, MEMS single pole double through 

(SPDT) switches are used as an alternative of GaAs MESFET and PIN diode integrated switching 

circuit [11] as they suffer from low isolation and high insertion loss. The MEMS SPDT switches are 

more suited for giga hertz (GHz) range due to their low insertion, high isolation, negligible power 

consumption and good linearity.   

Traditionally in design process, the objective of reducing the time and cost is relied on 

experiments. Since the usage of RF MEMS devices in modern IC (Integrated Circuits) and RF 

applications has been increased, an accurate and efficient Computer Aided Design (CAD) tools are 

required. The present full wave techniques for RF MEMS devices like FEM (Finite Element method) 

[12] and Finite Difference Time Domain (FDTD) method shows good accuracy with large memory 

requirements. The inability of these methods for RF MEMS modeling on system level limits their use 

for individual device level analysis. Though many approaches for circuit level simulation have been 

proposed, the design and optimization of electronics incorporating MEMS devices are still 

problematic. As an alternative for above mentioned limitations, ANN has been recognized as a viable 
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modeling technique with massively parallel computation process. An accurate device characterization 

and efficient prediction of general input-output relationship can be achieved based on nonlinear 

mapping capabilities of neural network. Although extensive time and effort are required for preparing 

the dataset, once the network is trained, the proposed model accurately predicts the device responses 

for arbitrary inputs within the desired range. 

In this work, a coplanar waveguide (CPW) lateral micro machined (SPDT) switching circuit which 

find application in high frequency transmitting and receiving signal routing is implemented using 

neural networks. Generation of training and testing datasets are realized from MATLAB simulation.  

Due to the optimization of generalized dimension of actuation part, the S-parameters of open and 

closed state of RF lateral switch and low actuation voltage are obtained. The resultant input and 

output relationship are mapped using the neural model. Based on valid range of input parameters, 

neural network are trained and tested. The neural models are trained with Levenberg-Marquart (LM), 

Bayesian Regularization (BR), Quasi – Newton (QN), Scaled Conjugate Gradient (SCG) and 

Conjugate Gradient of Fletcher – Powell (CGF) training algorithms.  

 

II. THEORY OF SINGLE AND DOUBLE BEAM LATERAL RF MEMS SWITCH 

 

In our previous work, the detailed loss analysis of single beam lateral (only one beam displaces) 

switch was discussed for ON and OFF states [13]. Additionally in this work, double beam (both 

beams are displaceable) RF lateral switch which provides a perfect RF symmetrical circuit has been 

analyzed. The double beam structure presents the advantages of lower insertion loss and high power 

handling and higher life time due to less residual stress. Since the spring constant for structures of 

single and double membranes are equal, the switching time for both structures will be the same.  

Actually the spring constant of the switch affects the threshold voltage. The spring constant of a 

membrane depends on the geometry, material, residual stress and degrees of its freedom. The only 

difference between the conventional single beam and double beam switch is an improvement on 

threshold voltage. This goal has been concentrated in this paper by controlling the original gap 

between the two electrodes and the width of beam and mass part of cantilever structure. The proposed 

double beam switch consisting of a Si-core finite ground coplanar waveguide (FGCPW) and an 

electrostatic actuator is shown in fig.1 (a) & (b). The FGCPW is formed by thick single-crystal-silicon 

plate that has been coated with thin layer of aluminum (Al) to make the RF signal propagation not 

only along the metal on the top surface, but also on the sidewalls of the transmission line. In this 

switch, two cantilever beams are employed and can be used as signal lines together to propagate RF 

signal [14]. The fixed connections of the two cantilever beams are from the same port and the two 

contact tips are on the other port. At the free-end of the two cantilever beams, both ground lines 

extend towards the nearby cantilever beams to serve as their fixed electrodes respectively.  
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When sufficient DC bias voltage is applied between the cantilever beam and the ground line, the 

cantilever beam is pulled toward the fixed electrode by electrostatic force until its free end hits the 

contact bump, resulting in the on-state of the switch. When DC bias voltage is removed, the 

mechanical stress of the beam overcomes the stiction forces and pulls the cantilever beam away, 

resulting in the off-state of the switch. Due to the asymmetrical layout of the two ports, the S-

parameters obtained from the two ports are not reciprocal [3]. 

 

 

                                       (a)                                                                                         (b) 

                  

                                       (c)                                                                    (d) 

Fig.1. Schematics top view of RF lateral switches. (a) Single beam (b) Double beam. 

Equivalent electrical model circuits (c) Single beam (d) Double beam 

 

A. RF modeling of the lateral SPDT switch 

An equivalent circuit model for the single beam RF MEMS switch is shown in fig 1(c). The model 

consists of characteristic impedance 0Z  of the input and output sections of the FGCPW transmission 

line, the resistor lR  and  the inductor L  of a cantilever beam, switch series capacitor sC  (open-state), 

or contact resistor cR  (closed state), and a shunt coupling capacitor gC . In the single-beam switch, 

only one cantilever beam is used to serve as a movable electrode and signal line. In order to achieve 

low insertion loss and high power handling, double cantilever beams can be used as signal lines 

together to propagate RF signal.  
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The equivalent circuit for the double-beam switch shown in fig.1(d) can be reduced to the from the 

equivalent circuit model of the single beam switch. Therefore, for the double beams switch, the circuit 

parameters are related with the electrical equivalent model of single beam switch as follows: the 

whole beam resistor and contact resistor of closed switch ( )2,2 0101 cc RRRR == , inductor  

( )20LL = , [3] series capacitor of open switch and shunt coupling capacitor ( )00 2,2 ggss CCCC == , 

with the assumption that the two cantilever beams are identical [14]. Hence, only the circuit model of 

the single beam switch is discussed in this paper.  

 In the open state, the switch performance is determined by the switch capacitance sC .The shunt 

coupling gC between the cantilever beam and the fixed electrode can be estimated as 

fg C
g

tl
C += 20ε

                      (1) 

Where 0ε  is the permittivity of the air ( )mF1210854.8 −× , 2l is the length of the electrode part of 

the cantilever beam, t  is the thickness of the beam, g is the distance of the gap between two 

electrodes and fC  is the fringing field capacitance. This coupling capacitance is fairly large and 

affects the loss mechanism in the closed state of the switch. 

 

B.  Mechanical modeling of lateral switch   

When a micro machined circuit is designed, it is important to consider the switching voltage. The 

low actuation voltage can be achieved through the optimization of the geometrical dimensions of the 

actuation part. The top view of the electrostatic actuator used in the modeling is shown in fig.2. The 

actuator consists of four components: a suspended cantilever beam serving as a movable electrode, an 

anchor on the substrate to support the cantilever beam, a fixed electrode opposite to the cantilever 

beam and a contact bump. 

 The cantilever beam OC is a beam-mass structure. For the beam part OA, the width is 1w  and the 

length is 1l . For the mass part AC, the width is 2w and the length is ( )32 ll + in which 2l is the length of 

the electrode section AB and 3l  is the length of BC. The mass width, 2w , is designed to be relatively 

wider than the beam width, 1w , so that low threshold voltage can be maintained and greater 

deformation of the electrode section may be avoided. 

By assuming the electrode part of the cantilever beam subjected to a uniform load, the equivalent 

stiffness k, of the cantilever beam [15] can be derived as the expression  
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Fig.2. Top view of the electrostatic actuator 

  

where 1E and 2E are the Young’s moduli of the narrow part and wide part respectively. 1I and 2I are the 

moments of inertia of the cross sectional area of the narrow and wide part  of the beam respectively. 

Before the deposition of the metal, the beam is merely made up of single-crystal-

silicon. 121 ,, IEE and 2I is the Young’s modules of the single crystal silicon and is given by  

GPaEE 14021 == . 

twI
3
11

12

1
=                                         (3) 

twI
3
22

12

1
=                                                      (4)   

 After the deposition of Al on the top surface of the beam, the beam is made of single crystal silicon 

partially covered with Al. Therefore 121 ,, IEE and 2I  can be given by   
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 where AlE  is the Young’s modules of Al (70GPa), Alw  the thickness of Al deposited at sidewalls 

of the silicon beam.  

For the design of the lateral switch in static behavior, low threshold voltage is always desired. The 

threshold voltage can be determined by above two forces. In this work, the threshold voltage is 

determined based on the cantilever beam structure by considering the original gap between two 

electrodes, the length ratio and the beam and mass width of the cantilever. 
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Since the switching is carried out by an electrostatic force, one has to know the relation between 

the electrostatic force eF  and the real-time distance g  of the gap between the ends of two electrodes. 

eF can be written as:  

( )
2

2
20

2g

tVI
gFe

ε
=                                                                                 (9) 

where V is the applied voltage. At equilibrium, the electrostatic force eF  is equal to the restoring 

force rF , which can be written as: 

                     ( ) ( )ggkgFr −= 0                                                                             (10)  

where 0g  is the initial gap between the two electrodes. The relation between g and the applied 

voltage V can be obtained by solving the following equation: ( ) ( )ggkgFr −= 0  

 

III.ARTIFICIAL NEURAL NETWORKS 

 

 ANNs are biologically inspired computer programs to simulate the way in which the human brain 

process information. It is a very powerful approach for building complex and nonlinear relationship 

between a set of input and output data. The recent work by researchers demonstrated the ability of 

neural networks to learn and model a variety of microwave components, such as micro strip 

interconnects [16], packing and interconnects, spiral conductors and CPW components. Neural 

models can be much faster than original detailed EM/physics models, more accurate than polynomial 

and empirical models, allow more dimensions than table lookup models and are easier to develop 

when a new device / technology is introduced [17]. The cost for developing neural models is mainly 

depending on data collection and training. 

 The power of computation is determined from connections in a network. Each neuron has weighted 

inputs, simulation function, transfer function and output. The weighted sum of inputs constitutes the 

activation function of the neurons. The activation signal is passed through a transfer function which 

introduces non-linearity and produces the output. During training process, the inter-unit connections 

are optimized until the error in prediction is minimized. Once the network is trained, new unseen 

input information is entered into the network to calculate the test output. Many types of neural 

networks developed for various applications are available in the literature. 

 The class of neural network and its architecture for a particular model implementation depends on 

the nature of problem to be solved. The neural network architecture used in this paper is the 

MultiLayer Perceptron Neural Network (MLPNN). These networks having multilayer feed forward 

architecture composed of layers of computing nodes called neurons [16]. The MLPNN is one of the 

most extensively used ANN due to its well-known general approximation capabilities and limited 

complexity.  

 The MLPNN model used in this work consists of three layers: an input layer, an output layer and 

two intermediate or hidden layers. Each neuron in the input layer is acting only as a buffer for 
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distributing the input signals ix  to neurons in the hidden layer. Each neuron j  in the hidden  layer 

sums up its input signals ix  after weighting them with the strengths of the respective connections ijw  

from the input layer and compute its output jy  as  a function of the summation and    

       ( )∑= iijj xWfY                                                                        (11)                                                   

 where f can be a simple threshold function, a sigmoidal [17] or hyperbolic tangent function [18]. 

The output of neurons in the last (output) layer is computed similarly. 

 Training a network consists of adjusting weights of the network using learning algorithms. During 

learning process, neural network adjusts the weights and thresholds so that the error between neural 

predicted output and sampled output is minimized. All learning algorithms used in this work are based 

on multilayer correction [19] learning algorithm called back propagation. The five different training 

algorithms we used in this work are described briefly as below.   

 

A.  Levenberg – Marquardt (LM) algorithm 

 This is a least –square estimation method based on the maximum neighborhood idea [20]. The LM 

method combines the best features of the Gauss-Newton technique and the steepest-descent method, 

but avoids many of their limitations. In particular, it generally does not suffer from the problem of 

slow convergence. 

B.  Bayesian Regularization (BR) Algorithms  

 This algorithm updates the weight and bias values according to their LM optimization and 

minimizes a linear combination
 
of squared errors and weights, and then determines the correct 

combination so as to produce a well generalized network. This algorithm can train any network as 

long as its weight, inputs and transfer functions have derivative functions [21]. 

C.  Quasi-Newton (QN) Algorithm   

 This is based on Newton’s method but doesn’t require calculation of second derivatives. An 

approximate Hessian matrix is updated. At each iteration of the algorithm, the update is computed as a 

function of the gradient. The line search function is used to locate the minimum [22]. The first search 

direction is the negative of the gradient of performance. In succeeding iterations the search direction 

is computed according to the gradient. 

D.  Conjugate Gradient of Fletcher-Reeves (CGF)  

 This method updates weights and bias values according to the conjugate gradient with Fletcher-

Reeves. Each variable is adjusted to minimize the performance along the search direction. The line 

search is used to locate the minimum point. Fletcher-Reeves version of conjugate gradient uses the 

norm square of previous gradient and the norm square of the current gradient to calculate the weights 

and biases [22].  
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E.  Scaled Conjugate Gradient (SCG) algorithm 

 This algorithm can train any network as long as its weights, net inputs and transfer functions have 

derivative function. This algorithm is based on conjugate directions but does not perform line search 

at each iteration. This was design to avoid the time consuming line search. 

 

IV.PROPOSED ANN MODEL 

 

 Two back propagation feed forward ANN architectures (ANN-RF for RF and ANN-MECH for 

mechanical modeling) are utilized in this work and are shown in fig 3(a) & (b). All model parameters 

are allowed to vary and MATLAB simulation is used to generate the datasets for ANN models. The 

circuit parameters of RF model are selected as input and insertion and return loss are the outputs for 

ANN-RF while length ratio and initial gap distance are input and threshold voltage is output for 

ANN-MECH.  

 The selected ranges of input parameters are given as follows: fFCfF g 12520 ≤≤ , 

PHlPH 30010 ≤≤ , ( ) Ω≤+≤Ω 101 21 RR , GHzfGHz 261 ≤≤ and mw µ52 = , mwm µµ 58.1 1 ≤≤ , mh µ35= , 

( ) 10 21 ≤+≤ ll , mgm µµ 84 0 ≤≤ & mwAl µ6.0=  for ANN-RF and ANN-MECH respectively. The ratio of 

training to test data records employed is 70:30. This means that with 384 data records, there are 269 

records for the training set and 115 records for the test set. The Levenberg-Marquardt algorithm uses 

input vectors and corresponding target vectors to train the neural networks. The number of hidden 

units directly affects the performance of the network. Therefore, many trails are conducted and the 

number of hidden nodes determined to provide the optimal result are 8 and 12 for first and second 

hidden layers of ANN-RF and ANN-MECH respectively.  

Finally, the architecture of network is 5-8-8-2 for ANN-RF and 6-12-12-1 for ANN-MECH. The 

number of input nodes is 5 & 6 for ANN-RF and ANN-MECH respectively, representing the 

geometrical parameters of the switch that affect outputs. The number of the hidden nodes is set to 8 

and 12 and the number of output nodes are 2 & 1 for ANN-RF and ANN-MECH respectively. 

 
                                     (a)                                                                                                  (b) 

Fig.3. Feed forward ANN architecture with input-output parameters for (a) RF (b) Mechanical modeling 
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In order to evaluate the performance of the ANN models, the mean square error (MSE) and the 

correlation coefficient ( )2R as defined below are calculated in terms of the difference between the 

output of ANNs and training datasets.  

( )∑
=

−=

N

x

ii xx
N

MSE

1

2ˆ
1

                                                  (12)   
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=
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−
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1
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2

ˆ

1                                           (13)              

where N is the total number of data sets, ix̂ is MATLAB dataset, ix  is trained ANN output and ix  is 

mean of ix . 

 

V. RESULTS AND DISCUSSION 

 

  To obtain better performance, faster convergence and a simpler structure, the proposed ANN as 

shown in fig.3 was trained with five different training algorithms. Figure.4(a) shows the RMS error 

comparison of five training algorithms for the calculation of S-parameters. From figure 4(b), it is clear 

that the best results were obtained from the models trained with LM algorithm. 

 
(a)                                                                                 (b) 

Fig.4. Comparison of training algorithms result (a) Bar chart of RMS error of training algorithms.(b)Isolation loss trained by 

different algorithms 

             

 To prove the efficiency and accuracy of the developed ANN models, the selected range of input 

values are used and the networks are validated. The comparison of predicted S-parameters from the 

networks and the simulated results are shown in fig 5(a) for open state, and (b) & (c) for closed state 

respectively.  

 Fig 5 (a) shows that in the open state, the isolation of the switch increases with the decrease in sC . 

Fig 5 (b) and (c) indicates the RF performances of the switch in terms of return and insertion loss of 

the closed state. It is clear that the performances are improved when gC  increases from 10 to 60fF. 

The performance of the closed switch begins to deteriorate when gC  is increasing further to 125fF. 

When gC is 60fF, the insertion loss and the return loss of the switch get to their optimal value since a 
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resonance occurs at the operating frequency range and the losses only depend on the total resistance 

of the circuit. 

 
                                                (a)                                                                                 (b) 

 
(c) 

Fig.5.Comparision of ANN and simulation results of S-parameters for RF modeling (a) Open (b) Closed state return loss and 

(c) Insertion loss of lateral single beam switch with various capacitances gC . 

 Figure 6(b) shows that that the threshold voltage increases as the initial distance between the two 

electrodes increases. It is seen that the threshold voltage is highly dependent on 1w , the width of the 

narrow part of the beam as compared to 2w , the width of wide part and Alw , thickness of metal 

deposited.   

When the value of 1w is lesser than 2w , the effect of wide part is negligible in thV . For a given value 

of 2w , threshold voltage thV  is higher for the beam when Al is deposited compare to the case without 

Al deposition. Such a result is observed up to 1w =3.8µm. The threshold voltage thV  is low in Al 

deposited beams above the width of 3.8 µm. This is due to the fact that RF signal propagation occurs 

not only along the metal on the top surface, but also on the sidewalls of the transmission line. 
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                                            (a)                                                                                                           (b) 

Fig.6. Comparison of ANN and simulated results of threshold voltage thV  with (a) Various length ratio of ( )211 lll +  and 

initial gap distance ( )0g  and (b) Various beam widths ( )21 , ww  and Al thickness at sidewalls ( Alw ). 

 

Two parameters namely correlation coefficient and Mean Square Error (MSE) values were used for 

the performance evaluation of the models and comparison of the results for prediction of S-

parameters. The higher value of correlation coefficient and a smaller value MSE means, better the 

performance of the model. The results of the neural network based modeling of S-parameter 

calculation of different combination of input parameters with the used data set are provided in tables 1 

in terms of the correlation coefficient and mean square errors. From fig.5 & 6 and the table 1, it is 

observed that there is an excellent agreement between the ANN & theory result. 

 

                                          (b)   

                                          

                                  (a)    

Table.1. Calculated Mean Square Error (MSE) and Correlation Coefficient ( )2R  for threshold voltage thV  (a) MSE and 

( )2R  with various length ratios (b) MSE and R2 with various beam widths the network trained for mechanical modeling. 

The neural network provides better results in terms of the higher correlation coefficient, which 

measures the strength and direction of the linear relation between two variables (actual and predicted 

values).The correlation coefficient of R=0.9999 (0.9998) with minimum mean square error (MSE) of 

the model of 0.0013 (0.0027) has been observed for threshold voltage calculation in terms of various 

length ratios and beam widths. 

 

 (g0) 

 (µm) 
( )211 lll + = 

440µm 

 

( )211 lll + = 

500µm 

 

MSE R
2
 MSE R

2 

 

4 0.0137 0.8099 0.0228 0.7889 

6 0.0013 0.9999 0.0034 0.9987 

8 0.0159 0.9569 0.0114 0.9231 

10 0.0477 0.8899 0.0870 0.6879 

1w  

(µm) 
Alw   = 0 µm Alw   =0.6µm 

MSE R
2
 MSE R

2
 

1.8 0.0224 0.7884 0.0169 0.8777 

2.8 0.0202 0.7381 0.0895 0.6996 

3.8 0.1301 0.4365 0.5012 0.8759 

5 0.0027 0.9998 0.0147 0.9411 
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VI. CONCLUSION 

 

 We have made a comprehensive analytical S-parameter model based on MLP neural network for 

RF and mechanical modeling of the series lateral RF MEMS switch which has broad application in 

high frequency transmitting /receiving circuit, true time delay phase shifter and switching matrix. The 

double beam lateral switch for up to 25GHz frequency application has been simulated using neural 

network. The developed neural model matches quite closely with the literature results. The simulation 

results shows that the switch have low insertion (<1dB) and high isolation (>10dB) loss. The 

threshold voltage can be reduced by reducing the initial gap distance between the electrodes and by 

providing Aluminum sidewall which increase the electrostatic force which is inverse proposal to 

threshold voltage.  Since the neural models presented in this work have good accuracy, require no 

tremendous computational efforts and less background information about bridges, they can be very 

useful for the development of fast CAD algorithms. A distinct advantage of neural computation is 

that, after proper training, a neural network completely bypasses the repeated iterative processes 

when new cases are presented to it. Since the training and testing time is less than few microseconds, 

the proposed neural model is quite fast in the design and loss analysis of lateral MEMS series switch. 
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