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Abstract— We present experimental results concerning a new all-

optical technique that multiplexes two binary signals into a 

quaternary one (4-ASK). The technique is based on parametric 

amplification. Values of the quaternary levels obtained 

experimentally, as a function of the extinction ratios of the binary 

input signals, show a rather good agreement with the simulated and 

the analytical results. The generated 4-ASK signals were 

propagated through 75 km of standard single-mode fiber and 

experienced eye penalties of only 0.5 dB. This indicates the 

robustness of the technique for practical applications in 

metropolitan area networks. 

  
  

Index Terms— Optical packets, optical signal processing, parametric amplification, 

quaternary amplitude-shift keying signal.  

I. INTRODUCTION 

New network applications, especially those related to video transmission (VOD, video-on-demand), 

have strongly increased the demand for broadband Internet [1-3]. Moreover, other new services like 

ultrahigh-definition video transmission, high definition TV, digital cinema, e-science, etc. [4,5], 

which are presently in their initial stages, tend to become massively deployed in the near future. As a 

consequence, not only current Internet users will spend more time online, but also new users will be 

lured. This will certainly push the demand for network bandwidth growth in the next years. Such state 

of affairs strongly motivates the search for solutions that enable offering higher bandwidths without 

changing the current fiber infrastructure. 

A very attractive solution in this direction is the development of new all-optical signal processing 

techniques. This would avoid the passage from the optical to the electronic domain, making possible 

to gain transparency of the pulse length, modulation formats, signal bit rates, etc., which as a whole 

will result in higher agility for the optical networks. 
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One of the aims of all-optical processing is to convert one modulation format into another. For 

example, in [6] the conversion of non-return-to-zero to return-to-zero format is approached. In [7] and 

[8] all optical techniques to perform analog-to-digital and digital-to-analog all-optical processing are 

investigated. Conversion from on-off keying to multi-level signaling is analyzed in [9]. Also different 

ways of converting binary amplitude optical signals to quaternary amplitude ones are presented in 

[10-13]. A technique based on the parametric amplification to generate quaternary signals by coupling 

three lasers, two modulated with a return-to-zero (RZ) modulation format and the third one being a 

continuous-wave (cw) laser, was demonstrated in [12].  Recently, another technique also based on 

parametric amplification to generate 4-ASK signals by coupling two binary amplitude-shift keying (2-

ASK) signals (two lasers) was presented [15]. However, the analysis performed in [15] comprises 

simulation and theoretical results only.  

In the present work we show, for the best of our knowledge, the first systematic analysis of 

experimental results concerning to the technique presented in [15], which we call parametric 

amplification amplitude multiplexing (PAAM). This scheme could be applied not only to enhance the 

bit rate of optical channels but also to perform all-optical labeling [15]. 

The remaining of this work is organized in the following way. Section 2 provides a brief review for 

the theoretical principles of parametric amplification and how it can be extended to provide PAAM. 

Section 3 presents our experimental and simulation setups. Results are approached in Section 4 

whereas our conclusions are described in Section 5. 

II. THEORY 

Fiber optics parametric amplification is performed by coupling and launching into an optical fiber a 

probe signal, at frequency fS, and a high-power un-modulated pump, at frequency fP. In this situation, 

illustrated in Fig. 1(a), the fiber acts as a nonlinear medium producing a four-wave mixing interaction 

between the probe and the pump signals. The frequencies of the waves involved in this process satisfy 

the relation 2fP + fS = fi, where fi represents the frequency of a new wave called idler. When fP is tuned 

into the range of frequencies of the anomalous dispersion regime of the fiber, and the pump power is 

much higher than the probe signal power, such probe signal experiences a parametric gain given by 

 

         � =  1 + �02 	
�� ℎ�
� �2

,                        (1) 

           

where  

      �0 =  � �� �,                                       (2) 

 

and 
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Fig. 1. Conceptual diagrams for (a) parametric amplification and (b) PAAM. (λk = c/fk, where c is the speed of light,  k = P, 

S, i represents the pump, the signal and the idler. λ0 is the zero dispersion wavelength of the fiber). 

 

    

              � =  ��2����2 − �2��� + ���2 �/2.                                     (3) 

 

In (2) and (3) γ is the non-linear parameter of the fiber, PP is the pump power (considering a lossless 

fiber with attenuation coefficient α= 0), L is the fiber length, and ∆β is the propagation constant 

mismatch of the FWM process, which can be expressed as 

 

    

    Δ� = �2������� − ���2 + �4��� �
12 ��� − ���4,                                    (4) 

 

with ωk = 2πfk (k = P, S), and the coefficients β2(ωP) and β4(ωP) standing, respectively, for the second 

and fourth order dispersion coefficients evaluated at ωP. Influence of fiber attenuation may be 

considered in (1)- (4) by simply substituting PP by its average value  

 

               ���� = �� = �P �� = 0� �1 − e−αL# �αL�⁄ ,                                  (5) 

 

where z is the distance from the fiber input and α is the fiber attenuation coefficient. 

In a first approximation, the bandwidth where the parametric gain results of practical interest can be 

estimated as the region limited between the two frequencies where the parametric gain is maximum. 

These frequencies are given by 

                                  �max ,min = �� ± ,2���
|�2| ,                                                  (6) 

 

and, then, the gain bandwidth is 

                     

                          ∆ω = �max - �min = 2,2���
|�2| .                                           (7) 

 

 

Within this region the parameter x is real and the gain varies between Gmin = 1 +  x0
2
 and Gmax = 1 + 

sinh
2
(x0) [16]. In order to have more precise cutoff frequencies to define the gain bandwidth, it is 
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necessary to solve the transcendent equation x
2
 = sinh

2
(x) numerically. Outside such a bandwidth, the 

parametric gain decreases to values which are not suitable for practical applications. 

The performance of parametric amplifiers is generally analyzed for binary probe signals with two 

amplitude levels representing bits “0” and “1” [17]-[20]; here, we designate the power of these levels 

at the fiber input, respectively, by ( )00
SP  and ( )01

SP , and recall that ( )00
SP  is ideally null.  

The technique investigated in this paper is illustrated in Fig. 1(b). Its theoretical principle is 

essentially the same as the one of parametric amplification, but two new features are added to the 

involved signals. The first is that the power of the probe signal is intentionally offset from zero, in 

such a way that this signal now presents an extinction ratio (ER): 

 

                                    .� = ��1�0�/��0�0�,                                                    (8) 

                                

which no longer is infinity (as in the case of ideal on-off keying signals). The second feature is that 

the pump is also modulated with binary information. We denote the powers, at the fiber input, of the 

“0” and “1” bits transmitted by the pump as ( )00
PP  and ( )01

PP , respectively; and assume that ( )00
PP  is 

considerably higher than ( )01
SP . 

With such modifications, the modulated pump will now provide two amplification factors, 0
PG  or 

1
PG , depending on whether the pump information is a “0” or “1” bit. Therefore, each of the binary 

levels of the signal at fS will experience a lower or a higher gain and will split into two new power 

levels at the fiber output. For instance, if the signal at fS is a “1” bit power level, the pump modulation 

will split it in two power levels “01” and “11” depending, respectively, if the information carried by 

the pump is a “0” or a “1” bit. The same reasoning also holds when the probe signal transports a “0” 

bit power level. In this situation, the probe signal at the fiber output will either assume a “00” or a 

“10” power level, depending again on whether pump information is a “0” or a “1” bit, respectively. 

It is, thus, easy to verify that the power levels of the envelope of the signal at fS and at z = L are  

                                           �/0100 = ��0��0�0�,                       (9a) 

 

                                                          �/0101 = ��0��1�0�,                       (9b) 

 

                                                          �/0110 = ��1��0�0�,                       (9c) 

 

 

                                                          �/0111 = ��1��1�0�,                       (9d) 
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where ij
outP  indicates the power of the signal at fS and at z = L when the pump and probe signal 

transports, respectively, bits i and j (i, j = “0” or “1”) at z = 0. The amplification factors,  0
PG  and 1

PG , 

may be obtained from (2) and expressed by 

 

                                              ��0,1 = 1 + ��00,1#2 	sinh � 0,1
� 0,1 �2

,                                          (10) 

                                              

with 

                                                             �00,1 = ���0,1� ,                                                   (11) 

                                                                      

and 

                                     �0,1 = ,�2���0,1#2 − �2���0,1 + ∆�#2 � 2⁄ .                                        (12) 

 

 

Equations (9) clearly indicate the generation of a 4-ASK signal which contains information from 

both the pump and probe signals. The four-levels of quaternary signals give rise to an eye-diagram 

structure with three eyes. In this work, we refer to the eye that involve the two lowest power levels by 

using the subscript “low”; analogously the subscripts “int” and “up” are utilized to refer to the eyes 

that involve, respectively, the two intermediate and the two higher power levels. With this convention 

in mind and considering the case 0110
outout PP ≥  ( ( ) ( )00 0110

SPSP PGPG ≤ ), we obtain the ERs for each of such 

eyes as 

          

      45/6 = �/0101
�/0100 = .�,                                                    (13a) 

        4��1 = �/0110
�/0101 = .�

.� ,          (13b)           

                                        407 = �/0111
�/0110 = .�,                    (13c) 

 

where rG is defined as the ER associated with the amplification factors, factors,  0
PG  or 1

PG , 

 

              .� = ��1
��0

 .              (14)  

   

Analogously, for the case 0110
outout PP ≤  ( ( ) ( )00 0110

SPSP PGPG ≥ ), we obtain the ERs for each of such eyes 

as 
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                45/6 = �/0110
�/0100 = .� ,                                                      (15a) 

                                               4��1 = �/0101
�/0110 = .�

.� ,        (15b) 

                                               407 = �/0111
�/0101 = .� .           (15c) 

 

Equations (13) and (15) indicate that the power level distribution of the generated 4-ASK signal 

may be adjusted by controlling only two parameters, rS and rG.  Therefore, such distribution does not 

depend on the powers of the signal at fS (only on its ER), but depend on the powers utilized on the 

pump (equations (14), (10)-(12)). This last statement is reasonable considering that in our analytical 

model the power of the probe signal is much lower in comparison with that of the pump power; 

therefore such powers may be neglected [21]. A possible way for controlling rG is to set values for the 

pump average power and for the pump ER. 

 

                                              .� = ��1�0�/��0�0�.                                                  (16) 

      

                                   

We note that (9), (13) and (14) hold even if ( ) 000 =PP , i.e. if the pump ER is infinity (ideal on-off 

keying). In fact, in this special case of PAAM,  
0

PG = 1 and rG 
1

PG≅ . We also note that although the 

theoretical model for PAAM (equations (9)-(15)) is intended to work for modulated signals, it is 

based on a set of equations ((1)-(5)) that is derived for cw signals [21]. Therefore, a comparison 

between this model and experimental results is essential to verify its applicability to practical 

situations.  

III. EXPERIMENTAL AND SIMULATION SETUPS 

The experimental setup is shown in Fig. 2. Two DFB lasers tuned at λP = 1553.5 nm and λS = 

1552.2 nm, were used as the pump and the signal, respectively. Here, λk = c/fk, with c representing the 

speed of light in vacuum and the index k standing for P or S. The laser signals were directly 

modulated at 1 Gb/s with a pseudo-random bit sequence.  

 

Fig. 2. Experimental and simulation setups.  
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The pump linewidth was intentionally broadened by phase modulation to suppress stimulated 

Brillouin scattering (SBS). The phase modulator (PM) was driven with three RF signals (frequencies 

f1 = 983 MHz, f2 = 601 MHz and f3 = 241 MHz). The pump was filtered with an optical band-pass 

filter (OBPF) to suppress most of the amplified spontaneous emission (ASE) from the Erbium-doped 

fiber amplifier (EDFA), EDFA1. The pump and the signal were finally coupled with a 90/10 coupler 

and launched into a dispersion shifted fiber (DSF) with length L = 7 km, that acted as the nonlinear 

medium. Fiber parameters are: attenuation coefficient α= 0.2 dB/km, zero-dispersion wavelength λ0 = 

1550.2 nm, zero-dispersion wavelength variation ∆λ0 = 0.08 nm, dispersion slope S0 = 0.074 

ps/nm2/km, and nonlinear coefficient γ = 2.1 (W.km)-1. Polarizations controllers (PCs) were used to 

align the pump and the signal states of polarization, in order to maximize the parametric gain. The 

average power for the pump and the signal at the fiber input were Pp = 20.6 dBm and Ps = -6.3 dBm, 

respectively. At the fiber output, an optical coupler delivered part of the power (~20%) of the optical 

signals to an optical spectral analyzer (OSA). The other part was transmitted through a link where the 

signal at fS was band-selected, amplified, and band-pass filtered to reduce the power of ASE 

accumulated in the amplification stage. The eye-diagrams of the resultant 4-ASK optical signal, 

whose average power was around 0 dBm, could then be observed in a digital signal analyzer (DSA). 

An important goal of our work is to verify if the power levels of the 4-ASK signal may be 

explained by the model presented in Section 2. Among other parameters, such evaluation depends on 

the ERs of the binary input signals. With the equipment available in our labs, we found that we could 

obtain a much more accurate control of these ERs by programming the modulation index of directly 

modulated lasers rather than by providing an off-set current to external modulators. For this only 

reason, we decided to perform these proof-of-concept tests with direct modulation. Nevertheless, the 

analyzed technique should also hold for signals with external modulation and, because of the femto-

second response of parametric amplification [22], with higher bit rates as well. This was in fact 

confirmed by the simulations presented in [15]. 

We analyzed the transmission of this quaternary signal, through a 75 km-long spool of standard 

fiber. In this case, the signal was also passed through a -68 ps/nm dispersion compensating fiber and 

amplified to recover the 0 dBm average power at the oscilloscope input. 

We also performed simulations concerning the generation of the quaternary-amplitude signals. The 

used simulation setup is the same as the one utilized for obtaining the experimental data (Fig. 2). In 

addition to the experimental parameters reported above, the laser linewidth in the simulations was set 

to 30 MHz; this is the maximum value indicated in the manual of the utilized lasers. In order to 

perform simulations as similar to the experiments as possible, the phase modulation scheme used 

experimentally was also considered in our simulations. This point is particularly important in our case 

because, as it is well known, PM induces noise in the level “1” of the binary eye diagrams. As a 

consequence additional noise is also expected in the levels of the quaternary signals. The influence of 
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∆λ0 was accounted for by dividing the DSF in 10 segments of equal length and zero-dispersion 

wavelength distributed in the range from λ0-∆λ0/2 to λ0+ ∆λ0/2. The segments were randomly 

ordered. In each segment, fiber propagation was handled by solving the non-linear Schrödinger 

equation with the split-step Fourier method [23]. All simulations were performed in a commercially 

available software program. 

IV. RESULTS AND DISCUSSION 

A. Spectral analysis 

Fig. 3 presents the power spectra for the signal at (a) the fiber input, (b) the fiber output, and (c) 

after OBPF3. Fig. 3(b) shows that the signal at fS experienced a loss of 3 dB between the fiber output 

and input. As in PAAM we are interested in using the parametric interaction between the pump and 

probe signals for allowing the amplitude multiplexing, the absence of a parametric gain is not relevant 

in this experiment. The spectrum of Fig. 3(c) shows that after filtering a residual fraction of the pump 

remains ~35 dB below of the generated 4-ASK signal at fS. Such ratio could be further improved by 

using an additional optical band-pass filter to reduce even more the power of the spectral component 

at fP. 

   

Fig. 3. Optical spectra at (a) fiber input, (b) fiber output, and (c) output of the OBPF3. 

 

A comparison between the simulated and the experimental spectra at the fiber output is presented in 

Fig. 4(a). Both are very similar for powers higher than -45 dBm. The difference between them resides 

in the noise region, which originates from the ASE in the pump Erbium booster amplifier. Depending 

on the bandwidth of the band-pass filter there will be more or less noise around the pump that will 

also be amplified by the parametric amplifier and cause the mentioned difference. It is observed that fS 

is placed within the region of maximum gain, where in conventional parametric amplification (pump 

not modulated) the signal performance is not affected by the phase modulation used to suppress the 

SBS [16]. However, since the pump is modulated in PAAM, the gain bandwidth attained when the 

pump transmits a “1”- bit is larger than the one reached when the pump carries a “0”- bit. For this 

reason, in spite of our choice for the position of fs, we can expect that phase modulation will cause 

some influence on the optical signal-to-noise ratio (OSNR) performance of the quaternary signal.  

It should be noted that the spectra of Fig. 4(a) is, indeed, in an average position between the real 

spectra achieved when the pump transmits a ‘0’- or a ‘1’-bit. To illustrate such spectral shift, Fig. 4(b) 
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shows the simulated spectra for ‘0’- and ‘1’- bits, respectively (rG = 5). Obviously, such shift cannot 

be detected by practical OSA due to the “slow” response of this equipment. 

 

  

Fig. 4. (a) Experimental and simulated optical spectrum at the fiber output.  (b) Spectral difference when the pump carries 

the bit “1” and the bit “0” (rG = 5). 

B. Time sequence comparison 

Fig. 5 illustrates two bit sequences (before amplification) carried by (a) the pump signal, (b) the 

probe signal, and (c) the resulting quaternary signal measured at the output of OBPF3. The pump and 

probe signal ERs are, respectively, rP = 6.0 dB and rS = 2.6 dB. As expected from the considerations 

of Section 2, the signal of Fig. 5(c) presents four well defined power levels. It is also observed that 

when the bits of the pump and probe signals are repeated, the same power level of the quaternary 

signal is achieved. The delay between the quaternary signals obtained in the results is explained by 

noting that the probe signal is slightly delayed from the pump one in the experimental case (but not in 

the simulation case). 

Time (ns)

P
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00    11  01  10   00   01  10  00  11   00  00   10   00

(a)

(b)

(c)

 

Fig. 5. Sequences: (a) binary pump, (b) binary signal before amplification, and  (c) quaternary signal after amplification. 

C. ERs and comparison to the theoretical model 

Fig. 6 shows the values of ρup, ρint and ρlow defined in (13) and (15) as a function of rS. Each graphic 

corresponds to different values of rG that vary from 3 to 7 dB. In all of these cases the analytical, the 
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simulated, and the experimental values were plotted. The agreement is rather good in all of the cases 

for ρup and ρint. In the case of ρlow there exists a difference between the experimental and the analytical/ 

simulated values for rS > 6. One can easily see that the greater the value of rG, the larger the difference 

between the experiment and the simulation; this difference is always < 1.4 dB and the experimental  
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Fig. 6. Values of ρup, ρint and ρlow as a function of rS for: (a) rG = 3.0 dB, (b) rG = 4.0 dB, (c) rG = 5.0 dB, (d) rG = 6.0 dB, and 

(e)  rG = 7.0 dB. 

value is always below that of the simulated ones. Such variation may be explained by the following 

experimental fact. When rG is relatively high, the ER of the quaternary signal  
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                   4 = 45/6 4��1 407 = .� .�,                                             (17) 

 

will also be high. Hence, since our measurements were taken for a fixed average power, the power of 

level ‘00’ moved to a relatively low value, around ~-10 dBm. Such power level is comparable to the 

one generated by the dark current of our oscilloscope. Thus, measurements for ρlow are not as accurate 

in this case as the ones for other values of rG. 

It is important to explain how the values of rS and rG were measured. To find rS we simply turned 

off the pump, transmitted a binary signal at fS and measured the ER of the corresponding eye-diagram 

at the DSA. To obtain rG, we used a continuous-wave (cw) at fs and a modulated pump with ER of rP. 

As a result, parametric amplification provided two gains to the cw signal and converted it into a 

binary signal whose eye diagram could be observed in the oscilloscope. The ER of such signal is 

precisely rG. 

 

D.  Eye diagrams 

Figures 7 and 8 exhibit two sets of three 4-ASK eye-diagrams for the signals at frequency fs. The 

levels of the quaternary eye diagrams labeled as “00” and “11” always correspond to the upper and 

lower levels of the quaternary pattern, respectively. The intermediate levels may be labeled as “01” or 

“10”, depending on the value of the signal extinction ratio rs. For rs = 2.2 dB (see Fig. 7(a)), the 

parametric gain obtained by signal level “0” when the pump level is “1” is higher than that obtained 

by signal level “1” when the pump level is “0”. Consequently, the second and third power levels of 

the quaternary eye diagram correspond to labels “01” and “10”, respectively. The case represented in 

Fig 7(b) is obtained when the parametric gain provided by pump level “1” to signal level “0” is equal 

to the gain provided by pump level “0” to probe level “1”. In such a situation, rS≈ rG (3.8 dB≈ 4 dB), 

so the quaternary signal degenerates into a three-level case that should be avoided. 

Fig. 7(c) presents the inverse case of the one shown in Fig. 7(a). Now rS = 6.8 dB > rG, and the gain 

provided by pump level “1” to signal level “0” is higher than that provided by pump level “0” to 

signal level “1”. Consequently, the power level of the label “10” is lower than that of the power level 

of label “01”.  

For the two values of rG presented in Figs. 7 and 8, there is a very good agreement between the eye 

diagrams obtained through numerical simulations and the ones measured experimentally. Similar 

agreements were observed for other values of rG. 
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Fig. 7. Experimental (white circles) and simulated (full lines) eye diagrams for rG = 4 dB, where (a) rS = 2.2 dB, (b) rS = 3.8 

dB, and (c)  rS = 6.9 dB. 
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Fig. 8. Experimental (white circles) and simulated (full lines) eye diagrams for rG = 5 dB : (a) rS = 2.2 dB, (b) rS = 5.1 dB, 

and (c)  rS = 6.9 dB. 

E. Fiber propagation and BER analysis 

Finally in Fig. 9 we show the quaternary signal (a) before and (b) after propagation through 75 km 

of standard fiber. After the fiber output, an EDFA was used to raise the average power of the 

quaternary signal to the same value used in the fiber input (~ 0 dBm). As in the previous eye diagrams 

the agreement between experiments and numerical results is very good.  
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Fig. 9. Experimental (white circles) and simulated (full lines) eye diagrams: (a) before propagation, (b) after a 75 km 

standard fiber propagation with rP = 0.86 dB (rG ≈ 2.5 dB), rS = 4.4 dB. 

 

We define the Q-factors for the lower, intermediate and upper eye diagrams, respectively, by   
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                                             85/6 = �2−�1
91+92,                                                                 (18a) 

 

                                               8��1 = �3−�2
92+93,                                                                 (18b) 

 

                                                         807 = �4−�3
93+94,                                                                 (18c) 

 

where in and σn  are, respectively, the average and standard deviation of the electric current associated, 

after photo-detection, with the n-th power level of the quaternary signal. The experimental and 

simulation of such Q-factors are indicated in Table I for before and after fiber propagation.   

TABLE I. Q VALUES BEFORE AND AFTER FIBER PROPAGATION. 

 Before Propagation After Propagation 

 Experiment Simulation Experiment Simulation 

qlow 7.4 7.3 6.8 6.4 

qint 7.8 7.6 6.9 6.9 

qup 12.4 12.2 11.0 11.1 

 

With these values, we find that, after propagation, the experimental Q-factor penalties for the lower, 

intermediate and upper eyes are, respectively, of 0.4, 0.5, and, 0.5 dB. These results, which are all 

lower than 1 dB indicate that the generated 4-ASK signal presents good robustness for propagation 

through lengths that are typical of metropolitan area networks.  

Once rG > rS, the power levels correspond, in increasing order of magnitude, to dibits “00”, “01”, 

“10”, and “11”. We recall that, in our notation, level “ij” means that bits i and j were originated, 

respectively, from the signals at fP and fS. A possible way to recover the binary information of such 

signals from the quaternary-amplitude signal is to convert the latter to the electronic domain and use 

some logic operations to interpret which bits were sent.  

We consider first the logic for recovering the binary signal transmitted by fP from the quaternary 

signal of Fig. 9. Since the two lower power levels represent i = “0”, and the two upper power levels 

stand for i = “1”, we could use a binary receiver with a threshold current between the two intermediate 

power levels. Therefore, assuming that noise obeys a white Gaussian noise distribution, the BER 

associated with such a signal may be estimated from 

 

                                      ;<=>7 = ?�8��1 �,                                                  (19) 

 

where  

 
                ?��� = �1 √2A⁄ # B C�7∞

� �− �2 2⁄ �E� ,                                     (20) 
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is the complementary error function.  

For recovering the binary information conveyed by fS, we observe that the four power levels stand, 

in increasing order of power, j = “0”, “1”, “0”, “1” (i.e., consecutive power levels represent alternate 

bits). In this case, it is possible to show that the BER is the average of the BERs associated with 

lower, intermediate and upper eyes 

 

                             ;<=>
 = 1 3⁄ F?�85/6 � +  ?�8��1 � + ?�807 #G                                           (21) 

 

Using Eq. (18) and the values of Table I, we present in Table II estimations for the BERs before 

and after propagation. Experimental results indicate that BERs are lower than 10-13, before 

transmission, and lower than 10-11, after fiber transmission. Obviously, such values could be improved 

by increasing the average power of the quaternary signal and/or by using optical band-pass filters with 

narrower bandwidths. Anyway, for the sake of comparison with other systems, it is important to relate 

the BERs presented in Table II with the signal-to-noise ratios of the quaternary signal. Such ratios 

may be estimated from the eye diagrams of Fig. 9. Before fiber propagation, the maximum BER of 

8.0x10-14 (for the signal at fs) is associated to a 16.6 dB signal-to-noise ratio in the experimental case; 

after propagation such values are of, respectively, 7.6x10-12 and 16.1 dB. This 0.5 dB degradation is 

possibly caused by fiber dispersion penalties and to the addition of ASE noise by the EDFA used in 

the receiver side. 

TABLE II. BER ESTIMATION BEFORE AND AFTER FIBER PROPAGATION. 

 Before Propagation After Propagation 

 Experiment Simulation Experiment Simulation 

BERfp 1.1x10-14 1.7x10-14 7.4x10-12 3.2x10-12 

BERfs 8.0x10-14 4.8x10-14 7.6x10-12 2.8x10-11 

 

As an alternative to this electronic detection scheme, it should be noted that the binary signals at fP 

and fS could also be all-optically recovered from the quaternary-amplitude signal. This could be 

achieved by transmitting this quaternary signal through devices that implement S- and U-shaped 

transfer functions [24] or by using other techniques [7] as well. 

 

F. Discussion on optimal power level distribution 

The optimal power level distribution for 4-ASK signals depends on the dominant kind of noise and 

was analyzed in [25]. If thermal noise is dominant, the power levels of such signal should be 

uniformly distributed, i.e. in proportions of 0:1:2:3; this implies an infinite ρlow, ρint= 2.0, and ρup= 1.5. 

In case ASE noise is dominant then a quadratic, 0:1:4:9, power level spacing is required, which leads 

to ρint= 4.0, ρup= 2.25 and, again, to an infinite ρlow. Equations (13) and (15) show that, regardless of 

the dominant kind of noise, rS and rG may be easily set to provide any optimal values of ρint and ρup. 
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For instance, in the case described by (15) and dominant thermal noise, one could set rG= 1.5 (1.7 dB) 

and rs= 3.0 (4.7 dB) to achieve the previously mentioned optimal values. Similarly, for dominant ASE 

noise, such values should be adjusted to rG= 2.25 (3.5 dB) and rs= 9.0 (9.5 dB). However, (13) and 

(15) also show that the investigated technique imposes the restriction that ρlow= ρup; therefore, PAAM 

is not able to provide the optimal value for ρlow.  

A possible all-optical approach to solve this problem is to transmit the 4-ASK signal generated by 

PAAM through an optical gate whose ideal transfer function is illustrated in Fig. 10. If the power 

levels of the quaternary signal are adjusted to fit the transfer function as also indicated in Fig. 10, the 

values of ρint and ρup are unchanged by the optical gate. On the other hand, the power of the lowest 

level of the input 4-ASK signal is mapped to a null power value. In this way ρlow achieves the optimal 

(infinite) value and the optimal power level distribution is obtained. 

In practice, optical gates are implemented by using, for example, one or two stages of FWM [26], 

and their transfer functions do not exhibit a linear behavior such as the one presented in Fig. 10. 

Anyway, the discussion above remains valid because it is possible to pre-distort the power levels of 

the quaternary signal generated by PAAM in such a way that the optimal values of ρint and ρup are 

achieved when this signal is transmitted through the optical gate. 

Finally, we note that in our experiments we found that the minimum BER after the considered 

propagation occurred for rG= 2.5 dB and rs= 4.4 dB (Fig. 9). These values are close to but do not 

match the above mentioned values for the dominance of thermal noise. Besides of a finite ρlow, this 

difference is also influenced by the contributions of ASE noise and of the noise induced by the pump 

phase modulation utilized to prevent SBS. 

 

 
 

Fig. 10. Transmission of the quaternary signal generated by PAAM through an optical gate.  
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V. CONCLUSION 

For the best of our knowledge, we have presented the first systematic experimental analysis 

concerning PAAM. It was shown that our theoretical model presents a very good agreement 

(difference lower than 1.4 dB) with experimental results. This is interesting because such model, (9)-

(15), considers a modulated pump but it is based on equations (1)-(5) derived for cw signals. 

Therefore, our results also indicate that the conventional equations used for describing parametric 

amplification ((1)-(5)) may also hold for modulated signals.  

We also observed a good agreement between simulation and experimental results, even for time and 

propagation analysis where noise contributions are clearly relevant. Such agreement was possible 

because our simulations took into account the pump linewidth enhancement caused by the phase 

modulator and also the random variation on the fiber zero-dispersion wavelength. 

Our experiment also shows that the 4-ASK signal generated by PAAM may present BERs as low as 

7.6 x 10-12 even after propagation through a 75-km long standard fiber. Such value was obtained after 

searching for an optimal power level distribution, but it could be certainly improved by utilizing 

narrower filters or quaternary signals with higher average powers. The good experimental BER 

performance of PAAM reinforce that it could be used in practical applications, at least where length 

scales are comparable to the ones of metropolitan area networks (MANs). MANs are, in fact, the kind 

of network where PAAM labelling application is relevant [15] and where the simplicity of detecting 

intensity-modulated signals is still advantageous over phase-modulated ones [27]. 
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