
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 1, March 2017 
DOI: http://dx.doi.org/10.1590/2179-10742017v16i1878 

Brazilian Microwave and Optoelectronics Society-SBMO received 30 Oct 2012; for review 03 Nov 2016; accepted 28 Dec 2016 

Brazilian Society of Electromagnetism-SBMag © 2017 SBMO/SBMag ISSN 2179-1074 

 

132 

Abstract— This paper describes the application of the method of 

separation of variables and the use of Fourier series for solving the 

Laplace´s and Poisson´s equations on the study and analysis of the 

magnetic field produced in a linear motor with Halbach array. 

Equations for predicting the 2D magnetic flux density distribution 

produced in the air gap were developed. The model was validated 

by means of finite element analysis and by measurements carried 

on a prototype of the linear motor. Theoretical results helped 

understand the behaviour of the magnetic flux density in the air 

gap and to obtain the values of the static propulsion force and 

normal force in such machine.  
  

Index Terms— Analytical model, Fourier series, Halbach array, Laplace´s and 

Poisson´s equations, PM linear motor.  

I. INTRODUCTION 

Fourier series can be applied on the solution of many problems in Electrical Engineering, especially 

on the study of electrical circuits and on the electric and magnetic field analysis. In the magnetic field 

analysis, it can be employed for predicting the magnetic flux density distribution in electromagnetic 

devices and for calculating the involved forces. The Fourier series was presented by Jean Baptiste 

Joseph Fourier (1768-1830) in his Théorie Analytique de la Chaleur, in 1822 [1]. It allows the 

representation of a periodic nonsinusoidal function in terms of an infinite sum of sines and cosines. 

Maxwell´s equations form a set of partial differential equations that can describe the behaviour of 

magnetic and electric fields and the relations between them. In order to obtain the equations of fields 

in the electric motors, the solution of Laplace´s and Poisson´s equations can be involved. These 

equations are subject of study in Electrical Engineering courses, principally due to their application on 

electromagnetic problems.  

On the study of the magnetic field in electromagnetic linear motors, the equation of the magnetic 

flux density demands the representation of the device under study in a model by using a suited system 

of co-ordinates, where boundary conditions are imposed. The model is based on the magnetic circuit 

of the device and must be divided into regions, and the electric and magnetic properties of those 

regions must be defined. The conditions of the magnetic field between the regions are specified, too. 
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The analysis can be done by means of the magnetic vector potential or, for regions free of current, in 

terms of the magnetic scalar potential formulation. The method of separation of variables for solving 

the Laplace´s and Poisson´s equations can be applied too, and the solution leads to the Fourier series 

for devices represented in rectangular coordinates. In cylindrical devices, such as tubular linear 

electromagnetic actuators analysed by the use of cylindrical coordinates, the solution is represented in 

terms of Fourier series and Bessel functions [2] [3]. 

Electromagnetic linear motors can rely on a translator and a stator. In such devices, the translator 

can develop movement through a straight line directly by means of a linear propulsion force produced 

by electromagnetic interaction between the translator and the stator. This type of motor does not 

require mechanical systems that convert rotation into linear movement. It is suitable for applications 

that require development of propulsion force in a specific direction.  

In graduate and undergraduate courses, the study and development of electromagnetic linear 

devices is one of the lines of work in Electrical Engineering. In such undergraduate courses, the study 

of the Laplace´s and Poisson´s equations for the solution of the electric or magnetic field is present on 

Electromagnetism syllabus. Commonly, the bibliography suggests exercises where the application of 

those equations is used for the solution of the electric potential in problems related to the electric field 

content. 

A proposed case of study about the use of Fourier series, Laplace´s and Poisson´s equations applied 

to an electromagnetic device is a simple electromagnetic linear motor that can rely on a mover with 

permanent magnets and a stator with armature windings mounted around a slotless ferromagnetic 

armature core. In such devices, the mover can develop movement through a straight line by means of 

a propulsion force. The focus of an analytical study is to obtain the equations of the magnetic field 

and the involved forces. 

In this paper, the equations of the magnetic field and the propulsion and normal forces produced by 

a device with permanent magnets arranged in a Halbach array are deduced. In the device, a 

nonferromagnetic plate holds the permanent magnets, because in that kind of array the magnetic field 

is established through a path that involves only one polar surface of the permanent magnets. As part 

of the study, a prototype of the device was built in the laboratory and was employed for validation 

purposes of the analytical model. 

II. STUDY OF A DC LINEAR MOTOR WITH PERMANENT MAGNETS IN A QUASI-HALBACH ARRAY 

The analytical model presented in this paper was deduced for a DC linear motor as shown by Fig. 1. 

It has a mover or translator with permanent magnets in a quasi-Halbach array topology and a stator 

with armature winding mounted around a slotless ferromagnetic armature core [9]. Table I presents 

the principal characteristics of the linear motor constructed. It has nine NdFeB permanent magnets 

arranged in a quasi-Halbach array assembled on an aluminium plate. The armature core is made of 

1020 steel with resistivity of 0.1862 µΩm, and maximum relative permeability is 1,400. In such 
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devices, the mover can develop movement through a straight line by means of a linear propulsion 

force. The array was mounted in order to have the magnetic flux established through a path that 

involves only one polar surface of the permanent magnets, the air gap and the ferromagnetic armature 

core. This means that the magnetic flux that passes through the upper polar surface of array core is 

very weak, and a nonmagnetic core can be used only to support the permanent magnets mechanically.  

The mass reduction due to the employment of a nonmagnetic material in the PM assembly is 

desirable when high acceleration is required. The magnetic flux density distribution in the air gap 

presents a sinusoidal shape in a Halbach array instead a flattened sinusoidal shape produced in the PM 

linear motors without this kind of array. In the case of a flattened sine shape, the wave becomes 

squarer, with many odd number harmonics. That results in electromagnetic force ripple and variable 

force.  

 

Fig. 1. Linear motor under study. 

 

TABLE I. PRINCIPAL CHARACTERISTICS OF THE LINEAR MOTOR WITH HALBACH ARRAY 

Item Feature 

Number of phases (coils) of the armature winding 12 

Turns per phase 150 

Armature core material 1020 Steel 

PM number 9 

PM dimensions 10(B) x 10(W) x 10(T) [mm] 

PM material Sintered anisotropic NdFeB 

Air gap 12(L)  [mm] 

 

A. Analytical Model of the Magnetic Field Produced by Permanent Magnets 

The aim of the development of an analytical model was to obtain the equations of the magnetic field 

and the involved forces produced by the DC linear motor. The method was based on an analysis of a 

2D model in rectangular coordinates. The magnetic circuit of the linear motor is divided into regions 

through the y-axis, and boundaries denoted by O , B , G  and P , Fig. 2, The nonmagnetic plate was 

omitted in the model because the magnetic flux was concentrated between the permanent magnets and 

http://dx.doi.org/10.1590/2179-10742017v16i1878


Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 1, March 2017 
DOI: http://dx.doi.org/10.1590/2179-10742017v16i1878 

Brazilian Microwave and Optoelectronics Society-SBMO received 30 Oct 2012; for review 03 Nov 2016; accepted 28 Dec 2016 

Brazilian Society of Electromagnetism-SBMag © 2017 SBMO/SBMag ISSN 2179-1074 

 

135 

the armature core. Only the coil phases located under the permanent magnets with magnetization 

through the y-axis are responsible for the production of linear propulsion force. Four permanent 

magnets were represented in the model, according to Fig. 2, where gl  is the air gap length, ml  is the 

permanent magnets axial length, bl  is the thickness of the coils, and tl  corresponds to one side of the 

area considered for the analysis, normal to the y-component of the magnetic flux density vector, with 

4/tl  corresponding to the side of the square polar area of each permanent magnet. 

The distribution of the magnetic flux density established in the air gap depends on the magnetic 

field produced by the permanent magnets and on the magnetic field produced by the currents in the 

phases of the armature windings. The magnetic field due to the permanent magnets was analysed 

separately from the magnetic field produced by the armature windings. So, the magnetic field due to 

the current in the windings is not considered by the present analysis and the region between the 

boundaries O and B has the same magnetic properties as the air. 

 

Fig. 2. Model of the motor under study, with boundaries and regions. 

 

In the free space of air, the magnetic flux density vector, B


, and the magnetic field vector, H


 , are 

related by HB


0  , where 0  is the magnetic permeability of the vacuum. The analytical model 

was developed in terms of the magnetic scalar potential, ψ [5]. So, the magnetic field, H


, is equal to 

the negative gradient of ψ , according to ψ=H 


. Applying this equation to the second Maxwell´s 

equation, 0=B


 , and taking into account the relation between B


 and H


, one can obtain the 

Laplace´s equation in terms of the magnetic scalar potential for the air gap, gψ , given by 02 =ψg . 

In 2D rectangular coordinates, it can result in: 

0
2

2

2

2

=
y

ψ
+

x

ψ gg








 (1) 

A solution method to (1) involves the determination of a field function, which satisfies the 

Laplace´s equation, the imposed boundaries and the field conditions in the permanent magnets region 

[2]-[4]. The method of separation of variables allows solving (1). Taking into account that gψ  can be 
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expressed as the product of two functions, X(x), and Y(y), (1) is modified to X(x)Y(y)=y)(x,ψg  [4] 

[5], where X(x) is a function that depends only on x, and Y(y) depends only on y. After some 

operations, one can get (2).  

0
11 22

=
dy

Yd

Y
+

dx

Xd

X 22
 (2) 

The sum of the terms in the left side of (2) is equal to zero, and the variables are independent, so, 

each term is equal to a constant and the variables can be separated according the set of two equations 

presented in (3) [5] [6]: 

2
21

α=
dx

Xd

X 2
    and    

2
21

β=
dy

Yd

Y 2
 (3) 

and 022 =β+α . If β  is a real quantity, α  must be an imaginary and 2α=β  . The solution to (3) 

is given by 
αxαx eB+eA=X(x) 

11  and 
βyβy eB+eA=Y(y) 

22 . When these solutions are applied in 

the magnetic scalar potential equation, it results in:  

  βyβyαxαx
g eB+eAeB+eA=y)(x,ψ 

2211  (4) 

The magnetic scalar potential was considered equal to zero on the planes 0=x , 2/tl=x , tl=x , 0=y  and 

mg l+l=y . By means of the conditions 0gψ  on 0=x , one can get 11 A=B  , and on 2/tl=x  leads to 

0
2/2/

2/ 1 =
)

e
)

eA=)X(l tα(ltα(l
t 





 


, or 1

2/2α
=

)
e t(l

. Applying Euler identity, one can get 

tl

n
j=α
2

 and 

tl

n2
  .  By these results, X(x)  can be represented as 










x

l
j2A=X(x)

t

n2
sin1


 and gψ  

can be represented by means of a Fourier series, according (5):  

       





 

...1,3
21

...1,3
221 sin    sin

,=n

nyny

,=n

nyny
g κnxek+ekeBeAnxj2A=y)(x,ψ   (5) 

where n  is an integer and κ  is defined by tl=κ /2π . 
 

In the ferromagnetic materials, B


 is obtained by  H+Mμ=B o


, where M


 represents the 

magnetization vector. Again, applying ψ=H 


 to the second Maxwell´s equation, 0=B , and 

taking into account the relation between B


 and M


, one can obtain the Poisson equation in terms of 

the magnetic scalar potential for the permanent magnets region, pmψ  [8]. It results in 

Mpm


 2 . The magnetic scalar potential in the PM region is obtained by phpm ψ+ψ=ψ , 

where hψ  is a homogeneous term and must satisfy the Laplace´s equation  02  h , and pψ  is the 

particular term, solved by Poisson´s equation Mp


 2  [2]-[7]. The magnetization vector, M


, 
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with components through the x and y-axis, is represented by jM+iM yx


. Each component can be 

represented by a Fourier series. Fig. 3 shows the graphs of the components of the magnetization 

vector. The Fourier series that represents the behaviour of the x-component of the magnetization 

vector is presented in (6). The y-component is represented by (7). 
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(a) 
 

 
 

(b) 
 

Fig. 3. Graphs of the components of the magnetization vector: (a) x-component and (b) y-component. 

 

 

 

The homogeneous term of pmψ  is calculated following the same steps employed to obtain (5) and 

it is equal to (8).  
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The particular term, pψ , is solved by Poisson´s equation M=ψ p


2

, presented in (9).  
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whose simplest solution is obtained by integrating twice the right side of (9) through x. It results in:  
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The equation of the magnetic scalar potential in the PM region, pmψ , is defined by (11): 

     p
,=n

nyny
pm ψκnxek+ek=y)(x,ψ 




...1,3
43

sin 
 (11) 

Constants 
1

k , 2k , 3k  and 4k  are obtained by means of the boundary conditions. The boundary 

conditions are the following: 

 the magnetic scalar potential in the air gap on  boundary O , Fig. 2, where y = 0, 
O
gψ , is equal 

to zero and this results in 
12 k=k  ; 

 the magnetic scalar potential in the PM region on the boundary P , Fig. 2, where 

)l+(l=y mg , 
P
pmψ , is equal to zero and this results in 

 κnx
ψek=k

glmβ(l
e

p
glm(l

2sin

))2β
34


 ; 

 on boundary G , Fig. 2, where gl=y , the y-component of the magnetic field in the air gap, 

G

yg
H  and in the permanent magnets, 

G

ypm
H  are related by y

G

ypm

G

yg
M+H=H , and the 

respective magnetic scalar potentials are related by 
G

pm

G

g ψ=ψ .  

Those conditions allow one to obtain the equations of the potentials. Eq. (12) presents the 

expressions of the magnetic scalar potential in the air gap:  

 
























































































































)e)(ee(e
n

M

)e)((e

)ee)(ee(eψ

))(ee(e

)e(e
=y)(x,ψ

glmln(gnlgnlgnly

mnlglmln

glmn(lgnlgnlglmlngnl
p

,=n
glmn(lgnlgnl

nyny

g

)2

)(2

))2(

.1,3
)2

112

2

12













 (12) 

 

The x-component of the magnetic flux density in the air-gap, 
xgB , obtained by  xg  0 , 

resulting in: 
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where '
yM  and '

pψ  are given respectively by (14) and (15). 
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The y-component of the magnetic flux density in the air-gap, 
ygB , obtained by  yg  0 , 

resulting in: 
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 (16) 

 

By using the expression of 
ygB , it was possible to obtain the equation of the propulsion force that 

acts over the mover of the linear motor. That force produces movement through the x-axis and 

depends on the current density in the armature phases located under the permanent magnets and the y-

component of the magnetic flux density in the air gap produced by those permanent magnets. The 

current density vector has only the z-component, i.e. kJ=J z


, where zJ  is the z-component of the 

density current vector. In the region of the armature phases, the current density can be represented by 

a Fourier series, according (17):  
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where  
8

t
d

l
=l , 

o
J  is the current density in each coil, given by csNI / , with N  equals to the 

number of turns of each coil, I  the current and 
cs  the cross-sectional area of one coil defined by 

4

t
bc

l
ls  . Its behaviour if defined by the graph of Fig. 4.  

 

Fig. 4. Graph of the current density in the coils located under the permanent magnets. 
 

B. The Analytical Solution for the Magnetic Field Produced by the Armature Windings 
 

The magnetic field produced by the armature windings is obtained by means of the Poisson’s 

equation expressed in terms of the magnetic vector potential, A


, related to the current density vector, 

J


. The effect of the magnetic field produced by the armature phases on the distribution of the 

resulting magnetic flux density is analysed separately from the effects of the magnetic field produced 

by the permanent magnets. Afterwards, the effect of both can be combined. By this way, in the model 

of the magnetic field produced by armature phases under current, the permanent magnets are 

represented only by a region located between the boundaries G and the P, Fig. 2, where the relative 

magnetic permeability is equal to 
pmr .  

The calculation of the magnetic field in the region between boundaries O and B , Fig. 2, is made by 

means of JH


 . The vector B


 can be expressed as the curl of the magnetic vector potential, 

according AB


 . For the linear motor under study, kJJ z


 . Due to this, the magnetic vector 

potential, A


, whose generation is made by zJ , has only the z-component, 
zbA . Making the curl of 

B


, one can have JAB o


  [7]. After some operations, it is obtained a scalar 

equation that defined a relation between zJ  and 
zbA  by the Laplacian of the later, according to 

zozb JA 2
. This is the Laplace’s equation for the magnetic vector potential in the region of 

the armature phases and it can be expressed by (18): 
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The solution of (15) is equal to the sum of two terms, or zhbzpbzb AAA  , where zpbA  is the 

particular term, solved by Poisson’s equation, and zhbA  is the homogeneous term and must satisfy 

the Laplace’s equation, 02 
zhb

A  [7], or: 
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In the solution of (19) is employed the same steps of the solution of (1) using the method of 

separation of variables. The magnetic vector potential is consider equal to zero on the planes 0=x , 

2/tl=x  and tl=x . The solution results in: 
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The particular solution is equal to: 

 nxJ
y

A

x

A

no
zpbzpb

 sin
2

2

2

2










 (21) 

where  d
o

n nl
πn

J
J cos

4
 .The simplest solution can be obtained integrating it twice in x, resulting 

in: 
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The complete equation of 
zbA results in: 
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In the ferromagnetic armature core, under the plane y = 0, the magnetic vector potential also 

assumes the form of the Laplace’s equation, according to (24): 
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The region between the boundaries B and G, Fig. 2, is free from currents. So, the equation of the 

magnetic vector potential assumes the form of the Laplace’s equation, according to (25): 
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The region between the boundaries G and P, Fig. 2,  is also free from currents. The equation of the 

magnetic vector potential also assumes the form of the Laplace’s equation and is given by (26). 
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Equations (23) to (26) have eight unknowns, i.e. 
5

k ,
6

k , 7k , 
8

k , 9k , 10k , 11k  and 12k  whose 

obtaining depends on the conditions of the magnetic field when y  and y  and on the 

boundaries O , B  and G , Fig. 2. The conditions of the magnetic field are the following [6]: 
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, where fe  is the magnetic permeability of the armature core; 

 on boundary B , where bl=y , the y-components of the magnetic flux density vector in the 

windings and in the free space in air are equal, 
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 since the free space in air and the winding region 

have the same magnetic permeability. Here, 
yb

B  and 
ygb

B  correspond to the y-components of the 

magnetic flux density vector in the region of windings and in the free space in air, respectively, 
xb

H  

and 
xgb

H  correspond to the x-components of the magnetic field vector in the region of windings 

and in the free space in air, respectively. The superscript B denotes the boundary B; 

 on boundary G , Fig. 2,  where gl=y , the y-components of the magnetic flux density vector 
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in the free space in air and in the permanent magnets region are equal, 
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. Here, pm  is the magnetic permeability of the 

permanent magnets, 
ypmb

B  corresponds to the y-component of the magnetic flux density vector in 

the region of the permanent magnets and 
xpmb

H  corresponds to the x-component of the magnetic 

field vector in the region of the permanent magnets. The superscript G denotes boundary G, Fig. 2; 

 when y , 0
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B . This condition implies that 11k  must be equal to zero. 

The resulting equations of the magnetic vector potential in the winding region and in the free space 

in air are given, respectively, by: 
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where  d

o

op nl
nπ

J
A 


 cos

14
32

 and 
fer  is the relative magnetic permeability of the 

ferromagnetic core of the armature and nM  is given by (29). 
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The x and y-components of the magnetic flux density vector in the free space in air, ),( yxB
xgb  and 

),( yxB
ygb  are generate by zJ . These two quantities are obtained, respectively, by 
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 . Their expressions are presented in (30) and (31). 
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The magnetic flux density in the air gap depends on the fields produced by currents in the armature 

winding and by the permanent magnets. Between the boundaries O  and B , Fig. 2, located between 

the planes 0y  and bly  , the equation of the x and y-components of the magnetic flux density 

vector is equal to ),(),( yxByxBB xbxg
OB

xT   and ),(),( yxByxBB ybyg
OB

yT  . Between the 

boundaries  B  and G , Fig. 2, the same components are equal to ),(),( yxByxBB
xgbg

BG
T xx

  and  

),(),( yxByxBB
ygbg

BG
T yy

 . The subscript T  denotes the total value of the components of the 

magnetic flux density vector.   
 

C. The Linear Propulsion Force 

The linear propulsion force is deduced by means of Laplace´s force equation,   

V

dVBJ=F


. In 

this equation, the force results of the volume integral of the vector product between the density current 

vector and the magnetic flux density vector through the active volume of the conductors fed by 

current. The propulsion force that acts over the mover can be deduced by the force that acts over the 

permanent magnet, according (32). The negative vector product between the y-component of the 

magnetic flux density in the air gap produced by the permanent magnets and the density current 
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vector in the armature winding, integrated under the active volume of the phases located under the 

permanent magnets with normal magnetization produces a force vector with a x-component equal to 

the propulsion force that produces the linear displacement of the mover through the x-axis. The result 

of (33) is presented in (34), where pl  is active length of the coils through z-axis. 

 






V

zyg

V

zyg

V
ygzP dViJB=)dVkJj(B=)dVjBk(J=F


444  (32) 

   






























































 

,..3,1 0

2

4

8
cos

6

n

l

l

l

dxdyitlxnsin
n

yM
cpbψ

a

)nyeny(e
dnl

πn

oJoμpnl1
=PF

b

t

t









  (33) 

 
 

 












































































































 


,..3,1

8
sin

2

1

8
cos

8
32

8
sin

88
cos

2

1
23

3

cos

2

6

n

i
lt

n
n

lt
n

lt
cbbb

lt
n

ltlt
n

n
cbbb

a

)
nl

e
nl

(e

n

dnl

π

oMoJoμpl1
=PF

bb 










 (34) 

where 
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D. The Normal Force 

A normal force is also present, and it is the result of the magnetic attraction between the permanent 

magnets and ferromagnetic core of the armature. The propulsion force was obtained by Laplace´s 

force. In the analysis of the normal force, Maxwell Tensor was employed for obtaining its equation. 

The force vector, F


, is related to the Maxwell tensor by dSTF

S






1
, where T


 is Maxwell tensor 

[4]. The differential of force that acts through y-axis, ydF , in Nm
-2

, is calculated by 
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)(
1

dxdyTdxdzTdydzTdF yzyyyxy 


, where yxT  is equal to yxBB , yyT  to 
22

2

1
BBy


  and 

yzT  to yzBB  [10]. The integration of ydF  over a closed surface that involves entirely the permanent 

magnets produces the normal force the acts between the permanent magnets and the ferromagnetic 

material of the armature. The lower surface of the closed surface is located on the boundary G. The 

upper surface is located on y  where the magnetic field is considered equal to zero, so, the 

integration over this surface is zero. On the laterals sides, the integration over the terms yxT  and yzT  

cancel one to each other [2]. By this way, the normal force results of the integration of yyT  through 

the surface located on boundary G ( gly  ), where are located lower polar surfaces of the permanent 

magnets, according (40). 
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The x and y-components of (40) result of the contribution of the magnetic field produced by 

the current in the armature phases and of the magnetic field produced by the Halbach array. In 

the present analysis, the magnetic field is consider constant through the z-axis, so (40) results in (41), 

where pl  is active length of the coils through z-axis. The upper limit of integration, tL , 

corresponds to the entire length of the Halbach array through x-axis and it is obtained by the sum of 
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In (41), the symbol 
x

 indicates the mean value of the operation over x. The result of (41) is 

given by (42): 
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where: 

    2231 cbbba   
(43) 
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    2322 cbbba   (44) 
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In order to validate the analytical model, the linear motor was modelled using FEMM 4.2. A 

numerical model was constructed with the same characteristics of those showed in Table I. To take 

into account the effects of magnetic flux lines that pass through the air, the motor was encircled in all 

directions by a region of air. The simulations of the motor were carried under static conditions. In 

order to compare the results of the analytical model, the linear motor was numerically analysed 

without current in its armature phases. The results gave an assessment of the distribution of the 

magnetic flux in the air gap produced by the Halbach array. After, the linear motor was analysed with 

current in the coils, in order to verify the effect of the magnetic field produced by current in the 

armature winding on the normal force. 

E. Measurements 

A prototype of the linear motor presented in Fig. 1 was constructed and it helped to validate the 

analytical model by means of measurement of propulsion and normal forces. A test rig was designed 

for the experimental part of the study. Measurements of forces under static conditions were taken 
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using force sensing resistors. It provides an inverse change in resistance in response to an 

increase/decrease in applied force. Fig. 5(a) presents the test rig for measurement of propulsion force 

with the actuator suspended by means of a structure that keeps it static. During the tests, only four 

phases located under permanent magnets with normal magnetization were fed by current. Fig. 5(b) 

shows the force sensing resistor and its position in the structure used for measurements. 
 

     

                                                     (a)                                                                                              (b) 
 

Fig. 5. a) Test rig for measurement of force; b) force sensing resistor and its position in the structure used for measurements. 
 

III. RESULTS AND DISCUSSION 

Fig. 6 presents the graph of the y-component of magnetic flux density vector in the air gap vs. 

position on the plane underneath the mover at y = 6 mm, when current in the phases of the armature is 

zero. The graph presents values obtained by the analytical method described in this paper, using (16). 

For comparison and validation of the analytical model, curves are obtained by numerical analysis and 

by measurements, under the same conditions of current and position used in the analytical method. 

The measured values were obtained by means of a gaussmeter. The behaviour of the magnetic flux 

density in the plane y = 6 mm presents a sinusoidal shape as expected instead a flattened shape.  

 
 

Fig. 6. Graph of the y-component of the magnetic flux density vector in the plane y = 6 mm, with current equal to zero. 

 

The numerical analysis allowed to foresee the behaviour of the distribution of the magnetic flux 

density in the structure of the linear motor, especially in the ferromagnetic core of the armature, 

considered infinitely permeable in the analytical model. The results of the numerical simulations 
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allowed verifying that the core did not present effect of saturation and, in that region, the maximum 

value of the modulus of the magnetic flux density vector is 0.3 T. Fig. 7(a) presents the behaviour of 

the magnetic flux density in the magnetic circuit of the linear motor produced by the Halbach array 

obtained by numerical analysis with current in the armature winding equal to zero. Fig. 7(b) and 7(c) 

presents the respective graphs of the y-component of magnetic flux density vector in the air gap vs. 

position on the plane underneath the mover at y = 10 mm and y = 0. Analytical results are presented, 

too. In the planes near the polar surfaces of the Halbach array, the behaviour of the distribution of the 

magnetic flux density presents a flattened aspect, Fig. 7(b). According to the expected, in the region 

of the coils, the distribution of the y-component of the magnetic flux density vector presented a shape 

very closed to a sinusoidal behaviour, Fig. 7(c). The coils are located under the plane 6y  mm, 

where the distribution of the magnetic flux density has a quasi-sinusoidal behaviour. This 

characteristic results in a propulsion force with no significant odd harmonics, according to the 

analytical model. The fundamental value of the propulsion force is 2.03 N, and the 3
th
 harmonic, 

51074.5   N, with a current of 1.45 A. 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig.7. (a) Shape of the magnetic flux distribution produced by the Halbach array in the linear motor obtained by numerical 

analysis; (b) and (c) graphs of the y-component of magnetic flux density vector in the air gap at y = 10 mm and y = 0. 
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Fig. 8 shows the graph of the measured linear propulsion force on static conditions, when only the 

phases located under the permanent magnets with normal magnetization were fed by current. By 

means of the values presented in the graph of propulsion force, the mean sensitivity in N/A was 

calculated. Table II presents the resulting mean sensitivities obtained for measurements and 

theoretical values of propulsion force. Taking into account the measured results as a reference, the 

difference between the measured and the numerical values is 1.47 %, and between the measured and 

analytical ones, 2.94 %.  

 

Fig. 8. Graph of the propulsion force vs. current in the coils of the armature winding. 

 

TABLE II. MEAN SENSITIVITY OF THE LINEAR MOTOR UNDER STUDY. 
 

 

 

 

 

 

 

 
Fig. 9 presents the graph of the normal force obtained with the same conditions imposes for 

obtaining the propulsion force. For comparison and validation, figures were obtained by the analytical 

model and by the numerical analysis under the same values of current of those obtained by the 

measurements. The analytical values of propulsion force were calculated using (34), and the normal 

force was obtained by (42). 

The present study also helped to analyse the behaviour of propulsion and normal forces as a 

function of the air gap length. Fig 10 shows the graph of the propulsion force as a function of the air 

gap length, when current in the coil located under the permanent magnets with normal magnetization 

is 1.45 A. Fig. 11 shows the graph of the normal force vs. the air gap length obtained with the same 

conditions of the graph of the propulsion force. The normal force is the principal characteristic 

employed to design the suspension system of the linear motor, since it must compensate the effect of a 

large normal force. 

 Average Sensitivity 

(N/A) 

Difference 

(%) 

Analytical Method 1.40 +2.94 

Numerical Analysis 1.38 +1.47 

Measured 1.36 - 
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Fig.9. Graph of the normal force vs. current in the coils of the armature winding. 

 

 

Fig. 10. Graph of the propulsion force vs. air gap length. 

 

 

Fig. 11. Graph of the normal force vs. air gap length. 

IV. CONCLUSIONS 

The theoretical models show good computation of the produced forces, and will help in further 

analysis. One of the goals of the design of the linear motor was to guarantee that the coils of the 

armature winding were immersed in a distribution of magnetic flux density vector produced by the 

permanent magnets with a sinusoidal behaviour. The theoretical result allowed verifying that between 
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the planes y = 0 and y = 6 mm the y-component of the magnetic flux density had a very near 

sinusoidal shape. The involved forces have odd harmonics of very small values and, in the calculation 

by analytical method, the results converge quickly.  

The magnetic field produced by the current in the armature winding are very small when compared 

to the magnetic field produced by the permanent magnets of the Halbach array. The effect of the 

magnetic field produced by currents on the normal force is not significant, according theoretical 

results. Considering a variation from 0 to the rated value of current (1.45 A), the theoretical normal 

force did not present modification in its values. Experimental results presented a slight influence of 

the armature current on the normal force. When current is equal to zero, the measured value of normal 

force is 12.1 N and, with a current of 1.45 A, is 12.5 N.  

The analysis of the results of the y-component of the magnetic flux density vector, Fig. 6, allows 

one to conclude that the difference between the simulated and measured peak values is 5.98% and 

between the analytical and measures peak values is 16.95% in the plane y = 6 mm. In the same 

plane, the analytical average value of the y-component of the magnetic flux density vector is 0.234 

T, while the numerical one is 0.209 T. Those percentage values vary according to the y-coordinate. 

As one can see in Fig. 7(b), in y = 10 mm, near the polar surface of the permanent magnets with 

normal magnetization, the analytical and numerical values of the y-component of the magnetic flux 

density vector have a smaller difference.  

With relation to the propulsion force, in the sensitivity comparison, the average difference 

between the simulated and the measured values is 1.47% and between analytical and measured 

values, 2.94%. The normal force difference is 8.93% between the simulated and the measured 

values, and 16.78% between analytical and measured values, Fig. 9. Propulsion and normal forces 

presented a nonlinear behaviour with respect of the variation of the air gap length. The propulsion 

force difference between the simulated and measured values is 1.85 %, and between the analytical and 

measured values is 4.46 %, Fig. 10. In the case of normal force, between the simulated and measured 

values, the difference is 10.51 %, and between the analytical and measured values is 15.72 %, Fig. 11. 

In the propulsion force calculation, it was employed the Lorentz-Laplace force. The force was 

obtained by the vector product of the y-component of the magnetic flux density vector and the z-

component of the current density vector integrated under the active volume of the coils under 

current. In the region of the coils, the difference between the analytical and numerical values of 

the y-component of the magnetic flux density vector varies from 6.9% to 12.05%. The differences 

in the propulsion force sensitivity comparison are much smaller. It was expected a larger 

difference between the results of force due to the differences in the comparison of the y-component 

of the magnetic flux density vector. Possibly, that result was due to errors introduced by the 

correction factor applied to the density current calculation in order to obtain the effective cross-

sectional area occupied by the conductors in the winding region. The analytical results of 
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propulsion force was obtained by integration over  bl  and 4tl  (the cross-sectional area of one coil 

is  4tlblcs  ). The conductors occupy an effective cross-sectional area smaller than 
cs .   

Analytical models based on Fourier series can be a good tool for understanding and previewing the 

behaviour of the magnetic flux density in electromagnetic devices. The theoretical models show good 

computation of the produced forces, and will help in further analysis. The analytical model allows 

understanding the behaviour of the magnetic flux density in the air gap and in the components of the 

linear motor and calculating the forces. 

The equations of the analytical model lead to the fast computation of the fields and forces. The 

numerical analysis allows the verification of the conditions of the magnetic field in the ferromagnetic 

material of the motor. The concomitant use of those two theoretical models and their results helps on 

the design of the linear motors with permanent magnets and on the analysis of the impact on the 

values of forces when modifications on dimensions are made. From the education point of view, 

students can benefit from this work in many ways: to learn the electromagnetic modelling approach 

by means of fundamental equations; by applying that approach to a special topology of linear motor; 

and by seeking validation of the study by means of numerical e test results. 
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