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Abstract— This paper describes the application of the method of
separation of variables and the use of Fourier series for solving the
Laplace’s and Poisson’s equations on the study and analysis of the
magnetic field produced in a linear motor with Halbach array.
Equations for predicting the 2D magnetic flux density distribution
produced in the air gap were developed. The model was validated
by means of finite element analysis and by measurements carried
on a prototype of the linear motor. Theoretical results helped
understand the behaviour of the magnetic flux density in the air
gap and to obtain the values of the static propulsion force and
normal force in such machine.

Index Terms— Analytical model, Fourier series, Halbach array, Laplace’s and
Poisson’s equations, PM linear motor.

I. INTRODUCTION
Fourier series can be applied on the solution of many problems in Electrical Engineering, especially

on the study of electrical circuits and on the electric and magnetic field analysis. In the magnetic field
analysis, it can be employed for predicting the magnetic flux density distribution in electromagnetic
devices and for calculating the involved forces. The Fourier series was presented by Jean Baptiste
Joseph Fourier (1768-1830) in his Théorie Analytique de la Chaleur, in 1822 [1]. It allows the
representation of a periodic nonsinusoidal function in terms of an infinite sum of sines and cosines.
Maxwell’s equations form a set of partial differential equations that can describe the behaviour of
magnetic and electric fields and the relations between them. In order to obtain the equations of fields
in the electric motors, the solution of Laplace’s and Poisson’s equations can be involved. These
equations are subject of study in Electrical Engineering courses, principally due to their application on
electromagnetic problems.

On the study of the magnetic field in electromagnetic linear motors, the equation of the magnetic
flux density demands the representation of the device under study in a model by using a suited system
of co-ordinates, where boundary conditions are imposed. The model is based on the magnetic circuit
of the device and must be divided into regions, and the electric and magnetic properties of those

regions must be defined. The conditions of the magnetic field between the regions are specified, too.
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The analysis can be done by means of the magnetic vector potential or, for regions free of current, in
terms of the magnetic scalar potential formulation. The method of separation of variables for solving
the Laplace’s and Poisson’s equations can be applied too, and the solution leads to the Fourier series
for devices represented in rectangular coordinates. In cylindrical devices, such as tubular linear
electromagnetic actuators analysed by the use of cylindrical coordinates, the solution is represented in
terms of Fourier series and Bessel functions [2] [3].

Electromagnetic linear motors can rely on a translator and a stator. In such devices, the translator
can develop movement through a straight line directly by means of a linear propulsion force produced
by electromagnetic interaction between the translator and the stator. This type of motor does not
require mechanical systems that convert rotation into linear movement. It is suitable for applications
that require development of propulsion force in a specific direction.

In graduate and undergraduate courses, the study and development of electromagnetic linear
devices is one of the lines of work in Electrical Engineering. In such undergraduate courses, the study
of the Laplace’s and Poisson’s equations for the solution of the electric or magnetic field is present on
Electromagnetism syllabus. Commonly, the bibliography suggests exercises where the application of
those equations is used for the solution of the electric potential in problems related to the electric field
content.

A proposed case of study about the use of Fourier series, Laplace’s and Poisson’s equations applied
to an electromagnetic device is a simple electromagnetic linear motor that can rely on a mover with
permanent magnets and a stator with armature windings mounted around a slotless ferromagnetic
armature core. In such devices, the mover can develop movement through a straight line by means of
a propulsion force. The focus of an analytical study is to obtain the equations of the magnetic field
and the involved forces.

In this paper, the equations of the magnetic field and the propulsion and normal forces produced by
a device with permanent magnets arranged in a Halbach array are deduced. In the device, a
nonferromagnetic plate holds the permanent magnets, because in that kind of array the magnetic field
is established through a path that involves only one polar surface of the permanent magnets. As part
of the study, a prototype of the device was built in the laboratory and was employed for validation

purposes of the analytical model.

Il. STUDY OF A DC LINEAR MOTOR WITH PERMANENT MAGNETS IN A QUASI-HALBACH ARRAY
The analytical model presented in this paper was deduced for a DC linear motor as shown by Fig. 1.

It has a mover or translator with permanent magnets in a quasi-Halbach array topology and a stator
with armature winding mounted around a slotless ferromagnetic armature core [9]. Table I presents
the principal characteristics of the linear motor constructed. It has nine NdFeB permanent magnets
arranged in a quasi-Halbach array assembled on an aluminium plate. The armature core is made of

1020 steel with resistivity of 0.1862 uQm, and maximum relative permeability is 1,400. In such

Brazilian Microwave and Optoelectronics Society-SBMO received 30 Oct 2012; for review 03 Nov 2016; accepted 28 Dec 2016
Brazilian Society of Electromagnetism-SBMag © 2017 SBMO/SBMag ISSN 2179-1074


http://dx.doi.org/10.1590/2179-10742017v16i1878

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 1, March 2017 134
DOI: http:/dx.doi.org/10.1590/2179-10742017v16i1878

devices, the mover can develop movement through a straight line by means of a linear propulsion
force. The array was mounted in order to have the magnetic flux established through a path that
involves only one polar surface of the permanent magnets, the air gap and the ferromagnetic armature
core. This means that the magnetic flux that passes through the upper polar surface of array core is
very weak, and a nonmagnetic core can be used only to support the permanent magnets mechanically.

The mass reduction due to the employment of a nonmagnetic material in the PM assembly is
desirable when high acceleration is required. The magnetic flux density distribution in the air gap
presents a sinusoidal shape in a Halbach array instead a flattened sinusoidal shape produced in the PM
linear motors without this kind of array. In the case of a flattened sine shape, the wave becomes
squarer, with many odd number harmonics. That results in electromagnetic force ripple and variable
force.

_ Magnetization Direction of
the Permanent Magnets

Nonferromagnetic y

s

Lmear
Bearmgs

Nonferromagnetic
Base

Armature

Windmg

Ferromagnetic

Armature Core

Fig. 1. Linear motor under study.

TABLE |. PRINCIPAL CHARACTERISTICS OF THE LINEAR MOTOR WITH HALBACH ARRAY

Item Feature
Number of phases (coils) of the armature winding 12
Turns per phase 150
Armature core material 1020 Steel
PM number 9
PM dimensions 10(B) x 10(W) x 10(T) [mm]
PM material Sintered anisotropic NdFeB
Air gap 12(L) [mm]

A. Analytical Model of the Magnetic Field Produced by Permanent Magnets
The aim of the development of an analytical model was to obtain the equations of the magnetic field

and the involved forces produced by the DC linear motor. The method was based on an analysis of a
2D model in rectangular coordinates. The magnetic circuit of the linear motor is divided into regions
through the y-axis, and boundaries denoted by O, B, G and P, Fig. 2, The nonmagnetic plate was

omitted in the model because the magnetic flux was concentrated between the permanent magnets and
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the armature core. Only the coil phases located under the permanent magnets with magnetization
through the y-axis are responsible for the production of linear propulsion force. Four permanent

magnets were represented in the model, according to Fig. 2, where Ig is the air gap length, |, is the

permanent magnets axial length, Iy, is the thickness of the coils, and l; corresponds to one side of the

area considered for the analysis, normal to the y-component of the magnetic flux density vector, with

It /4 corresponding to the side of the square polar area of each permanent magnet.

The distribution of the magnetic flux density established in the air gap depends on the magnetic
field produced by the permanent magnets and on the magnetic field produced by the currents in the
phases of the armature windings. The magnetic field due to the permanent magnets was analysed
separately from the magnetic field produced by the armature windings. So, the magnetic field due to
the current in the windings is not considered by the present analysis and the region between the
boundaries O and B has the same magnetic properties as the air.

P
Permanent
m
G | Magnet
h Free Space { .
i /Y b————— ‘¢ —————— Boundaires
B & in Air P
7 ¥ [ [ ¥ | ]| ¢ [Py _
{ b Coils 1. }rr Free Space in Air
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Iron Bfesa Di ya Iron 1~ :;D
| it I (0,0,0) (14,0,0)

Fig. 2. Model of the motor under study, with boundaries and regions.

In the free space of air, the magnetic flux density vector, B, and the magnetic field vector, H , are
related by B=ugH , where g is the magnetic permeability of the vacuum. The analytical model
was developed in terms of the magnetic scalar potential, w [5]. So, the magnetic field, H , is equal to
the negative gradient of y, according to H = -V . Applying this equation to the second Maxwell’s
equation, V-B=0, and taking into account the relation between B and H , one can obtain the
Laplace’s equation in terms of the magnetic scalar potential for the air gap, vg given by sz/g =0.
In 2D rectangular coordinates, it can result in:

Py vy _

a2 o2
A solution method to (1) involves the determination of a field function, which satisfies the

0 (1)

Laplace’s equation, the imposed boundaries and the field conditions in the permanent magnets region

[2]-[4]. The method of separation of variables allows solving (1). Taking into account that w4 can be
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expressed as the product of two functions, X(x), and Y(y), (1) is modified to vy X, ¥)= X(X)Y(y) [4]

[5], where X(x) is a function that depends only on x, and Y(y) depends only on y. After some
operations, one can get (2).
1d%x  1d%
- - =
X dx2 Y dy?
The sum of the terms in the left side of (2) is equal to zero, and the variables are independent, so,

)

each term is equal to a constant and the variables can be separated according the set of two equations
presented in (3) [5] [6]:

2 2
id X=a2 and l—d Y= 2 (3)
X dx? Y dy?

and a2 +ﬁ2 =0.If p isareal quantity, « must be an imaginary and g = V—a? . The solution to 3)

is given by X(x)= Aje™ +Be™™ and Y(y)= Age” +Boe ™ . When these solutions are applied in
the magnetic scalar potential equation, it results in:

wg(xy)= (Alewf +Be * XAzeﬁy +Bye ) 4)
The magnetic scalar potential was considered equal to zero on the planes x=0, x=1§/2, x=1, y=0 and

y=Ig +lp, . By means of the conditions y =0 on x=0, one can get By =—Ay, and on x=l/2 leads to
Xt 12)= Ai(ea(zt 12) _ el /2)j =0, or eza(lt 12) =1. Applying Euler identity, one can get

. . . [ 2
a= JZI_Jzn and ﬁzz—ﬂn. By these results, X(X) can be represented as X(X)= 12A15|n(|— X] and yg
t

t It

can be represented by means of a Fourier series, according (5):

g (.y)= n:i(jZAqsin (Knx))(Aze’my + Bze_"ny) = nzi(kle"”y +k e )sin (renx ) (5)

where n is an integer and « is defined by x=2n/l; .
In the ferromagnetic materials, B is obtained by §=y0(|\7| +H), where M represents the
magnetization vector. Again, applying H = —Vy to the second Maxwell’s equation, V-B =0, and

taking into account the relation between B and M , one can obtain the Poisson equation in terms of

the magnetic scalar potential for the permanent magnets region, V¥ pm [8]. It results in
szxpm =VM . The magnetic scalar potential in the PM region is obtained by Yom=¥h+t¥p,
where wp is a homogeneous term and must satisfy the Laplace’s equation sz//h =0,and y, isthe

particular term, solved by Poisson’s equation Vzl/lp =VM [2]-[7]. The magnetization vector, M ,
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with components through the x and y-axis, is represented by Myi +M yi. Each component can be

represented by a Fourier series. Fig. 3 shows the graphs of the components of the magnetization
vector. The Fourier series that represents the behaviour of the x-component of the magnetization

vector is presented in (6). The y-component is represented by (7).

M, = %ng“&%:[[sin (?j sin (%”J]cos(m)] +([1—cos(7m)jsin (m)] ©
My = % nzi % :[[sin (”—;J —sin [%ZnDCOS(Knx)J + [(cos(mz)—lein (Knx)]] )

M-
"*
ke @
S Yo 3
§ 2 4
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(b)

Fig. 3. Graphs of the components of the magnetization vector: (a) x-component and (b) y-component.

The homogeneous term of ¥ pm is calculated following the same steps employed to obtain (5) and

it is equal to (8).

06
vy, = 2(k3e"”y +kge MY )sin (renx) (8)
n=13,..

The particular term, v, is solved by Poisson’s equation Vzwp =V-M, presented in (9).

V2, = KAZO é,s,. L[1_cos(nn)]cos(xnx)]—((sin(”—:j—sin(%mDsin(Knx)j] )
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whose simplest solution is obtained by integrating twice the right side of (9) through x. It results in:

yp=o nz%nizmcos(m)_l}os(m)] + [(sin[%j sin [%””Dsin(m)ﬂ (10)

The equation of the magnetic scalar potential in the PM region, Ypm is defined by (11):

o0

v pm(X.Y)= Z((kge"ny +k4e_"ny)sin(;cnx))+wp (11)
n=1,3,..

Constants kl, ko, k3 and k4 are obtained by means of the boundary conditions. The boundary
conditions are the following:
o the magnetic scalar potential in the air gap on boundary O, Fig. 2, wherey =0, 1//8 , is equal

to zero and this results in ko = —k1 :

o the magnetic scalar potential in the PM region on the boundary P, Fig. 2, where

g2 +lg) _lmtle)

P . . .
=y +1ln), , is equal to zero and this results in kg =— o
y=(g+Im). ¥pm q 4 Yp 25in ()

o on boundary G, Fig. 2, where y= Ig , the y-component of the magnetic field in the air gap,

G G G G
H and in the permanent magnets, H are related by H =H +My, and the

9y pmy 9y pmy

G G
respective magnetic scalar potentials are related by yg =wpm -

Those conditions allow one to obtain the equations of the potentials. Eq. (12) presents the

expressions of the magnetic scalar potential in the air gap:

b= Y )
4 le: .
g 1=13, 2(ezmlg _e—zmlg )(EZKn(Im +Ig) 1)
wp((e'mlg _eM@mtlg)y mlg  ualg o mnllm+lg) |
(12)
26" pya- i)
{[%](emlg e g e _ezm(ZIm+Ig))]

The x-component of the magnetic flux density in the air-gap, Bg, , obtained by — s (61/19 /ax)

resulting in:
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. i (e -7V
o= HR L M T . 2kn(i '
113, | 2 M9 —¢ Mg ) 2n(mlg) _y)

13
ezmmm+b)_1X1_emﬂm)j (13)

+th54m%@%4m%%5

where M'y and z//'p are given respectively by (14) and (15).

my = Mo n:%%[([sm (%””j _singnsin(m)j R ((cos(rm)—lJcos(Knx)J: (14

(15)

yo=Mo 5 iz[((l—cos(zm))sin(zcnx))+((sin(”—2nJ—sin(sTﬂnﬁcos(xnx)

KT n=13,n

| I

The y-component of the magnetic flux density in the air-gap, Bgy , obtained by —yo(az//g/ By),

resulting in:

2 @ +e7 )

By, = ok n :
g Ho Z —
y n:1,3,. Z(eKnlg _e Kﬂlg )(ezm(|m+|g) _1)

(16)
+{Eylj@mﬂg_e-mug)@mﬂg_emmmm+@)ﬂ
K

By using the expression of By y it was possible to obtain the equation of the propulsion force that

acts over the mover of the linear motor. That force produces movement through the x-axis and
depends on the current density in the armature phases located under the permanent magnets and the y-

component of the magnetic flux density in the air gap produced by those permanent magnets. The
current density vector has only the z-component, i.e. J= JZIZ , Where J, is the z-component of the

density current vector. In the region of the armature phases, the current density can be represented by

a Fourier series, according (17):

J,= 4, i Cos(KnId)sin(Kn(x—%D (17)
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I . L o .
where |, zgt, JO is the current density in each coil, given by NI/s., with N equals to the

number of turns of each coil, I the current and s, the cross-sectional area of one coil defined by

I
s = -

Sy Its behaviour if defined by the graph of Fig. 4.

Current Density {(1m2)
]

Position along x-xis

Fig. 4. Graph of the current density in the coils located under the permanent magnets.
B. The Analytical Solution for the Magnetic Field Produced by the Armature Windings

The magnetic field produced by the armature windings is obtained by means of the Poisson’s
equation expressed in terms of the magnetic vector potential, A, related to the current density vector,
J . The effect of the magnetic field produced by the armature phases on the distribution of the
resulting magnetic flux density is analysed separately from the effects of the magnetic field produced
by the permanent magnets. Afterwards, the effect of both can be combined. By this way, in the model
of the magnetic field produced by armature phases under current, the permanent magnets are
represented only by a region located between the boundaries G and the P, Fig. 2, where the relative
magnetic permeability is equal to Hrpm -

The calculation of the magnetic field in the region between boundaries O and B, Fig. 2, is made by
means of VxH =J . The vector B can be expressed as the curl of the magnetic vector potential,

according B =V x A. For the linear motor under study, J = JZIZ. Due to this, the magnetic vector
potential, A, whose generation is made by J, , has only the z-component, Abz . Making the curl of
B, one can have VxB=VxVx A:,uoj [7]. After some operations, it is obtained a scalar

equation that defined a relation between J, and A, by the Laplacian of the later, according to

V2AbZ =—ugpJ ;. This is the Laplace’s equation for the magnetic vector potential in the region of
the armature phases and it can be expressed by (18):

2 2
0 Abz 0 Abz
2 T2
OX oy

VP, = 116 (18)

z
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The solution of (15) is equal to the sum of two terms, or A, = Abzp + Ap,p » Where Abzp is the

particular term, solved by Poisson’s equation, and Ay, is the homogeneous term and must satisfy
the Laplace’s equation, V2Ab h 0 [7],or:
8% A 82 A

V2, = bzh = "bzh _ (19)
zh 8x2 5'y2

In the solution of (19) is employed the same steps of the solution of (1) using the method of
separation of variables. The magnetic vector potential is consider equal to zero on the planes x=0,

x=1l¢ /2 and x=1; . The solution results in:

o0

Py p (X, Y) = Z(k7e’my +kge VY )sen(xnx) (20)
n=L13,...

The particular solution is equal to:

2 2
0Py 07 Ap
ZZIO - 2Zp = — 4o I sin (xnx) (21)
OX oy

4] . . Lo Lo .
where J, =—2cos(xnlq ). The simplest solution can be obtained integrating it twice in x, resulting
n
in:

4, & 1 .
Moy =to—3 3. —zcos(xnlg Jsin(xnx) (22)
Tk n=13,..N

The complete equation of Abz results in:

oy (6,Y) = Ao + Aoy = 123 {(kwmz +kge A2 )+ Ho ni\;(r)l?’ cos(xnly )}sin(mx) (23)
n=13,..

In the ferromagnetic armature core, under the plane y = 0, the magnetic vector potential also
assumes the form of the Laplace’s equation, according to (24):

o]

Ate, (X,Y) = Z(k5e"“y +kge <M )sin(xnx) (24)
n=L13,.

The region between the boundaries B and G, Fig. 2, is free from currents. So, the equation of the

magnetic vector potential assumes the form of the Laplace’s equation, according to (25):

o]

Agp, (X,Y) = Z(kge"”y + kloe"‘“y)sin(zmx) (25)
n=1,23.
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The region between the boundaries G and P, Fig. 2, is also free from currents. The equation of the

magnetic vector potential also assumes the form of the Laplace’s equation and is given by (26).
< KN KN
Apmb, (%,Y) = Z(klle Y 4+ kq0e y}sm(mx) (26)
n=123.

Equations (23) to (26) have eight unknowns, i.e. kg kg, k7, kg, kg, kip, ki1 and kjp whose
obtaining depends on the conditions of the magnetic field when y o and y-—-—o and on the
boundaries O, B and G, Fig. 2. The conditions of the magnetic field are the following [6]:
aAfez

o wheny — —0, Bfex :(

]: 0. This condition implies that k g Must be equal to zero;

o on boundary O, where y = 0, the y-components of the magnetic flux density vector in the

O O
ferromagnetic core of the armature and in the winding are equal, Bfe =Bb , or
y y

6AfeZ oAy, . . .
5 =1 and the x-components of the magnetic field vector in the ferromagnetic
X X
y=0

@] O
core of the armature and in the winding are equal, too, or H =H

, or
fex bX

i d
BN Rl ] =i[i] , Where 1¢ is the magnetic permeability of the armature core;
Uie| oy y=o HO N Jy-o

o on boundary B, where y =1y, the y-components of the magnetic flux density vector in the

. . . B B oAy, aAgbZ
windings and in the free space inairareequal, B =B , or = and
by gb y OX yzlb y=|b

the x-components of the magnetic field vector in the windings and in the free space in air are equal,

B B o, OAgp
too, H =H , or Z = z since the free space in air and the winding region
bX gbx 33/ y=lp ay y=I

have the same magnetic permeability. Here, Bb and B b correspond to the y-components of the
y 9oy

magnetic flux density vector in the region of windings and in the free space in air, respectively, H b
X

and H b correspond to the x-components of the magnetic field vector in the region of windings
90
and in the free space in air, respectively. The superscript B denotes the boundary B;

o on boundary G, Fig. 2, where y= Ig , the y-components of the magnetic flux density vector
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G G
in the free space in air and in the permanent magnets region are equal, B =B , or

9by pmb y
OAgh OApmb - .
TZ =|—2% and the x-components of the magnetic field vector in the free space
y y=lg

- - - - G G
in air and in the permanent magnets region are equal, too, H =H , or
gby pmb
JAgp SApmb
L Aob, __L | Zpmb, . Here, upm is the magnetic permeability of the
Mol oY _ Hpm oy _
y=lg y=lg

permanent magnets, B 0 corresponds to the y-component of the magnetic flux density vector in
pmby,

the region of the permanent magnets and H b corresponds to the x-component of the magnetic
pmo

field vector in the region of the permanent magnets. The superscript G denotes boundary G, Fig. 2;

o wheny — oo, B =0. This condition implies that kj1 must be equal to zero.

pmby

The resulting equations of the magnetic vector potential in the winding region and in the free space

in air are given, respectively, by:

© A ||| #ree 1 ,m 0 I
Ay, (xY)= > — Mp+2 Y +Mpe™ ™ +2||sin Kn[x——j 27)
n=13,.. 2 ||| #rp 1 8
and
Hrom 1 _ _
o A L. 1 (Mne Zmlg +em(lb 2|g)jez<ny + |
+ -
Ago,(xY)= 2 TD Hrom sm(m(x—é}] (28)
n=13 il Y, —xn
+KMn+e bje y}
nere A, =1, 5 L cos(unl, ) and up, s the rel i permeabiliy of h
where A, =L, 2 FCOS knly) and wp, is the relative magnetic permeability of the

ferromagnetic core of the armature and M, is given by (29).
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2xn(lp—1g) xl
3 (’urfe _1Xﬂrpm _1)9 ’ _Z(urpm +1pT _(yrfe _1Xﬂrpm +1) (29)

=
xnl xn(lp—2lg)
(lurfe +1xﬂrpm +1}9 " _('urfe _1X'urpm _1}9 ’

The x and y-components of the magnetic flux density vector in the free space in air, ngx(x, y) and

0Agh
Pz and

ngy(x,y) are generate by J,. These two quantities are obtained, respectively, by

. Their expressions are presented in (30) and (31).

Hr g 1 - -

o pm , (Mne 2knlg  xn(ly 2|g)je,<ny s
+

Bgo, (x )= X an—> [\ Hpm

=13,
" —[(Mn L je"‘“y}

My —1 - -
[ pm ](Mne 2Kﬂ|g +eKn(|b 2|g)jemy +

© A
Bgh, (x.Y) = 3 (_Kn)Tp Hom +1 cos[m(X—%jj (31)
n=13, +KM n +e"n|b )e"mY}

The magnetic flux density in the air gap depends on the fields produced by currents in the armature
winding and by the permanent magnets. Between the boundaries O and B, Fig. 2, located between

the planes y=0 and y =1, the equation of the x and y-components of the magnetic flux density

: OB _ OB _
vector is equal to BTX = ng (X,y)+Bp, (x,y) and BTy = Bgy (x,y)+ Bby(x, y) . Between the
boundaries B and G, Fig. 2, the same components are equal to BTX BG _ ng (x,y)+ ngx(x,y) and

By BG _ Bgy(x, y)+ ngy(x, y). The subscript T denotes the total value of the components of the

y

magnetic flux density vector.

C. The Linear Propulsion Force

The linear propulsion force is deduced by means of Laplace’s force equation, F = I(Jx B)dv .1In
\Y

this equation, the force results of the volume integral of the vector product between the density current
vector and the magnetic flux density vector through the active volume of the conductors fed by
current. The propulsion force that acts over the mover can be deduced by the force that acts over the
permanent magnet, according (32). The negative vector product between the y-component of the

magnetic flux density in the air gap produced by the permanent magnets and the density current
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vector in the armature winding, integrated under the active volume of the phases located under the
permanent magnets with normal magnetization produces a force vector with a x-component equal to
the propulsion force that produces the linear displacement of the mover through the x-axis. The result

of (33) is presented in (34), where I is active length of the coils through z-axis.

Fp = 4'[_(32;@( By, Dav = 4J'(Bgy JxJ k)dv= 4J(Bgy JZ)TdV (32)
Y v v

—

o o2 [( &0y . —xny
n=13. ™ 0l 2 ol
4
| | {(bb;; +cby {—icos[ml—tj—l—tsin (m%)}
£ = WlprodoMo & cos(anlg )[(e"n b _e~*b )] 2k R (34)
2 3
w n=13. " : {(bbz +cb3{|—tcos[xnl—tj+isin (zm EJH
8 8) 2xn 8
where
a— 2(ezcnlg _e—xnlg )(eZm(Im+Ig) _1) (35)

b:((ekmg _em(2|m+|g))(em|g Lo g _Zem(|m+|g))+2(e2m(|m+|g) 1)1 eMm )) (36)

. . 3mn
by =sin’2 -sin 22 37
) sm2 sin 5 (37)
bg = cos(an -1 (38)

D. The Normal Force
A normal force is also present, and it is the result of the magnetic attraction between the permanent

magnets and ferromagnetic core of the armature. The propulsion force was obtained by Laplace’s

force. In the analysis of the normal force, Maxwell Tensor was employed for obtaining its equation.

o ~ 1 - _
The force vector, F, is related to the Maxwell tensor by F =—§Td8 , Where T is Maxwell tensor
U
S

[4]. The differential of force that acts through y-axis, dFy, in Nm?, is calculated by
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1 . 1,52
dFy =;(Tyxdydz +Tyydxdz + Ty, dxdy), where Ty, is equal to BBy, Tyy to By2 —E‘B‘ and

Ty; to B;By [10]. The integration of dFy over a closed surface that involves entirely the permanent

magnets produces the normal force the acts between the permanent magnets and the ferromagnetic
material of the armature. The lower surface of the closed surface is located on the boundary G. The

upper surface is located on y =+o where the magnetic field is considered equal to zero, so, the

integration over this surface is zero. On the laterals sides, the integration over the terms Ty and Ty,
cancel one to each other [2]. By this way, the normal force results of the integration of Tyy through
the surface located on boundary G (y = Ig ), where are located lower polar surfaces of the permanent

magnets, according (40).

Fy=F), =i”TyyjdXdz =H—1oﬂ(sy2 —O.S‘E‘ZJIdxdz:i'[J'(Byz B2 Jjoxz (40)

The x and y-components of (40) result of the contribution of the magnetic field produced by
the current in the armature phases and of the magnetic field produced by the Halbach array. In
the present analysis, the magnetic field is consider constant through the z-axis, so (40) results in (41),

where 1, is active length of the coils through z-axis. The upper limit of integration, L;,

corresponds to the entire length of the Halbach array through x-axis and it is obtained by the sum of

2l; and L3 .
4

SR

0 X

In (41), the symbol ( ), indicates the mean value of the operation over x. The result of (41) is

given by (42):

2 2
2(|( anly | —xnlg My —xnlg
0.5[#°M°J [e *e j (ag +a9)|- [% (ag +a3)|||+

m a
- el S [ (e, sl
+ H—Cn ; D ](cosz(m %] +5sin z(m %j]] + [_ﬂoﬂ':]/'o j I I Z
KNlg _o—Anlg
a
where:
(43)

ay = ((bbg)-+(chy))°

Brazilian Microwave and Optoelectronics Society-SBMO received 30 Oct 2012; for review 03 Nov 2016; accepted 28 Dec 2016
Brazilian Society of Electromagnetism-SBMag © 2017 SBMO/SBMag ISSN 2179-1074


http://dx.doi.org/10.1590/2179-10742017v16i1878

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 1, March 2017 147
DOI: http://dx.doi.org/10.1590/2179-10742017v16i1878

az = (b, )+ (cbs ) (44)

= ((bby)+ (cby ) (45)

1= (o0 e oo | )

5 = ((bb )+ (cb3 )Sln(m%j (47)

ag = ((bby )+ (cby ) COS[K“%) (48)

by =1 cos(n) (49)

by =sin"" sin”. (50)

- :mA_zp—_ Z:E: : (Mne—mlg +em(lb—lg)]_+:(Mn +em(lb—lg)]j (51)

(52)

A tyry —1 _ an T RN
p pm (Mne wlg +e1m(lb |g)j - (Mn+e’m(|b Ig)j
2 lLlrpm +1

In order to validate the analytical model, the linear motor was modelled using FEMM 4.2. A
numerical model was constructed with the same characteristics of those showed in Table I. To take
into account the effects of magnetic flux lines that pass through the air, the motor was encircled in all
directions by a region of air. The simulations of the motor were carried under static conditions. In
order to compare the results of the analytical model, the linear motor was numerically analysed
without current in its armature phases. The results gave an assessment of the distribution of the
magnetic flux in the air gap produced by the Halbach array. After, the linear motor was analysed with
current in the coils, in order to verify the effect of the magnetic field produced by current in the

armature winding on the normal force.

E. Measurements
A prototype of the linear motor presented in Fig. 1 was constructed and it helped to validate the

analytical model by means of measurement of propulsion and normal forces. A test rig was designed

for the experimental part of the study. Measurements of forces under static conditions were taken
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using force sensing resistors. It provides an inverse change in resistance in response to an
increase/decrease in applied force. Fig. 5(a) presents the test rig for measurement of propulsion force
with the actuator suspended by means of a structure that keeps it static. During the tests, only four
phases located under permanent magnets with normal magnetization were fed by current. Fig. 5(b)

shows the force sensing resistor and its position in the structure used for measurements.

' Force Sensihg

@) (b)

Fig. 5. a) Test rig for measurement of force; b) force sensing resistor and its position in the structure used for measurements.

I1l. RESULTS AND DISCUSSION
Fig. 6 presents the graph of the y-component of magnetic flux density vector in the air gap vs.

position on the plane underneath the mover at y = 6 mm, when current in the phases of the armature is
zero. The graph presents values obtained by the analytical method described in this paper, using (16).
For comparison and validation of the analytical model, curves are obtained by numerical analysis and
by measurements, under the same conditions of current and position used in the analytical method.
The measured values were obtained by means of a gaussmeter. The behaviour of the magnetic flux
density in the plane y = 6 mm presents a sinusoidal shape as expected instead a flattened shape.
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Fig. 6. Graph of the y-component of the magnetic flux density vector in the plane y = 6 mm, with current equal to zero.

The numerical analysis allowed to foresee the behaviour of the distribution of the magnetic flux
density in the structure of the linear motor, especially in the ferromagnetic core of the armature,
considered infinitely permeable in the analytical model. The results of the numerical simulations
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allowed verifying that the core did not present effect of saturation and, in that region, the maximum
value of the modulus of the magnetic flux density vector is 0.3 T. Fig. 7(a) presents the behaviour of
the magnetic flux density in the magnetic circuit of the linear motor produced by the Halbach array
obtained by numerical analysis with current in the armature winding equal to zero. Fig. 7(b) and 7(c)
presents the respective graphs of the y-component of magnetic flux density vector in the air gap vs.
position on the plane underneath the mover at y = 10 mm and y = 0. Analytical results are presented,
too. In the planes near the polar surfaces of the Halbach array, the behaviour of the distribution of the
magnetic flux density presents a flattened aspect, Fig. 7(b). According to the expected, in the region
of the coils, the distribution of the y-component of the magnetic flux density vector presented a shape
very closed to a sinusoidal behaviour, Fig. 7(c). The coils are located under the plane y=6 mm,
where the distribution of the magnetic flux density has a quasi-sinusoidal behaviour. This
characteristic results in a propulsion force with no significant odd harmonics, according to the
analytical model. The fundamental value of the propulsion force is 2.03 N, and the 3™ harmonic,

5.74x10~° N, with a current of 1.45 A.
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Fig.7. (a) Shape of the magnetic flux distribution produced by the Halbach array in the linear motor obtained by numerical
analysis; (b) and (c) graphs of the y-component of magnetic flux density vector in the air gap aty =10 mmand y = 0.
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Fig. 8 shows the graph of the measured linear propulsion force on static conditions, when only the
phases located under the permanent magnets with normal magnetization were fed by current. By
means of the values presented in the graph of propulsion force, the mean sensitivity in N/A was
calculated. Table Il presents the resulting mean sensitivities obtained for measurements and
theoretical values of propulsion force. Taking into account the measured results as a reference, the
difference between the measured and the numerical values is 1.47 %, and between the measured and
analytical ones, 2.94 %.
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Current (A)

Fig. 8. Graph of the propulsion force vs. current in the coils of the armature winding.

TABLE Il. MEAN SENSITIVITY OF THE LINEAR MOTOR UNDER STUDY.

Average Sensitivity Difference
(N/A) (%)
Analytical Method 1.40 +2.94
Numerical Analysis 1.38 +1.47
Measured 1.36 -

Fig. 9 presents the graph of the normal force obtained with the same conditions imposes for
obtaining the propulsion force. For comparison and validation, figures were obtained by the analytical
model and by the numerical analysis under the same values of current of those obtained by the
measurements. The analytical values of propulsion force were calculated using (34), and the normal
force was obtained by (42).

The present study also helped to analyse the behaviour of propulsion and normal forces as a
function of the air gap length. Fig 10 shows the graph of the propulsion force as a function of the air
gap length, when current in the coil located under the permanent magnets with normal magnetization
is 1.45 A. Fig. 11 shows the graph of the normal force vs. the air gap length obtained with the same
conditions of the graph of the propulsion force. The normal force is the principal characteristic
employed to design the suspension system of the linear motor, since it must compensate the effect of a
large normal force.
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Fig.9. Graph of the normal force vs. current in the coils of the armature winding.
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IV. CONCLUSIONS
The theoretical models show good computation of the produced forces, and will help in further

analysis. One of the goals of the design of the linear motor was to guarantee that the coils of the
armature winding were immersed in a distribution of magnetic flux density vector produced by the
permanent magnets with a sinusoidal behaviour. The theoretical result allowed verifying that between
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the planes y = 0 and y = 6 mm the y-component of the magnetic flux density had a very near
sinusoidal shape. The involved forces have odd harmonics of very small values and, in the calculation
by analytical method, the results converge quickly.

The magnetic field produced by the current in the armature winding are very small when compared
to the magnetic field produced by the permanent magnets of the Halbach array. The effect of the
magnetic field produced by currents on the normal force is not significant, according theoretical
results. Considering a variation from 0 to the rated value of current (1.45 A), the theoretical normal
force did not present modification in its values. Experimental results presented a slight influence of
the armature current on the normal force. When current is equal to zero, the measured value of normal
force is 12.1 N and, with a current of 1.45 A, is 12.5 N.

The analysis of the results of the y-component of the magnetic flux density vector, Fig. 6, allows
one to conclude that the difference between the simulated and measured peak values is 5.98% and
between the analytical and measures peak values is 16.95% in the plane y = 6 mm. In the same
plane, the analytical average value of the y-component of the magnetic flux density vector is 0.234
T, while the numerical one is 0.209 T. Those percentage values vary according to the y-coordinate.
As one can see in Fig. 7(b), in y = 10 mm, near the polar surface of the permanent magnets with
normal magnetization, the analytical and numerical values of the y-component of the magnetic flux
density vector have a smaller difference.

With relation to the propulsion force, in the sensitivity comparison, the average difference
between the simulated and the measured values is 1.47% and between analytical and measured
values, 2.94%. The normal force difference is 8.93% between the simulated and the measured
values, and 16.78% between analytical and measured values, Fig. 9. Propulsion and normal forces
presented a nonlinear behaviour with respect of the variation of the air gap length. The propulsion
force difference between the simulated and measured values is 1.85 %, and between the analytical and
measured values is 4.46 %, Fig. 10. In the case of normal force, between the simulated and measured
values, the difference is 10.51 %, and between the analytical and measured values is 15.72 %, Fig. 11.

In the propulsion force calculation, it was employed the Lorentz-Laplace force. The force was
obtained by the vector product of the y-component of the magnetic flux density vector and the z-
component of the current density vector integrated under the active volume of the coils under
current. In the region of the coils, the difference between the analytical and numerical values of
the y-component of the magnetic flux density vector varies from 6.9% to 12.05%. The differences
in the propulsion force sensitivity comparison are much smaller. It was expected a larger
difference between the results of force due to the differences in the comparison of the y-component
of the magnetic flux density vector. Possibly, that result was due to errors introduced by the
correction factor applied to the density current calculation in order to obtain the effective cross-

sectional area occupied by the conductors in the winding region. The analytical results of
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propulsion force was obtained by integration over I, and I;/4 (the cross-sectional area of one coil
is sc=Ip (It /4)). The conductors occupy an effective cross-sectional area smaller than s .

Analytical models based on Fourier series can be a good tool for understanding and previewing the
behaviour of the magnetic flux density in electromagnetic devices. The theoretical models show good
computation of the produced forces, and will help in further analysis. The analytical model allows
understanding the behaviour of the magnetic flux density in the air gap and in the components of the
linear motor and calculating the forces.

The equations of the analytical model lead to the fast computation of the fields and forces. The
numerical analysis allows the verification of the conditions of the magnetic field in the ferromagnetic
material of the motor. The concomitant use of those two theoretical models and their results helps on
the design of the linear motors with permanent magnets and on the analysis of the impact on the
values of forces when modifications on dimensions are made. From the education point of view,
students can benefit from this work in many ways: to learn the electromagnetic modelling approach
by means of fundamental equations; by applying that approach to a special topology of linear motor;
and by seeking validation of the study by means of numerical e test results.
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