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Abstract— An accurate modeling of materials is essential to obtain 

reliable results in fields calculation. The Jiles-Atherton approach is 

widely used for modeling the magnetic hysteresis and depends on 

its set of five parameters to properly represent material. In this 

article is proposed an original methodology for obtaining this set of 

parameters avoiding the derivatives rough calculation and using 

the calculation of integrals. From the model equations, a new 

methodology with two nonlinear algebraic systems of five equations 

in five unknowns is obtained. The initial magnetization curve, the 

anhysteretic curve and filtering data are not necessary. The 

proposed methodology also does not restrict the search space of 

parameters. The parameters assume values in the interval (0,∞). 

Calculated data were compared with experimental data to validate 

the methodology. The simulations showed that the proposed 

method can obtain an accurate set of parameters from a single 

experimental hysteresis loop and with low computational effort. 
  

Index Terms— Cauchy problem, Maclaurin's series, Magnetic hysteresis, 

magnetic materials.  

I. INTRODUCTION 

Several models for scalar modeling of magnetic hysteresis are found in the literature but the Jiles-

Atherton approach has been widely used [1]-[9]. To completely characterize a given material the 

Jiles-Atherton model requires the determination of five parameters: ms(A/m), α, a (A/m), k, and c 

[10]-[12]. The calculation of these parameters has been performed through different methods 

stochastic and deterministic. 

Recent research developed by the authors of this article resulted in three different methodologies to 

calculate the parameters of the Jiles-Atherton model, based on the knowledge of only one 

experimental B-H curve of the material. The three methodologies have the same origin (the equations 

of Jiles-Atherton); they use the same method (non-linear least squares) to solve an equations system 

of infinitely many solutions where the solution is the set of parameters to be calculated; and they were 

applied to characterize the same material. The differences between the methodologies will be 

highlighted. In the first method, after algebraic manipulation of the Jiles-Atherton equations one 

obtains Mirr = Mirr (He (H, B)), and reaches to a nonlinear ordinary differential equation dB / dH = f1 

(H, B). The derivative is calculated roughly. The system of equations is written with this last equation. 
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The derivative of a function B (H) at the point H1 is defined by the 

limit,      1 1 1
0

lim /
H

B H B H H B H H
 

        , when this limit exists. Thus, to improve the 

first method, in the case of noisy loops, it is necessary to avoid the derivative calculation. In the 

second method (which avoids the derivative calculus) proposed in this paper, after algebraic 

manipulation of the Jiles-Atherton equations, one obtains Man = Man (He) and dMan / dHe = f2 (He) 

allowing write a linear ordinary differential equation ODE. The Cauchy problem associated with ODE 

is solved and its initial value is an experimental magnetic field and magnetic induction. This allows 

writing a nonlinear algebraic equation B/μ0-H = f3 (H, B). The integral involved in this algebraic 

equation is solved roughly using Maclaurin series.  To improve the accuracy are considered the first 

ten terms of the series. The equations system is written with this algebraic equation. In order to 

improve the second methodology is necessary to avoid rough calculation of integrals. Therefore, the 

third methodology was developed. In the third method, after algebraic manipulation of Jiles-Atherton 

equations, are obtained directly (without using rough calculations of derivative and integrals) B = B 

(He, H). A nonlinear algebraic equation f4 (H, B) is written and used to construct the system of 

equations. 

For the same material, the different methodologies do not provide, as a result, equal sets of 

parameters. It is true that the proposed methodologies have the same origin, but the methodologies 

identify the set of parameters by solving different equations systems. The first methodology calculates 

parameters based on derivatives rough calculation; the second method calculates parameters based on 

power series approximation to solve the integral; the third method is simpler and does not use 

derivative or integral to identify the parameters. 

Each of the equations systems analyzed in the three methodologies has infinitely many solutions. 

Although there are infinitely many solutions, only some of them can be calculated because the main 

equations in each methodologies have a division operator (which is inherited from Jiles-Atherton 

equations) and hence indeterminate forms can happen avoiding the calculation of all existing 

solutions. 

In addition, there are five parameters, which can also be seen as five degrees of freedom. 

Depending on the value assumed by one of the parameters, the other can be set according to assumed 

already value. 

The Jiles-Atherton equations originate three methodologies, this is fact, and cannot be seen as a 

drawback because the three methodologies give opportunity to calculate several sets of parameters 

which are then analyzed based on criteria that facilitate the selection of the set that best represents the 

experimental behavior of the material. 

In this article, a new and original method to determine the five parameters of Jiles-Atherton 

hysteresis scalar model is proposed. Reference [13] proposes an original method to determine the five 

parameters of the model. In that study an implicit formula was developed and the magnetic induction 
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B was written in function of magnetic field H and in terms of the derivative of B with respect to the 

magnetic field. If there are numerical noises added to the measured experimental data then the 

calculation of the derivative may be difficult. Despite this, the approach has been used to characterize 

different materials and the results show good agreement of measured data and calculated data. 

The main contribution of this paper is to improve the method for obtaining the parameters of Jiles-

Atherton model using an inverse model, where the magnetic induction is the independent variable, 

and, unlike the previous work, avoiding the use of derivatives calculus in the characterization method.  

In summary, the proposed approach can be described as follows. First, the model Jiles-Atherton is 

written as a linear ordinary differential equation. Then, the Cauchy problem associated with this 

differential form is considered [14]. The initial value of the Cauchy problem is an arbitrary data point 

(H0, B0). Then the Cauchy problem is solved using the method of integrating factor [15] and 

integration by parts. Finally, the definite integral obtained is solved numerically by Maclaurin series 

[16]. The proposed method is simple because the integrand can be represented by polynomial 

functions facilitating their integration. 

II. MATHEMATICAL MODELING 

To determine the model parameters a single main equation is obtained (as one can see in appendix) 

based on the five equations of Jiles-Atherton and on a constitutive relation [12]. This equation is given 

by (1). 

The equation (1) is a function of B, H, in that also appear the five parameters of the Jiles-Atherton 

model. The equation implicitly relating magnetic field and magnetic induction. Knowing the 

coordinates of points, magnetic field and magnetic induction, using equation is possible to identify the 

five parameters of the model. Another advantage of (1) is the derivative absence. 

             
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(1) 

Where: ms (A/m), α, a (A/m), k, and c are the five material parameters; δ takes the value 1 for the 

ascending branch of the hysteresis loop, and the value -1 for the descending branch of the hysteresis 

loop; H is the magnetic field; B is the magnetic induction; and µ0 is the magnetic permeability of 

vacuum. 

III. SOLVING SYSTEM OF EQUATIONS 

Equation (1) can be used to obtain the five parameters of Jiles-Atherton model when an 

experimental B-H loop is used as a reference. Initially, do (1) equal to zero and 0 = f (H, B) denote 
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this operation. Then, 0 = f (H, B) was used to write two systems of non-linear algebraic equations, as 

can be seen in Fig. 1. The first system represents the ascending branch of the hysteresis loop (Asc.) 

when δ = +1. The second system represents the descending branch of the hysteresis loop (Desc.) when 

δ = -1. Then points (H0, B0) belonging to the experimental curve are selected. Each system has five 

equations in five unknowns. The unknowns are the five parameters of the Jiles-Atherton model. 

Finally, each system of equations is solved using the nonlinear least squares method. The parameter 

set that represents the material, which corresponds to the experimental hysteresis loop, is the solution 

of the equation system.  

 

Fig. 1. System of equations for each branch of the experimental hysteresis loop. 

Consider a system of five nonlinear equations given by Fi (x) = f (Hi, Bi) where x = [ms α a k c] are 

the five unknowns, i = 1, ..., 5. The aim is to find a vector x such that Fi (x) = 0. To solve this system 

of equations is necessary minimizing the sum of squares. If the sum of the squares is null then the 

system of equations is solved. To solve the system was used the Trust-Region-Dogleg algorithm 

(TRD) or Trust-Region-Reflective algorithm (TRR) [17], [18] belonging to the nonlinear least squares 

method. 

The system has infinitely many solutions and is solved by the following method: first, is assigned 

an arbitrary initial value for the set of parameters x0 = [ms0 α0 a0 k0 c0]. To the descending branch of 

the hysteresis loop select a point with coordinate (H0, B0) belonging to the experimental curve. Five 

points with coordinates (H, B) positioned in this branch as can be seen in Fig. 1 are selected. The five 

points are not positioned considering the most relevant slopes of the branch because (1) does not have 

the term dB/dH. The proposed equation f (H, B) evaluated in each selected point (H, B) is writen (this 

allows to obtain a five-equation system). By solving this system of equations (using the TRD 

algorithm or TRR algorithm), a candidate to solution (cs) is obtained.  

The candidate to solution above now is used as initial value for the current set of parameters, x0 = 

cs. Repeat the procedure for the ascending branch of the experimental hysteresis loop. The point of 

coordinates (H0, B0) and the five points of coordinates (H, B) belong to the ascending branch. This 

new system of equations is solved (by the TRD algorithm or TRR algorithm) and new candidate to 
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solution is obtained and used as a set of initial parameters for the system. 

This procedure is repeated until a certain error criterion is obeyed by candidate to solution, or until 

the maximum number of iterations is reached. When a solution is found the simulated hysteresis loop 

is calculated and the curve obtained is compared with the measured data. For the set of parameters 

representing the material, corresponding to the experimental hysteresis loop, are calculated: mean 

squared error (MSE); total accumulated distance calculated considering measured points and 

calculated points; and percentage error calculated considering the measured magnetic loss and 

calculated magnetic loss. 

If the algorithm does not converge, then the initial set of parameters should be changed as well as 

the points with coordinates (H0, B0), the error criterion and the maximum number of iterations. 

The main steps of the numerical procedure to calculate the parameters of the Jiles-Atherton 

hysteresis scalar model are shown in Fig. 2. 

IV. APPLICATION RESULTS OF PROPOSED METHODOLOGY 

In this section, calculated hysteresis loops are compared to measured hysteresis loops to validate the 

proposed methodology. The results were obtained using the proposed methodology and the equations 

were solved using the TRD algorithm or TRR algorithm. The experimental data were obtained using 

an Epstein frame with closed loop control [19], sinusoidal magnetic induction with frequency of 1 Hz. 

Three materials of grain oriented silicon steel cut in the rolling direction were considered, as shown in 

Fig. 3-5. A material of grain non-oriented silicon steel cut in the transverse direction was 

characterized as can be seen in Fig. 6. A material of non-oriented steel silicon cut in the direction of 

45 degrees was analyzed as can be seen in Fig. 7. The corresponding values of the model parameters 

(solution) are shown in table I. In the same table the simulation time (t) for obtaining the parameters 

with a PC i5, 2.67 GHz is given as well as the number of iterations (NI) for each output, the initial set 

of parameters used (initial), and initial value used for the Cauchy problem (H0, B0). The parameters 

are rapidly obtained and the proposed methodology can be used for fast characterization of materials. 

This reduced time brings advantages to the next procedures. 

http://dx.doi.org/10.1590/2179-10742017v16i1880
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Fig. 2. Numerical procedure to calculate parameters. 
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Fig. 3. Calculated results and measured results for material 1: soft loop (TRD). 

 

Fig. 4. Calculated results and measured results for material 2: first case (TRD). 

 

Fig. 5. Calculated results and measured results for material 3: third case (TRD). 
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Fig. 6. Calculated results and measured results for material 4: fourth case (TRD). 
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Fig. 7. Calculated results and measured results for material 5: fifth case (TRR). 

TABLE I. RESULTS 

Case Description 
Parameters of Material 

ms α a k c 

Soft 

Initial 1.72x106 1.7x10-4 129.8 195 0.47 

Solution 1.67x106 2.38x10-4 129.5 89.13 0.51 

t (s) 4.31 NI 3   

H0,B0 Desc. 19, 1 Asc. -19, -1.1  

1o 

Initial 1.5x106 4x10-4 200 200 3.12 

Solution 1.78x106 1.54x10-4 101.5 81.22 0.34 

t (s) 2.56 NI 3   

H0,B0 Desc. -15, 0.8 Asc. 14, -0.8  

3o 

Initial 1x106 5.0x10-4 500 300 0 

Solution 1.47x106 1.36x10-4 69.69 48.06 0.16 

t (s) 1.97 NI 4   

H0,B0 Desc. -13, 0.9 Asc. 15, -0.9  
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Case Description 
Parameters of Material 

ms α a k c 

4o 

Initial 1.55x106 200x10-4 519 460 0.3 

Solution 1.55x106 1.07x10-3 518.4 459.9 0.3 

t (s) 2.53 NI 3   

H0,B0 Desc. -6, 1.03 Asc. 6, -1.01  

5o 

Initial 1.3x107 18x10-4 154 195 0.08 

Solution 1.33x106 7.88x10-4 363.71 330.27 0.45 

t (s) 2.58 NI 4   

H0,B0 Desc. 71, 0.8 Asc. -71, -0.8  

TABLE II. SOLUTION QUALITY INDICATORS 

Case 
Solution Quality Indicators 

Total Dist. Minimum Dist. Maximum Dist. MSE Error%  

Soft 4155 1.89x10-3 31.23 10.43 7.11  

1o 1111.7 5x10-3 17.86 7.68 3.86  

3o 6342.5 3.13x10-3 22.29 4.59 1.53  

4o 15581.1 1.94x10-3 73.33 19.00 1.95  

5o 15521.4 5.13x10-3 60.89 22.80 0.74  

The hysteresis sigmoid soft loop simulated agrees with the experimental data as shown in Fig. 3. As 

one can see in Fig. 4-7 the simulated loops also show good agreement with the measured hysteresis 

loops.  

Table II shows indicators of the solution quality: mean square error (MSE); calculated distance 

considering measured points and calculated points (Dist.); and percentage error calculated considering 

the measured magnetic loss and calculated magnetic loss (Error%). 

The two systems of nonlinear equations presented in the proposed methodology can be solved using 

the method of nonlinear least squares (used in adjustment nonlinear curves). 

From the equations of Jiles-Atherton hysteresis scalar model and a constitutive relationship were 

written two systems of nonlinear equations. The aim is to compute the parameters of Jiles-Atherton 

model of the curve that best fits the experimental data of magnetic induction and magnetic field for a 

given material. These parameters, which fit (by the nonlinear least squares technique) the nonlinear 

function (obtained from the proposed methodology) to a set of experimental points of magnetic 

induction and magnetic field, can be identified for example by Trust-Region-Dogleg algorithm or 

Trust-Region-Refective algorithm [17]. 

With characteristic of avoid the derivative calculus, this methodology shows great potential for 

reliable and fast identification of the parameters of the Jiles-Atherton model. Although the aim of this 

work is the parameters identification of the Jiles-Atherton scalar hysteresis model the method 

proposed here can also be used to determine the parameters of the Jiles-Atherton vector model. In this 

case the methodology can be used for each main direction of magnetization: longitudinal direction 

and transverse direction. 

http://dx.doi.org/10.1590/2179-10742017v16i1880
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In [20] - [28], one can see methodologies to determine the parameters of Jiles-Atherton hysteresis 

scalar model using algebraic manipulation of the model equations and the application of nonlinear 

least squares method to solve the system of equations obtained. 

V. CONCLUSION 

In this article, a modeling of magnetic hysteresis is presented using the Jiles-Atherton model. A 

mathematical model and a new methodology, which requires few experimental data from the 

hysteresis loop, are used to evaluate the model parameters. The proposed approach improves the way 

in which these parameters are determined avoiding the calculus of derivatives. To our knowledge, this 

model which implicitly relates the magnetic field and the magnetic induction has never been proposed 

in the literature. Despite the complexity involved in the derivation of the algebraic system and in the 

integral calculus by unconventional methods, the final results allows fast computational method 

providing reliable hysteresis loop when compared with experimental loops. 

APPENDIX 

The equations that allows identifying the model parameters are the equations of the  Jiles-Atherton 

scalar hysteresis model and a constitutive relationship. According to [12] are considered the following 

equations: 

irr revM M M   (2) 

 rev an irrM c M M 
 

(3) 

coth e
an s

e

H a
M m

a H

  
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irr an irr
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dH k


  (5) 

eH H M 
 

(6) 

 0B H M 
 

(7) 

A. Cauchy Problem Associate 

Keeping in mind that the purpose of this section is to find the five parameters of the Jiles-Atherton 

hysteresis scalar model without using the derived calculation, the mathematical modeling begins 

combining (3) and (2): M = Mirr+c(Man-Mirr) that is  

 1 irr anM c M cM    (8) 

Furthermore, considering (6) we have αM = He-H, that is, M = (He-H)/α which combined with (7) 

allows to write B = µ0[H+((He-H)/α)]. From this last equation one obtains: 

0
0

1
1 eB H H




 

 
   

 
 (9) 

From (9) we then get µ0He/α = B-µ0H(1-1/α)  which also means: 
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 
0

1eH B H





    (10) 

On the other hand, equation (8) allows calculating the derivative of magnetization with respect to 

the effective magnetic field: 

 1 irr an

e e e

dM dMdM
c c

dH dH dH
    (11) 

This way, combining (5) and (11) this gives us: 
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By multiplying (8) by 1/(kδ) it is also true that: 
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After that, (12) added to (13) allows write:
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dH k k dH k  


    , or 

an an an
an

e e

M cM dMdM M c
c M

dH k k k dH k   
      that is 

an an

e e

M dMdM M
c

dH k k dH 
    (14) 

Taking into account (4), one can see that Man = Man(He) and dMan/dHe = f(He) that is Man and 

dMan/dHe both depend of He, as a result it is stated that (14) is a linear ordinary differential equation of 

the first order, with dependent variable M and independent variable He. 

Consider the Cauchy problem associated with (14). A Cauchy problem is defined by an equation or 

systems of first order equations and an initial condition. From (7) B/µ0 = H+M or M = (B/µ0)-H, as a 

result the initial condition will be: M(He0) = M0 = (B0/µ0)-H0. 

Concerning (10) He0 = (α/µ0)B0-(α-1)H0 and consequently 

    0
0 0 0 0 0

0 0

1e

B
M H M B H M H




 

 
      

 
 (15) 

The following Cauchy problem is established: 

 

    0
0 0 0 0 0

0 0

1

an an

e e

e

M dMdM M
c

dH k k dH

B
M H M B H M H

 




 


  




          

  

B. Solving Cauchy Problem 

The method of integrating factor will be used in solving the Cauchy problem. The integrating factor 

is determined assuming that there is a function u(He) such that: 
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        an an
e e e e

e e

M dMdM M
u H u H u H u H c

dH k k dH 
    and 

      e e e
e e

dM M d
u H u H u H M

dH k dH
   

As u(He) ≠ 0 and M(He) ≠ 0 then 

     e e e
e e e

dM M du dM
u H u H M u H

dH k dH dH
    

In the above equation the terms on the right side are compared with those terms on the left side and 

one can conclude that: 

 e

e

u Hdu

dH k
  that is 

 
 

1e

e

u H

u H k


  

As d(ln[u(He)])/dHe = u'(He)/u(He) then   d(ln[u(He)])/dHe = 1/(kδ). Separating the variables in the 

equation above and integrating we then get ʃdln(u(He)) = ʃ[1/(kδ)]dHe, as a result ln(u(He)) = 

[He/(kδ)]+cte. Especially for cte = 0 this give us ln(u(He)) = He/(kδ) which also means 

u(He) = e
He/(kδ)

. The integrating factor is e
He/(kδ)

.  

Equation (14) is multiplied by the integrating factor and this gives us: 

e e e eH H H H

an ank k k k

e e

M dMdM M
e e e ce

dH k k dH
   

 
    (16) 

As 

e e eH H H

k k k

e e

dM M d
e e e M

dH k dH
  



 
  
 
 

then we can rewrite (16) as 

 

e e eH H H

an ank k k

e e

M dMd
e M e ce

dH k dH
  



 
   
 
 

.   

Integrating the above equation that gives us: 

e e eH H H

an ank k k
e e

e

M dM
d e M e dH c e dH

k dH
  



 
   
 
 

   which also means 

0

0 0

0

1e e e e

e e

H H x xH H

ank k k k
an

H H

dM
Me M e M e dx c e dx

k dx
   


     (17) 

In the second term on right side of (17) is applied integration by parts given by  ʃUdV = UV-ʃVdU. 

For U = e
x/(kδ)

 this gives us dU = (1/(kδ))e
x/(kδ)

dx. For dV = (dMan/dx)dx then ʃdV = ʃ(dMan/dx)dx that 

is V = Man. It is also true that: 

 
0 0

0

1
e

e e

e e
e

H
x x xH H

ank k k
an an

H HH

dM
c e dx c M e e M x dx

dx k
  



   
   
 
   

   (18) 
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Combining (18) and (17) one obtains:  

 
0

0 0
0

0

1
e

e e e e

e e
e

H
H H x x xH H

k k k k k
an an an

H HH

c
Me M e M e dx c M e e M x dx

k k
    

 

 
    
 
 

   or 

      
0 0

0

0 0

1e e e ee

e

H H H HxH

k k k k k
an an e an e

H

c
Me M e e M x dx cM H e cM H e

k k
    

 

 
     

 


 

       
0 0

0

0 0

1
1

e e e ee

e

H H H HxH

k k k k k
an an e an e

H

Me M e c M x e dx cM H e cM H e
k

    


      (19) 

Both members of equation (19) are multiplied by e
-He/(kδ)

, we then get: 

       
0 0

0

0 0

1
1

e e e e ee

e

H H H H HxH

k k k k
an an e an e

H

M M e c e M x e dx cM H cM H e
k

   



  

     . 

The total magnetization is isolated of the other variables in the equation above, this gives us: 

       
0 0

0

0 0

1
1

e e e e ee

e

H H H H HxH

k k k k
an an e an e

H

M M e c e M x e dx cM H cM H e
k

   



  

     . 

Considering the above equation and (4) one can write: 

 
0

0

0

0

0

0

1
1 coth

coth coth

e e e e

e

e e

H H H xH

k k k
s
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H H

e e k
s s

e e

x a
M M e c e m e dx

k a x

H Ha a
cm cm e

a H a H

  





 



  
      

  

      
        

      


 (20) 

C. Proposal Relation: Magnetic Induction with Magnetic Field 

Once solved the associated Cauchy problem it is important to note that: one can return to original 

equations of the model to write an equation that relates the magnetic induction with the magnetic 

field, where also appear the parameters of the material. Taking this into account, from equality (7) M 

= (B/µ0)-H which together with (10) are moved to (20) allowing to say that: 
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(21) 

The definite integral in (21) is solved by Maclaurin series and one can obtain (1). 
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