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Abstract— Vegetation is considered a complex environment for 

analysis of scattering and attenuation in radio propagation 

phenomena. Satellite image processing can improve planning of 

radio systems with a vegetation attenuation predictor. In this 

research, the prediction is based on the correlation of more than 

56% between RGB pixel values and vegetation attenuation taken 

from three groups of power measurements at two distinct regions 

of Brazil: Belo Horizonte, in the southeast region measured at 18 

GHz, and Manaus at 24 GHz in the north region. The statistical 

analysis showed that more than 30% of the attenuation variance 

was due to the pixel values for each group. Using this linear 

correlated model between vegetation pixel RGB values and 

geolocated attenuation values, this work combined the unscented 

transform (UT) and Bayesian inference to refine the vegetation 

attenuation distribution. Since the necessary multiplication of 

Bayes prior and sampling distributions is not easily available in the 

UT, this paper presents a method that calculates new common 

sigma points and different new weights for the prior and sampling 

UT distributions, thus allowing the multiplication and creating the 

basis for a machine learning predictor tool.  
  

Index Terms— Bayes Theorem, Centimeter Wave, Unscented Transform, Vegetation 

Propagation measurements.  

 

I. INTRODUCTION 

This work presents a simple procedure that helps the association of vegetation attenuation models 

with geographic information systems (GIS). Vegetation is intrinsic of most outdoor environments, and 

its main effects are modeled in the literature as a non-linear foliage attenuation component added to 

the free space path loss (FSPL) and a lower loss rate experienced due to the multiple contributions 

from different scatters [1]-[3]. While these models use vegetation depth penetration as main 

parameter, this research allows the addition of the vegetation image as another component to the 

models. The use of the vegetation image is based on the combination of the UT [4] and Bayes 

inference theorem [5]. This combination allows a continuous model fine tuning, when new 

measurement samples are available, thus creating the basis for a machine learning predictor tool 
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which can be applied to other knowledge areas.  

Academia and industry are currently investigating the spectrums of cm-wave (3-30 GHz) and mm-

wave (30-300 GHz) frequency bands to meet the 5G requirements [6][7]. The potential of cm-wave 

spectrum for commercial wireless access has attracting less research than mm-wave during the last 

years [8]. Some outdoor radio propagation characterization of 18 GHz, 24 GHz and other cmWave 

frequencies can be found in [6], [9] and [10]. 

Frequency is a key aspect in these models and compared with traditional cellular systems (below 6 

GHz) the attenuation increases at cmWave/mmWave since smaller wavelengths fixed-size obstacles, 

such as a tree trunk or a leaf, cause higher blockage of the Fresnel clearance zone and scattering [11]. 

The vegetation increases the number of multipath components since at higher frequency bands a 

larger azimuth spreads are experienced due to the dominant contributions of the reflection and 

scattering mechanisms. The number of spatial multipath components in the suburban scenario with 

strong presence of vegetation is 1.23 times higher compared to the non-vegetated urban scenario [8]. 

The literature presents different vegetation attenuation models which can be classified as empirical, 

semi-empirical or analytical depending on the method to make the characterization of vegetation 

effects on propagation and the prediction of excess attenuation. The empirical models present simplest 

mathematical expressions and are easier to be applied but there is a strict dependence on specific 

measured data which determines the model parameters through regression curves fitted to the 

measured data. The physical process involved when the radio propagates through vegetation like 

scattering and absorption are not included in the empirical model [1]-[3]. Examples of empirical 

models are the Modified Exponential model (MED) [Weissberger, 1982], the ITU-R model [Stephens, 

1998] and its Derivatives, the COST 235 [COST 235, 1996] and the Fitted ITU-R. The semi-

empirical models present a best fit to measured data based on knowledge of the qualitative behavior 

of absorption and scatter in homogenous vegetation media. The geometry information of vegetation 

area is used at some sem-empirical models. Examples of semi-empirical models are the Non-Zero 

Gradient (NZG) model and the Dual Gradient (DG) model [1]. The analytical models use numerical 

analysis methods to provide solution for the physical processes involved in radio wave propagation 

through vegetation. Examples of analytical models are the Geometrical and Uniform Theory of 

Diffraction (GTD/UTD), the Radiative Energy Transfer Theory (RET), the Full Wave Solutions, and 

the Physical Optics [3]. These propagation models are needed for simulator tools used for wireless 

technology research and prediction tools used for radio network planning and optimization which use 

vegetation layers as input to calculate the propagation effects due foliage. 

The lack of experimental studies specifically targeting foliage attenuation in the cm-wave frequency 

band can be solved using an alternative way to model this vegetation attenuation which is proposed in 

this article based on vegetation pixel RGB values extracted from digital satellite images as input to 

estimate the foliage attenuation. The methodology identified a correlation between vegetation pixel 

RGB values and vegetation measured attenuation values. The measured vegetation attenuation data 
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were supplied by the studies of a suburban tree clutter attenuation analysis with directional antennas at 

18 GHz and 24 GHz cmWave radio propagation through vegetation which collected a set of dedicated 

directional measurements at two distinct vegetation scenarios of Brazil: Belo Horizonte, in the 

southeast region and Manaus, in the north region [8][10]. These previous studies presented a detailed 

analysis of spatial multipath components coming from the foliage including the tree clutter attenuation 

estimation based on the dedicated measurements. 

A regression function was calculated to obtain the vegetation attenuation in dB as a function of the 

sum of RGB values from vegetation pixels in the propagation area. The propagation area considered 

is the intersection of the areas covered by the transmission antenna and reception antenna. Only the 

vegetation pixels inside the propagation areas were used and a filtering algorithm was applied. Some 

algorithms are available in the literature to filter vegetation cover from digital images which are 

widely used to describe vegetation quality and ecosystem changes and is a controlling factor in 

transpiration, photosynthesis and other terrestrial processes [12]13]. 

This article presents a method developed to use the Unscented Transform applied to the Bayes 

inference theorem. The Bayes inference theorem was used to calculate the posteriori expected 

vegetation attenuation for a prior RGB pixel distribution. The Unscented Transform, presented in the 

equation (1), applied to Bayes inference theorem was used to decrease the processing time to calculate 

the expected attenuation value and to decrease the number of vegetation pixel samples needed. 

Previous studies showed UT as an important method to decrease processing efforts and data samples 

needed [4], [14], [15]. 

𝑬𝒅{û
𝒌} = ∫ û𝒌𝒘(û)𝒅û =∑𝒘𝒊𝑺𝒊

𝒌

𝒊

+∞

−∞

 (1) 

where, 

• Ed    is the expected value of the discrete distribution; 

• û      represents the set of random variables, with probability distribution known; 

• ∫ û𝒌𝒘(û)𝒅û
+∞

−∞
 is the expected value Ec of the continuous distribution; 

• Si      are the sigma points of UT; 

• k       is the order of approximation desired; 

• wi      are defined as UT weights, in addition to be the discrete probability density function. 

II. MEASUREMENT CAMPAIGN AND IMAGE PROCESSING 

The measurement campaign was performed at two distinct vegetation scenarios. The first one was 

at 24 GHz centimeter wave (cmW) at Manaus, Amazonas, Brazil in a scenario with open spaces, 

scattered buildings and strong presence of vegetation (Fig. 1) [8]. The second scenario was at 18 GHz 

at Belo Horizonte, Minas Gerais, Brazil, in a university campus area, considered as suburban, with 

some buildings and considerable amount of vegetation (Fig. 2) [10]. At Manaus the average tree 

height is 9 meters and the canopies diameters range from 3 to 13 meters with estimated leaf size of 15 
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cm. A continuous-wave transmitter (TX) was placed at 15 meters height and the receiver (RX) used a 

rotating pedestal at 1.75 meters height, both sides with horn antennas of 25º half-power beam width 

(HPBW). A total of 12 foliage-obstructed TX-RX radio links were studied with distances ranging 

from 45 to 155 meters and direct TX-RX links through vegetation depth ranging from 3 to 15m. At 

each RX point the entire azimuth (0º to 360º) was swept by steps of 9º and for elevations of 10º, 20º 

and 30º. The continuous wave TX antenna at Belo Horizonte was mounted at 7 meters height and the 

RX used a rotating pedestal at 1.75 meters height, both sides with horn antennas with 16º of HPBW. 

At RX point 1 the entire azimuth (0º to 360º) was swept by steps of 10º and from -10 to +10 degrees 

in steps of 10 degrees in elevation. At the other RX points the antennas were aligned in respect to 

each other until the maximum field strength could be obtained. The vegetation attenuation was 

calculated for both scenarios as the average of received power for the various elevations minus FSPL 

and minus RX antennas gains. The measurement points (Fig. 1) at Manaus were separated in 2 

groups: group 1 (1 up to 8) and group 2 (9 up to 12). These 2 groups will be applied to the method 

developed in this article which combines the UT technique with the Bayesian inference processes to 

refine the vegetation attenuation distribution. The Bayesian prior distribution will use group 1 and 

sampling distribution will use group 2. 

 

Fig. 1. 3D View of vegetated scenario: TX and 12 measurement points at Manaus 
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Fig. 2. 3D View of vegetated scenario: TX and 5 measurement points at Belo Horizonte 

 
The vegetation image processing was executed for both scenarios as follows:  

• To capture satellite image was used a Google Earth API named “Google Static Maps API”. 

The date from satellite image from Manaus group 1 was 03/26/2015. The date from satellite 

image from Manaus group 2 was 10/13/2016. The date from satellite image from Belo 

Horizonte was 08/28/2017. This API was used to draw the propagation area considered is the 

intersection of the areas covered by the transmission antenna and reception antenna as 

presented at Fig. 3. 

o Exclude the buildings image pixels using the L*a*b* colorspace algorithm from Matlab 

image toolbox [12]. Filter vegetation pixels using this same algorithm. An example of 

the result is shown in the upper left of Fig. 3. 

• Sum the RGB pixel values of vegetation at the polygon area formed by the points TX, RX and 

the intersection between TX and RX antennas (inside dash yellow polygon at Fig. 3). This 

was repeated for each azimuth by steps and for each measurement point. 

• The sum of RGB pixels considered only the vegetation contiguous to the measurement point 

as the example shown at Fig. 3. The vegetation pixels considered were only those within the 

green rectangle area detailed in the upper left corner. Including non-contiguous vegetation 

pixels turned the correlation negative. 

• Eliminate measurement points impacted by image watermark and eliminate links with 

azimuths impacted by building reflections. 

• Normalization of pixel by area according the image size. The sum of RGB pixel values from 

Manaus group 2 image (Fig. 3) was multiplied by 3 since it has an area 3 times bigger than 
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the Manaus group 1 image which can be found at [16]. The sum of RGB pixel values from 

Belo Horizonte image (Fig. 4) was multiplied by 1.8 since it has an area 1.8 times bigger than 

the Manaus group 1 image which can be found at [16]. 

 

Fig. 3. Satellite image of group 2 at Manaus: yellow dashed area filtering vegetation pixels for point 12 and the upper left 

detail shows the green rectangle area filtering contiguous vegetation pixels for this same point   

 

 

Fig. 4. 2D View of vegetated scenario: TX and 5 measurement points at Belo Horizonte 
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III. MAPPING RGB PIXELS TO ATTENUATION 

A linear regression is obtained between vegetation attenuation and sum of RGB for each azimuth 

and point analyzed (Fig. 5 to Fig. 7). The correlation was 0.57 for Belo Horizonte, was 0.59 for 

Manaus group 1 and 0.56 for Manaus group 2. The regression showed that 32.4% of vegetation 

attenuation variation (R2 value) was due to the vegetation pixel values for Belo Horizonte, showed 

34.8% for Manaus group 1 and 31.9% for Manaus group 2. The yellow marks at the figures 5 to 7 

show the mean of attenuation and “sum of RGB pixels” for each point. The normalization of RGB 

sum was necessary to avoid numeric instability when calculating the UT distribution moments. The 

graphic at Fig. 6 differs from the one presented at [16] since a new method to filter vegetation pixels 

was used increasing the color and bright parameters from the satellite image.  

The calculation of the UT attenuation distribution uses linear regression between the pixel 

distribution and the geolocated attenuation distribution, combined with the UT distribution of pixels 

(UT RGB). 

 
Fig. 5. Linear regression of vegetation attenuation measurements and pixel RGB values used to obtain the prior attenuation 

distribution at Belo Horizonte 

 

Fig. 6. Linear regression of vegetation attenuation measurements and pixel RGB values used to obtain the prior attenuation 

distribution at Manaus (group 1) 
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Fig. 7. Linear regression of vegetation attenuation measurements and pixel RGB values used to obtain the sampling 

attenuation distribution at Manaus (group 2) 

These UT sigma points are mapped in the linear regression for the two measurement groups of 

Manaus (Fig. 6 and Fig. 7) to obtain the UT attenuation sigma points. These 2 groups applied to the 

method presented in the next section which combines the UT and Bayes will refine the vegetation 

attenuation distribution. The Bayesian UT prior distribution will use group 1 and the sampling UT 

distribution will use group 2. The weights of UT RGB and UT attenuation are the same. The figure 8 

presents the six sigma points and weights calculated for the RGB and correlated attenuation 

distribution for group 1 and Fig. 9 presents the results for group 2.  Figure 10 details the use of these 

UT distributions for groups 1 and 2 as prior and sampling distributions for Bayesian inference.  

 

Fig. 8. UT distribution: vegetation attenuation and pixel values (group 1) 
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Fig. 9. UT distribution: vegetation attenuation and pixel values (group 2) 

IV. COMBINING UT AND BAYES INFERENCE 

Bayes' posteriori distribution p(y|x) is obtained multiplying prior distribution p(y) and sampling 

distribution p(x|y) as (2), but the multiplication of UT distributions is not available in the state-of-the-

art.  

 


1

0

dy p(y) y)|p(x

p(y) y)|p(x
=x)|p(y  

(2) 

This work presents at Fig. 10, equation (3) and equation (4) a method to perform this calculation. 

The technique creates new prior and sampling UT distributions calculating new common sigma points 

(Sm), new weights for prior (p’m) and new weights for sampling (p”m). The new sigma points and 

weights of such distributions are calculated so that the statistical moments for prior E{θ1
k} and 

sampling E{θ2
k} are preserved. Equations (3) and (4) relates these new prior and sampling 

distributions with its previous sigma points (Si and Sj) and weights (pi and pj). 

    }E{=Sp'=Sp
k
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1i i  
 (3) 

    }E{=Sp"=Sp
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k

j

N

1j j  
 (4) 

Equation (2) can be calculated since common sigma points (Sm) are used in prior and sampling. The 

new prior and sampling distributions have different weights (p’m and p”m). θ1 is the random variable 

for the prior distribution and θ2 is the random variable for the sampling distribution. 

The method presented at Fig. 10 and equations (3) and (4) was validated applying it to examples 

from [5] and one of these examples is presented as follow. Suppose a prior Beta distribution for a 

variable theta (θ) with mean 0.6 and standard deviation 0.3. Suppose a sampling Binomial distribution 

with n=1000 and y=650. The calculated Bayes posteriori distribution has a mean 0.6499 and a 

standard deviation 0.015.  



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 17, No. 2, June 2018 
DOI: http://dx.doi.org/10.1590/2179-10742018v17i21260 

Brazilian Microwave and Optoelectronics Society-SBMO received 09 Mar 2018; for review 15 Mar 2018; accepted 14 Jun 2018 

Brazilian Society of Electromagnetism-SBMag © 2018 SBMO/SBMag     ISSN 2179-1074 

 

293 

 

Fig. 10. Method developed to combine UT and Bayes inference  

The UT with three sigma points and weights calculated for prior Beta distribution and sampling 

Binomial distribution are presented at Fig. 11. The calculation of Bayes UT posteriori distribution for 

this example is not possible since prior and sampling UT distributions does not have common sigma 

points and the multiplication needed at equation (2) will result zero. 

 

 Fig. 11. Unscented Transform with three sigma points and weights for prior Beta distribution and sampling Binomial 

distribution without common sigma points 

Appling the method from Fig. 10 is necessary to calculate three new common sigma points (Sm) for 

prior and sampling UT distributions, three new weights for prior (p’m) and three new weights for 

sampling (p”m). A group of nine equations are developed from equations (3) and (4) as presented at 

equations (5) to (13) below. 

   1 }E{Sp'Sp'Sp'
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0

m2m2
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The solving of these nine equations calculates the prior and sampling UT distributions with three 

common sigma points (Sm) and new weights for prior (p’m) and sampling (p”m) as presented at the Fig. 

12. These new prior and sampling UT distributions have the same moments (mean, variance, 

skewness) of previous distributions since this moments were used at the nine equations. 

 

Fig. 12. Three UT common sigma points and different weights for prior Beta distribution and sampling Binomial distribution 

The new prior UT Beta distribution for a variable theta (θ) keeps a calculated mean of 0.6 and the 

standard deviation 0.3. The new UT sampling Binomial distribution has mean 0.65 and the standard 

deviation 0.015. Since the new prior and sampling distributions have the same sigma points it is 

possible to multiply both distributions and calculate the UT posteriori Bayes distribution. The 

calculated UT posteriori Bayes distribution presented a mean 0.6496 and a standard deviation 0.011 

which is closer to the mean 0.6499 and standard deviation 0.015 calculated at [5]. 

The number of equations needed to be developed from the equations (3) and (4) to calculate the 

common sigma points depends on how many sigma points are needed at the posteriori UT. Table 1 

summarizes this analysis for some examples according to the number of posteriori UT sigma points 

needed. 
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TABLE I. NUMBER OF EQUATIONS AND MOMENTS NEEDED TO CALCULATE COMMON SIGMA POINTS 

Posteriori 

Sigma Points 

(Sm) 

New UT 

Prior weights 

(p’m) 

New UT 

Sampling 

weights (p”m) 

Number of 

Equations  

(Sm+ p’m + p”m) 

Moments per Prior 

or Sampling 

distributions  

2 2 2 6 3 

3 3 3 9 5 
4 4 4 12 6 

5 5 5 15 8 

n n n 3n upper round (3n/2) 

V. UT AND BAYES INFERENCE METHOD APPLIED TO VEGETATION ATTENUATION 

The validated method was applied to calculate the posteriori UT vegetation attenuation distribution 

from prior and sampling UT distributions obtained from the power measurement campaign at Manaus 

and linear correlated RGB pixels values as presented at Fig. 13. New measurements can refine the 

posteriori distribution by generating new sampling UT attenuation distributions, since the prior 

attenuation will be backward fed by the posteriori as shown by red thick arrow at Fig. 13 thus creating 

the basis for a machine learning predictor tool. 

 

Fig. 13. Method mapping RGB pixel to attenuation and applying UT to Bayes inference getting the vegetation attenuation 

Figure 14 shows the prior, sampling and posteriori UT distributions of vegetation attenuation. The 

posteriori UT attenuation with 6 sigma points was obtained from the multiplication of prior (group 1 

of measurements) and sampling (group 2 of measurements). Different posteriori distributions were 

evaluated, with 6 or less UT sigma points, and the calculated expected attenuation varied only 1 dB. 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 17, No. 2, June 2018 
DOI: http://dx.doi.org/10.1590/2179-10742018v17i21260 

Brazilian Microwave and Optoelectronics Society-SBMO received 09 Mar 2018; for review 15 Mar 2018; accepted 14 Jun 2018 

Brazilian Society of Electromagnetism-SBMag © 2018 SBMO/SBMag     ISSN 2179-1074 

 

296 

 

Fig. 14. UT distribution of vegetation attenuation for Manaus scenario: prior, sampling and posteriori 

VI. CONCLUSION 

This work presented a radio attenuation Bayesian predictor for vegetation based on image 

processing and the UT which was validated in two distinct vegetation scenarios. The image 

processing needs the elimination of buildings pixels, the filtering of vegetation pixels, the sum of 

vegetation pixels inside the antenna HPBW propagation area for each azimuth and the normalization 

of the sum of pixels by area according the image size.  

Another key contribution is the compatibilization of the UT technique with Bayesian inference 

processes and this method was validated by a detailed example resolution. The combination of UT 

and Bayes inference can be applied in other areas like machine learning and artificial intelligence. 
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