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Abstract— The Jiles-Atherton scalar hysteresis model presents five 

parameters used to represent the material tested and used to 

calculate the magnetic losses. This article presents a comparative 

analysis of the performance of two methods of identifying these 

parameters. In the first method, the equations of Jiles-Atherton 

were assembled into a single non-linear ordinary differential 

equation as a function of the variables of interest. An algebraic 

system of five equations with five unknowns is obtained by 

evaluating the non-linear ordinary differential equation in five 

points belonging to the branch of the experimental hysteresis loop. 

The parameters are obtained by solving this system of equations 

using the method of Non-Linear Least Squares (NLLS). In the 

second method, the inverse model of Jiles-Atherton is used to 

calculate the magnetic field H from the experimental values of 

magnetic induction B. Using the method of genetic algorithms 

(MGA), the objective function given by the sum of the relative 

error of calculated magnetic field and experimental magnetic field 

along the hysteresis loop is minimized. To validate methods the 

experimental curves were compared with calculated ones. When 

applying the methods, it was verified that NLLS besides providing 

more accurate results, it is faster when compared to MGA. In the 

MGA the convergence of the calculated magnitudes to the 

experimental magnitudes improves when one of the chromosomes 

of the initial population is the solution obtained applying NLLS. 
  

Index Terms— Magnetic hysteresis, magnetic materials, method of genetic 

algorithms, non-linear least squares method.  

I. INTRODUCTION 

Ferromagnetic materials are used in electrical engineering applications to provide a robust structure 

to electrical machines, to conduct magnetic flux and mainly to amplify the magnetic inductions up to 

a limit value imposed by the saturation of the material. The inability to traverse the same paths of flux 

in the material, the need for energy to reorient the magnetic domains of the material, the delay 

considering the magnetic induction B and the magnetic field H and the pinning points that hinder the 

movement of the domain walls originate the phenomenon of hysteresis in ferromagnetic materials. 

The model for the magnetic hysteresis phenomenon presented by Jiles-Atherton is widely used [1] - 
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[12] and is based on the flexion and translation movement of magnetic domain wall. Consequently, 

the total magnetization M is composed of two plots: the reversible magnetization Mrev (due to the 

bending of the walls), and the irreversible magnetization Mirr (due to the displacement of the walls). 

The anhysteretic magnetization Man is the ideal state of configuration of the domains: condition that 

requires less energy. A domain wall located in the region between two domains, whose moments are 

aligned in parallel and antiparallel to the direction of magnetic field applied to the material, flexes in 

one way when M > Man, and otherwise when M < Man. When M = Man the wall is planar (without 

bending). The amount of bending of the domain wall is linearly dependent on the difference between 

Man and M. The coefficient of proportionality is represented by the parameter c in the Jiles-Atherton 

model. Man is modeled by the modified Langevin equation, in which the parameter a represents the 

shape of the anhysteretic magnetization and the ms parameter represents the saturation magnetization. 

The difficulty of moving the domain walls, due to the non-idealities of the material, is represented by 

the parameter k. An inter-domain coupling that affects the effective magnetic field is represented by 

the parameter α. 

In the original Jiles-Atherton model, magnetic field is the independent variable and magnetic 

induction is the dependent variable. A modification of the Jiles-Atherton model is presented in [9]: in 

the inverse model, magnetic induction becomes the independent variable. Through this modification, 

the model is naturally adapted to the calculation of fields by Finite Element Method with formulation 

in potential magnetic vector. 

To identify the parameters of the model, the methods found in the literature are based on non-linear 

least squares [3], [10], genetic algorithms [4], [5], differential evolution [6], particle swarm 

optimization [7] and branch and bound optimization method [8]. This work proposes a comparative 

analysis of the performance of two methods of identifying the parameters of the hysteresis scalar 

model of Jiles-Atherton. The possibility of improving the precision of the parameter set using 

combination of techniques is also verified. The method of NLLS is applied to calculate the parameters 

of the model solving two systems of nonlinear algebraic equations. Each system represents a branch 

of the hysteresis loop and presents five equations with five unknowns. The unknowns are the five 

parameters of the Jiles-Atherton hysteresis model. The equations of the system resulted from the 

evolution of an ordinary differential equation in five main points strategically positioned in the branch 

of the hysteresis loop. The MGA is used to calculate model parameters that minimize the relative 

error of calculated magnetic field and experimental magnetic field along the hysteresis loop. The two 

methods were applied to calculate the parameters of the Jiles-Atherton hysteresis model of several 

samples. The results calculated by each of the methods will be compared with experimental results. 

Regarding the importance of this research, a set of parameters that adequately represent the material 

enables an optimized design and a more reliable analysis of the machine. The set of parameters also 

influences the convergence of numerical systems, for example, in the calculation of fields by finite 

element considering magnetic hysteresis. The original technique proposed allows to obtain an 
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accurate set of parameters. The experimental data used in this study were obtained through an Epstein 

frame, a data acquisition system and material samples. 

In the algorithm of the inverse model, magnetic field is calculated from the experimental values of 

magnetic induction and magnetization as follows: 

( )
( )

( )
0

H M
B t t

t t t t


= −
+ 

+  +   (1) 

In which: M is the magnetization; H is the magnetic field; B is the magnetic induction; and μ0 is the 

magnetic permeability of the vacuum.  

II. NON-LINEAR LEAST SQUARES METHOD 

The problem of material characterization consists of: for a given sample of steel, low-frequency B-

H curves are obtained, which guarantees that the dynamic losses can be disregarded. For this set of 

experimental data, a set of five parameters must be found so that the hysteresis model can represent 

the behavior of this sample. 

To solve the above problem, the equations of the Jiles-Atherton hysteresis scalar model are used. 

These equations involve variables other than those whose values are known, and beyond those whose 

values are intended. Consequently, there is a need to manipulate the equations of the model to obtain a 

unique equation, involving only the variables of interest H, B, and the model parameters. This 

manipulation, in addition to better organizing the data, also assists in identifying the problem behind 

the determination of the parameters. Thus, the equations of the model were manipulated, and a non-

linear ordinary differential equation was obtained. This non-linear ordinary differential equation is the 

problem behind the determination of the parameters and is represented compactly by dB/dH = f(H,B). 

The proposed methodology to determine the parameters of the model consists in transforming the 

non-linear ordinary differential equation obtained in an algebraic equation as a function of B and H. In 

this regard, it is necessary to choose five points of the experimental hysteresis loop; and numerically 

calculate the derivatives at these points. The non-linear ordinary differential equation is evaluated at 

the first chosen point, resulting in an algebraic equation. When the non-linear ordinary differential 

equation is evaluated at all points chosen from the experimental data, five algebraic equations are 

obtained, and a system is constructed. To calculate the parameters, it is sufficient to solve this system 

of equations. Given an algebraic system of five nonlinear equations. 
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In which x = [ms α a k c] are the five unknowns. The goal is to find a vector x such that Fl(x) = 0 for 

1≤ l ≤5. To solve this system of equations the sum of squares is minimized. If the sum of squares is 

zero, then the system of equations is solved. The method NLLS was used to solve the system.  

We intend to calculate the parameters (of the model) of the curve that best fits the experimental data 
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(B and H) for a given material. These parameters which adjust (through the least squares method) the 

nonlinear function F(x) to the set of experimental points (B and H), can be identified, for example, by 

applying trust region techniques. Deterministic methods (NLLS) usually perform well when the 

starting point is clearly defined. As the parameters the model assume positive values a starting set 

would be ms ≈ Bs/µ0; 10-6< α <10-4; a ≈ coercive field; 0< c <1. In order to obtain the result shown in 

Fig. 4, it was used the starting set x0 = [1.72x106 2x10-4 172 100 0.5]. 

Fig. 1 shows the main steps of numerical procedure to calculate the parameters by non-linear least 

squares method. 

 

Fig. 1. Numerical procedure to calculate the parameter by non-linear least squares method. 

III. QUALITATIVE COMPARISON BETWEEN NLLS AND MGA 

The MGA is used to calculate the five parameters of the Jiles-Atherton hysteresis model that 

minimize the sum of the relative error of calculated H and experimental H along the hysteresis loop 

((3) is minimized). 

( ) ( ) ( )
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−
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Subject to: 10-6 ≤ ms ≤ 108, 10-6 ≤ α ≤ 10-4, 10-6 ≤ a ≤ 103,  10-6 ≤ k ≤ 104, 10-6 ≤ c ≤ 0.999. 

In which n is the number of points of the experimental hysteresis loop, Hcalculated is obtained using 

(1). 

In NLLS these parameters were identified differently by solving a system of equations written using 

dB/dH = f(H,B). 

The minimum of the objective function is calculated within the allowed range for each parameter. 

In the zero iteration a random population (values of a uniform distribution) of chromosomes is 

generated. The chromosome is a vector whose components are the five parameters of the model. 

Random values are mapped within the allowed range. This population presents 100 initial values for 
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the set of parameters x0 = [ms0 α0 a0 k0 c0], …, x99 = [ms99 α99 a99 k99 c99]. The MGA processes the 

population of chromosomes that represents a possible solution of the problem, whereas in NLLS the 

process starts with a single initial value for the set of parameters x0.  

In the MGA, for a given x0 and experimental Bi are calculated Hi using (1) and gi(x0) using (3), with 

i = 1, ..., n. For the complete hysteresis loop g(x0)= g1(x0) + ... + gn(x0). This procedure is repeated for 

all initial sets of parameters x0, ... , x99, obtaining g(x0), ... , g(x99). The values g(xj) , j = 0, ..., 99, are 

organized and for g(xj) of the smallest error is assigned a maximum fitness two, and for g(xj) of the 

greatest error is assigned a null fitness. At the intermediate values of g(xj) are attributed aptitudes 

Apt(j)=(2(N-j)) / (N-1) with N=100 chromosomes x in the population. It completes the initial 

population analysis. A population of 100 chromosomes was used because in this way a sufficiently 

large matrix of 100x13 is constructed in which for each of the 100 chromosomes x the five random 

values of the parameters are specified, these five values mapped in the allowed range, the value of the 

objective function g(xj), the aptitudes and the accumulated aptitudes. So we have 13 columns. 

In the first iteration is built the first generation from the initial generation. This is done by selecting 

the most apt x chromosomes in the initial generation: two chromosomes are randomly selected and the 

one with the greatest aptitude is called parent1=[ msj αj aj kj cj]. The process is repeated to select 

parent2 ≠ parent1. The crossover operator BLX-0.5 is applied to generate child c1 = parent1 + 

β(parent2 – parent1) = [ms α a k c], β a uniform distribution random number in the interval [-0.5, 1.5]. 

The child c1 presents five genes c1(1)=ms, ..., c1(5)=c. Initially, β is used to calculate all c1 genes. 

Check if c1 is a doable child. If c1 is an infeasible child then the λ-th gene of c1 is outside the allowed 

range for the gene, λ =1,...,5. A new λ-th gene must be generated using new β. This is repeated until 

the λ-th gene is within the allowed range. In this way we obtain a feasible child c1 with all its genes 

within the respective allowed intervals. 

The mutation operator is applied to one parent to generate a single mutated child. parent = parent1 

or parent2 is randomly chosen to undergo mutation. One of the five parent genes are randomly 

selected to mutate. Let the λ-th gene be selected to undergo mutation. A random number rm of uniform 

distribution is generated in the interval [0, 1]. If rm <0.5 the λ-th gene is replaced by the minimum 

limit of its allowed range; otherwise the λ-th gene is replaced by the maximum limit of its allowed 

range. Thus, the child c2 is obtained. 

The two children calculated c1 and c2 replace the two worst-fit chromosomes of initial generation, if 

these children are not yet in initial generation (zero generation). In this way the first generation of 100 

chromosomes is obtained. For each of the chromosomes the information mentioned in initial 

generation is stored in a matrix 100x13. 

For MGA from the initial generation was built the next generation. The initial generation is 

constructed randomly, its population is evaluated, and each chromosome receives an aptitude score 

that reflects the quality of the solution that the chromosome represents. The fittest chromosomes are 

selected and modified through the crossover and mutation operators generating offspring for the next 
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generation. The process is repeated until a satisfactory solution is found. 

In NLLS method, for each initial value x0 reported by the user a sequence of values x1, x2, ... is 

constructed which is expected to converge to x* a local minimum for the function to be adjusted. In 

each iteration there is a direction of descent and a step is given in that direction. A merit function can 

be used to decide whether x in the next iteration is better or worse than x in the current iteration.  

In the MGA, the selection of the most fit chromosomes can be made through the roulette wheel 

process or tournament selection. The fitness can be equal to the objective function or it can be defined 

by the ordering of the chromosome in the population. The search mechanism is crossover and 

mutation, and the latter improves the diversity of chromosomes in the population. The best 

chromosome can be transferred from one generation to the next without undergoing changes. In the 

MGA with real representation can be used medium crossover, geometric mean crossover, BLX-alpha 

crossover, linear crossover, uniform mutation, gaussian mutation, creep mutation and limit mutation. 

Solutions found by other methods can be inserted in the initial population. Some caution is needed: 

combating premature convergence by limiting the number of children by chromosomes, maintaining 

the diversity of chromosomes in the population, avoiding identical chromosomes in the initial 

population, keeping the population with all chromosomes distinct from each other. All population is 

replaced in every generation or only 2 children are raised per generation to replace the 2 worst 

chromosomes of the population. The MGA is slow when compared to NLLS. 

In NLLS, the system of equations can be solved using one of the three algorithms: reflexive trust 

region; dogleg trust region; and Levenberg-Marquardt. 

The MGA converges when 95% of the chromosomes represent the same value of g(x). For the 

MGA, the process is repeated until it reaches the stopping criterion (maximum number of iterations or 

convergence). The parameters found are inserted in the inverse model to compare experimental and 

calculated data as it occurs in NLLS. 

Fig. 2 shows the main steps of numerical procedure to calculate the parameters by genetic 

algorithms method. 
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Fig. 2. Numerical procedure to calculate the parameter by genetic algorithms method. 

IV. CHARACTERIZATION RESULTS 

In this section, it is presented characterization results obtained using NLLS and the MGA. The 

calculated parameters x, the number of iterations required for the algorithm to converge, the mean 

squared error (MSE), the percentage error considering the measured magnetic loss and the calculated 

magnetic loss, the simulation time t, the type and the cutting direction of the sample, the test 

instrument used, the test conditions, the simulated hysteresis loop and the experimental hysteresis 

loop can be seen in Fig. 3- 11. 

To allow a quantitative discussion of the results, NLLS and the MGA were submitted to the same 

conditions: test material, hardware used and experimental data. Thus, an appropriate quantitative 

comparison between NLLS and the MGA may be made by looking at Fig. 3 and Fig. 4. NLLS led to a 

more accurate result when compared to the result that the MGA provided. The MSENLLS = 1.709 is 

lower than the MSEMGA = 3.909. NLLS converged in only 4 iterations while the MGA converged in 

4892 iterations. NLLS is faster taking only 21 s to provide the parameters of the material while the 

MGA took 127 s. As can be seen in Fig. 4, for NLLS the calculated loop is very close to the measured 

loop (the loops overlap), and consequently, the calculated parameters describe very well the 

experimental behavior of the material. NLLS is faster and more accurate then MGA and has a better 

convergence than MGA. 

To improve the results provided by the MGA, the solution found by NLLS was included in the 

initial population. The result of this alliance can be observed in Fig. 5. Observing Fig. 3 and Fig. 5 it 

is possible to note that the MSE improved from 3.909 to 1.606 and the simulated and measured 

hysteresis loops overlap. Observing Fig. 4 and Fig. 5 it is possible to verify that the alliance between 

NLLS and the MGA improved the accuracy of the set of parameters found since the MSE was 

reduced from 1.709 to 1.606. 
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Also, in Fig. 6-11 it is possible to observe the results of the characterization of several types of 

samples, cut in several directions, using the MGA with previous information from NLLS. Also, for 

these cases the agreement between experimental and calculated data satisfies expectations. These 

results enable more efficient designs of electric machines, reducing energy consumption and 

environmental impacts. This study is limited in the modeling of hysteresis loops at magnetic induction 

levels from 1 to 1.5 T. The model used is restricted to a smooth sigmoid hysteresis loop. 

 

Fig. 3. Calculated hysteresis loop using the MGA and measured hysteresis loop: first case. 

 

Fig. 4. Calculated hysteresis loop using NLLS and measured hysteresis loop: first case. 
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Fig. 5. Calculated hysteresis loop using the MGA and NLLS: first case. 

 

Fig. 6. Calculated hysteresis loop using the MGA and NLLS: second case. 

 

Fig. 7. Calculated hysteresis loop using the MGA and NLLS: third case. 
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Fig. 8. Calculated hysteresis loop using the MGA and NLLS: fourth case. 

 

Fig. 9. Calculated hysteresis loop using the MGA and NLLS: sixth case. 

 

Fig. 10. Calculated hysteresis loop using MGA and NLLS: eighth case. 
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Fig. 11. Calculated hysteresis loop using MGA and NLLS: nine case. 

V.  WORKBENCH USED TO ACQUIRE EXPERIMENTAL DATA 

The experimental data used in this work was obtained with a workbench [13] containing a 

standardized Epstein frame. This workbench can be observed in Fig. 12. 

 

Fig. 12. Workbench with the Epstein frame used. 

The Epstein frame contains a primary and secondary winding. The test samples form the 

ferromagnetic core of the transformer. The Epstein frame also has a winding to compensate the 

dispersed magnetic flux. The input voltage is applied on the secondary winding, in order to ensure a 

sinusoidal induction waveform, and the primary current is left to free circulation. 

The Epstein frame power is supplied by a sine wave inverter that is variable in amplitude and 

frequency, also it is possible to operate with a harmonic content or with pulsed waveforms. Voltage 

and current are measured simultaneously and acquired for numerical treatment. The magnetic field 

and the magnetic induction are obtained by numerical calculations using the current and voltage 

measured according to the Brazilian standard NBR 5161: 
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Where: Bm is the magnetic flux density in the sample (T), 2U
 is the secondary voltage (V), f is the 

frequency (Hz), N2 is the number of secondary turns of the Epstein frame, S is the cross section of the 

sample (m2), Hm is the magnetic field strength (A/m), N1 is the number of primary turns of the Epstein 

frame, I1 is the rms value of the primary current (A), lm is the length of the effective magnetic path 

(m). 

Several non-oriented and grain-oriented materials were tested in the Epstein framework. The 

Epstein test allows several samples to be tested on the same apparatus, without windings needed to be 

made for each sample. The Epstein test presents high reproducibility and, being one of the most used 

tests, the results are well accepted by consumers of silicon steel as reference. 

On the other hand, the magnetic circuit of Epstein's frame is not homogeneous. The magnetization 

of the material is not uniform because in addition to the small gaps that increase the reluctance, there 

is an amount of additional mass coming from the superposition of the samples in the corners of the 

frame. To minimize the air gap, local pressure (as recommended by standards NBR 5161, ASTM A 

343, JISC 2550, IEC 404-2) is applied, resulting in a mechanical stress that can alter the magnetic 

properties of the material. The disadvantages of the test are also related to the time spent in sample 

preparation (number of sheets); waste of material; assembly and disassembly of the test sample; to the 

need for sample annealing to relieve shear stresses due to sample size. 

For the Epstein test, the samples used have no curvature (plan deviation) originated by the material 

storage coils. If they show curvature, the samples are forced when inserted into the frame resulting in 

elastic deformations. These deformations increase the magnetic loss. During the test the sheets may 

vibrate causing indentations in the hysteresis curve. In samples for the Epstein test, magnetic flux 

density and magnetic field strength are measured at sample length. This sample may be stamped in the 

longitudinal, transverse direction or any other direction of the rolling direction of the material. 

VI. CONCLUSION 

In this article, an appropriate qualitative and quantitative comparison between NLLS and the MGA 

was presented. The equations of the Jiles-Atherton model were assembled into a single equation, 

which was applied to model the hysteresis loop of the material in two steps. One technique, which 

uses experimental points to generate the global system, was developed. The algorithm, which is based 

on NLLS, was robust, fast and provided a more precise set of parameters when compared to the 

MGA. For the MGA to find more precise parameters it was necessary to include in the initial 

population information previously obtained by the prior method. In this study, the efficacy of the 

combination of the two techniques was investigated, using smooth hysteresis loop, noisy content loop, 

samples cut in different directions, grain oriented and non-oriented samples. Considering the results 

obtained, the resulting combined technique was validated by comparing the experimental hysteresis 

loop with the calculated hysteresis loop. This approach was used for the first time in this type of 

electromagnetic problem, thus constituting the main contribution of this work. As this paper dealt 
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with an important industrial problem for continuity of this research, the methodologies presented will 

be compared with other methods presented in the literature. 

APPENDIX 

The equations of the Jiles-Atherton model are as follows: 

irr revM M M= +  (4) 

( )rev an irrM c M M= −  (5) 

coth e
an s

e

H a
M m

a H

  
= −  

  
 (6) 

irr an irr

e

dM M M

dH k

−
=  (7) 

eH H M= +  (8) 

( )0B H M= +  (9) 

Where: M is the magnetization; Mirr is irreversible magnetization; Mrev is reversible magnetization; 

Man is anhysteretic magnetization; ms, α, a, k, and c are the parameters of the material; He is the 

effective magnetic field; δ assumes the values ±1; H is the magnetic field; B is the magnetic induction 

and µ0 is the magnetic permeability of the vacuum. 

Equations (4)-(9) allow to obtain an ODE, ordinary differential equation, nonlinear as a function of 

H, and of B: where the five parameters of model, ms; α; a; k; and c, also appear. The methodology is 

shown below. Isolating the total magnetization of the other variables in (9) immediately follows: M = 

(B/µ0)-H. Taking this expression to (8), the effective magnetic field can be written as follows: He = 

H+α((B/µ0)-H). Placing the magnetic field in evidence, follows: 

( )
0

1e

B
H H





= − + . (10) 

To conduct mathematical modeling, Fig. 13 shows a B-H curve of a ferromagnetic material. There 

is interest in modeling this loop according to the Jiles-Atherton approach, and mathematically the loop 

could be represented by two functions: the first function to model the ascending branch, belonging to 

the first, third, and fourth quadrants; and the last function to model the descending branch, belonging 

to the first, second, and third quadrants. 
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Fig. 13. B-H loop. 

Considering (7), for δ = 1 we have the ascending branch, and for δ = -1 we have the descending 

branch. After this, the analysis is organized in two stages: observing in the first moment the ascending 

branch of the B-H curve. 

For the ascending branch we have δ = 1. 

It is observed that equation (7) establishes the rate of change of the irreversible magnetization with 

the effective magnetic field dMirr/dHe = (Man-Mirr)/k, and this allows to formalize the first affirmation: 

irreversible magnetization is dependent on the effective magnetic field, that is, Mirr = Mirr(He). On the 

other hand, observing (10) it is possible to formalize the second affirmation: the effective magnetic 

field is dependent on the magnetic field and the magnetic induction, otherwise, He = He(H,B). Taking 

these two statements into consideration, it follows clearly: Mirr = Mirr(He(H,B)), consequently, one can 

derive (chain rule) irreversible magnetization and consider the first portion as follows: 

irr irr e

e

dM dM dH

dH dH dH
=  (11) 

irr irr e

e

dM dM dH

dB dH dB
=  (12) 

Considering the term dHe/dH of (11), and based on (10) it is possible to determine the expression of 

the derivative of the effective magnetic field with respect to the magnetic field, as follows:  

0

1edH dB

dH dH






 
= − +  

 
. (13) 

In turn, equation (9) allows to write: B/µ0 = H+M. Isolating the total magnetization of the other 

variables in this last equation we have:  

0

B
M H


= −  (14) 

As M = M(H,B), and since total magnetization is the sum of its reversible and irreversible 

components, then: Mirr = Mirr(H,B) and Mrev = Mrev(H,B). 

Substituting (5) into (4) we have: M = Mirr+c(Man-Mirr), that is, M = Mirr+cMan-cMirr, meaning, M = 
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Mirr(1-c)+cMan. Isolanting the irreversible component of magnetization, from the other variables in the 

latter equation, it is also true that: 

1

an
irr

M cM
M

c

−
=

−
. (15) 

Substituting (14) into (15) yields: 

0

1

1 1
irr an

B c
M H M

c c

 
= − − 

− − 
. (16) 

Equation (16) allows the expression of the derivative of the irreversible magnetization with respect 

to the magnetic field to be obtained as follows: 

( )0

1 1
1

1 1

irr andM dMdB c

dH c dH c dH

 
= − − 

− − 
 (17) 

On the other hand, replacing (7) in (11), and considering δ = 1 we have: dMirr/dH = [(Man-

Mirr)/k]dHe/dH that with equation (13) generate: dMirr/dH = [(Man-Mirr)/k]{1-α+[(α/µ0)(dB/dH)]}, that 

is,  
( ) ( )

0 0

1 1
irr

an irr

dM dB dB
M M

dH k k dH k k dH

  

 

− −   
= + − +   

   
 with equation (16) we can 

write: 

                      

( )

( )

( )

0 0

0

1 1

1 1

1

irr
an an

dM dB B c
M H M

dH k k dH c c

dB

k k dH

 

 

 



 −   
= + − − −   

− −    

− 
+  

 

 

The equation above can be written as:

 

                          

( ) ( )

( )

0 0 0

0

1 11

1

1

1

irr
an

an

dM dB B dB
M H

dH k k dH c k k dH

c dB
M

c k k dH

  

  

 



 − −    
= + − − + +     

−      

 − 
+  

−   

  

Putting Man in evidence it is also true that:    

                  

( )

( )

( )

( )

0 0

0 0

1 1

1

11

1

irr
an

dM dB c dB
M

dH k k dH c k k dH

B dB
H

c k k dH

  

 

 

 

  − −    
= + + + −     

−       

 −  
− +    

−     

 ,

 

and consequently, 
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( )

( )

( )

( )

( ) ( )

0 0

0 0 0

1 1

1 1

1 1 1

1 1

irr
an

dM dB c c dB
M

dH k k dH c k c k dH

B B dB
H H

c k c k dH

  

 

 

  

 − −
= + + + − 

− − 

   − 
− − −    

− −    

 (18) 

Equation (17) can be altered without impairing equality, and written in a new way as: 

                                 
( )0

1 1
1

1 1

irr an e

e

dM dM dHdB c

dH c dH c dH dH

 
= − − 

− − 
.  

Substituting (13) in this new form of (17) we have: 

( )0 0

1 1
1 1

1 1

irr an

e

dM dMdB c dB

dH c dH c dH dH




 

    
= − − − +    

− −    

. (19) 

Equations (18) and (19) show the expression of the derivative of irreversible magnetization in 

relation to the magnetic field, and consequently, (18) is equal to (19), and follows: 

       

( )

( )

( )

( )

( ) ( )

( )
( )

0 0

0 0 0

0 0

1 1

1 1

1 1 1

1 1

1 1
1 1

1 1

an

an

e

dB c c dB
M

k k dH c k c k dH

B B dB
H H

c k c k dH

dMdB c dB

c dH c dH dH

  

 

 

  




 

 − −
+ + + − 

− − 

   − 
− − − =    

− −    

   
− − − +   

− −   

 (20) 

However, substituting (10) into (6) gives the following result:  

( )

( )0

0

1
coth

1
an s

H B a
M m

Ba a
H

 

 


 
 − 
 = + − 
   − +
  

. (21) 

The equation (6) allows the derivation of the derivative of the anhysteretic magnetization in relation 

to the effective magnetic field, as follows: 

                                    cothan e
s

e e e e

dM Hd d a
m

dH dH a dH H

    
= −    

     

 

Being 
2coth csce e e

e e

H H Hd d
h

dH a a dH a

      
= −      

      
. 

It implies in 
21

coth csce e

e

H Hd
h

dH a a a

    
= −    

    
. 

As coth2(He/a) = 1+csch2(He/a), it follows: 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 18, No. 3, September 2019 

DOI: http://dx.doi.org/10.1590/2179-10742019v18i31513  

Brazilian Microwave and Optoelectronics Society-SBMO received 31 Oct 2018; for review 1 Nov 2018; accepted 15 Aug 2019 

Brazilian Society of Electromagnetism-SBMag © 2019 SBMO/SBMag               ISSN 2179-1074 

 

424 

                      

2 2

2

1 1
coth csc coth 1

1 1
coth

e e e

e

e

H H Hd
h

dH a a a a a

H

a a a

        
= − = − − =       

        

 
− + 

 

. 

On the other hand, 
2

e e e

d a a

dH H H

 
= − 

 
 and consequently, 

2
2

2
1 cothan s e

e e

dM m H a

dH a a H

  
= − +  

  

 (22) 

Finally, replacing equations (21), (22), and (10) in equation (20), we have: 

( )

( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

0

0

0 0

0 0 0

0

2

0

0

1
coth

1

1 1

1 1

1 1 1

1 1

1 1
1

1

1
1 coth

1
1

s

s

H B a
m

Ba a
H

dB c c dB

k k dH c k c k dH

B B dB
H H

c k c k dH

dB

c dH

Hmc B a

Bc a a a
H

 

 


  

 

 

  



 

 


 
 − 
 + − 
   − +
  

 − −
+ + + − 

− − 

   − 
− − − =    

− −    

 
− − 

−  

− 
− + + 

−   − +

( )

2

0

1
dB

dH






  
  
  
  
  

   

 
− + 

 

 

(23) 

Equation (23) is written in terms of  H, B, dB/dH, and the five parameters sought: ms, α, a, k, and c. 

The term dB/dH can be isolated from the other variables in (23), as follows: 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

T T T T T T T T TdB

dH T T T T T T T

+ + + + + + + +
=

+ + + + + +
 (24) 

Where: 

( )
1

0

1 1
coths

H B
T m

a a k

  



−  − 
= − +  

  
 (25) 

( )
2

0

1 1
coth

1
s

H B c
T m

a a c k

  



−  −  
= − +   

−   
 (26) 
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( )
3

0

1

1

sm a
T

kB
H








− 
=  
   

− + 
 

 

( )
4

0

1

1
1

sm a c
T

c kB
H








−  
=   

−    
− + 

 

 

( )5
0

1 1

1

B
T H

c k





  − 
= −  

−   
 

6

1

1
T

c
= −

−
 

( )
( )7 1

1

smc
T

c a
= − −

−
 

( )

( )
( )2

8
0

1
coth 1

1

s
Hmc B

T
c a a a

 




− 
= + − 

−  
 

( ) ( )
( )

2

9

0

1
1

1

smc a
T

Bc a
H







 
 
 = − −

−  − + 
 

 

( )

( )10
0 0 0

1
coth

1
s

H B c
T m

a a k c k

   

  

 − 
= + +   −  

 

( )
( )11

0 0

0

1
1

sm a c
T

k c kB
H

 

 




 −
= +  −   − + 
 

 

( )12
0 0

1

1

B
T H

c k



 

 
= − − 

−  
 

( )13
0

1 1

1
T

c 
= −

−
 

( )14
01

smc
T

c a




=

−
 

( )

( )2
15

0 0

1
coth

1

s
Hmc B

T
c a a a

  

 

− 
= − + 

−  
 

( ) ( )

2

16
0

0

1
1

smc a
T

Bc a
H



 


 
 
 =

−  − + 
 

 

The preceding equation has special importance: (24) is the main equation used to identify the 

parameters of the model. This non-linear ODE can be represented, in a simplified way, by: 
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( ),
dB

f H B
dH

=  (27) 
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