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Abstract — The meshless element-free Galerkin method (EFGM) is
used to solve partial differential equations responsible for obtaining
the electromagnetic fields generated by a transmission line. For this
purpose, a 2D model based in a real transmission line is constructed
and simulated. The results obtained by EFGM have good accuracy
and they are compared against analytical solution and Finite
Element Method in order to verify the effectiveness, advantages
and disadvantages of the method.

Index Terms— meshfree/meshless, element-free Galerkin method (EFGM),
finite element method, transmission lines.

I. INTRODUCTION

Meshless methods are numerical procedures and are often used to solve partial differential

equations (PDE). They are applied in different areas such as mechanical, civil and electrical as for

example, in electromagnetic field problems. There are a wide variety of numerical techniques suitable

for solving PDE, most of them depend on a structured connection between the nodes known as mesh-

based techniques. In meshless methods, there is no need to explicitly establish connectivity

relationships among the discretization nodes. These methods do not use a mesh, but rather, a cloud of

points distributed throughout the problem domain [1]-[4].

The element-free Galerkin method (EFGM) will be used in this work. It was originally proposed by

[5] and it belongs to a class of global weak-form meshless methods, which are based on the global

Galerkin weak-form for the problem equations. The Moving Least Squares approximation is often

used to construct shape functions, and a set of background cells are required to evaluate the integrals

resulted from the weak-form [6]-[9].

This work consists in the computational modeling of three-phase transmission line (TL) with

uniform parameters. The EFGM is used to obtain the values of the electric and magnetic fields. A 2D

domain surrounds a section of this line and the fields are evaluated 1 meter above the ground. To

verify the accuracy of the Meshless Method in this kind of application, comparisons of EFGM results

with FEM and analytical calculations were performed. It was observed that the EFGM has presented

satisfactory results without the need of a great concentration of nodes near the conductors, as required

by the finite element method (FEM) [10].

Calculations of electromagnetic fields are important, as well as calculating the maximum limits
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allowed on national and international regulations, since numerous researches have been taking place

over the last decades, with the purpose of analyzing the relationship between the electric and magnetic

fields and possible effects that may affect the health of people exposed to such fields. More

specifically, there is a great concern on decreasing the intensity of low frequency magnetic fields, as

these fields have a relationship with some cancers, such as childhood leukemia [11]-[14].

We wish to present a new contribution through the modeling of transmission lines, verifying the

advantages and limitations in the use of EFGM in the evaluation of electromagnetic fields in TLs,

since there are still few studies using EFGM in this line of research.

II. ELEMENT-FREE GALERKIN METHOD

For the construction of the mathematical model, initially, a fictitious geometry representing the

original model is determined. The geometry of the problem represents the domain ( ) and the

boundary problem (  ). Then, the mathematical equations capable of representing the geometry

problem valid in the domain and in the boundaries are determined [15].

The methodology does not require an explicit mesh. Only a node distribution across the problem

domain, contours, and boundaries without the need of a pre-established connection between the nodes

and an unknown function governed by a Boundary Value Problem (BVP) [16]. Fig. 1 shows a 2D

node distribution at one point xI = (x, y) over the entire domain.

Fig. 1. Meshfree discretization in a 2D domain.

Each node is associated with a closed subdomain called the node influence domain. The influence

domain is responsible for the approximation function around node I, which uses the shape function

( I). It represents the solution of the problem by a linear combination of the shape function and the

solution of the nodal values [10]. Fig. 2 illustrates the domains of influence that may overlap each

other and may have circular or rectangular shapes. The domains of influence need to surround the

entire problem domain, once there is no connection between the nodes.
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Fig. 2. Representation of the circular domains of influence of each node.

The element-free Galerkin method presented in 1994 by [5] is considered a variational method. It

uses moving least squares (MLS) or interpolation moving least squares (IMLS) for the construction of

the shape function. Galerkin's weak-form is applied to develop the system of equations using the cells

for numerical integration [8].

The EFGM applies MLS to approximate the u(x) function with uh � . It was initially developed by

mathematicians for surface adjustments and data regression [17]. It is, currently, the most widely used

method for constructing shape functions of meshless methods.

The MLS approximation begins with (1) [16]:

uh � =
i=1

m
�i �I �i� � = �T �I � � , (1)

where �� (xI) is a complete polynomial base, in case of two dimensions [1 x y], m is the number of

base functions, xT=(x,y) is the position vector in two dimensions, and �� (x)={a1(x) a2(x) ... am(x)} are

the coefficient vectors.

The vector of coefficients, a(x) in (1) is a function of x. The coefficients of a(x) are minimized

using the norm L2 standard [16],

J =
i=1

n
Wi uh xi − ui

2� . (2)

In (2), n is the number of nodes within the domain, associated with the weight function Wi=W(x-xi)

(i=1, 2 ... n), and ui is defined as the nodal parameter of u at x=xi.

For related J stationary condition:

∂J
∂aj

= 0,  = 1, 2, …n (3)

which results in the following linear system:

�(�)� � = �(�)��, (4)

where Us = (u1 u2 u3 ... un)T is the vector responsible for storing the field function nodal parameters on

all nodes of the support domain and� � is known as the momentum matrix defined by [16]:

� � =
i=1

n
��� �i �� �i� . (5)

The matrix B represented in equation (4) is defined as
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�I � = �� �i ��, (6)

andWi is a diagonal matrix formed from the weight functions.

Solving equation (4) in a(x) gives [16]:

� � = �−�(�)�(�)��. (7)

Substituting equation (7) into equation (1) we have:

uh � =
i=1

n

Φi� ui = �� � ��, (8)

where �(�) is the vector of the MLS shape function corresponding to the n nodes of the support

domain of point x, which can be rewritten as:

�� � = ���−�(�)�(�). (9)

To obtain the derivatives of the uh(x) function, one must first find the derivatives of the shape

function, as described below [16]

�� � = �(�)�(�), (10)

where

� = ���−1, (11)

� can be found according to (11), provided that matrix A is symmetrical.

Partial derivatives of  can be obtained by solving (12) and (13) [16]:

�,i = �,� −�,�, (12)

��
,� � = �,�� + ��,�, (13)

where i indicates the x or y coordinates, and the comma corresponds to the partial derivative in

relation to the spatial derivatives. Partial derivatives of can be obtained by solving (12) and (13) [16].

MLS do not satisfy the Kronecker delta property, I (xj)  IJ, so that uh ��  UI. That is, the nodal

parameters uh � are not equal to the values of uh �� . The MLS approximation depends on all nodal

parameters for node I, whose domain of influence involves node xI. Therefore, to impose boundary

conditions on the EFG method, it is necessary to use special techniques such as Lagrange Multipliers

or IMLS to modify the weak-form [10], [18], [19].

In this work, a variation of MLS called Interpolating Moving Least Squares (IMLS) was used.

IMLS main features consist on making Wi infinite at the points xI, if necessary to interpolate in these

points [8], [17].

To meet the properties of the Kronecker delta, the following weight function is used:

W xI =
1

r2n + 
, (14)

where W xI is the weight or window function, n is a positive integer and  must be a positive real

number. This weight function becomes infinite at point xI, thus ensuring that the points near this node

have some value and the others approach to zero [19].
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III. MATHEMATICAL MODELING OF THE PROBLEM
The following subtopics are used as electromagnetic and variable formulations of the mathematical

model for the transmission line employing EFGM.

A. Equations for Magnetic Flux Density

The mathematical model of the magnetic field starts from Maxwell's Ampere equation, given by

(15) in the differential form [20]:

� × � = �� + j�. (15)

Since magnetic field analysis is performed from a quasi-static point of view, the displacement

current density ∂�
∂t
= j� can be neglected because the displacement current j� is much smaller

than the conduction current density (j�≪ ��) [21], [22].
In a homogeneous, linear and isotropic medium, characterized by  (permeability),  (permittivity)

and  (conductivity), the constitutive relations are valid. For the magnetic field it is necessary to use

the constitutive relation (16) [21], [23]

� =�, (16)

where � is the magnetic flux density (Wb/m²), � is the magnetic field intensity (A/m) and  is the

material reluctivity,  = 1


(A.m/Wb) [19] [21]-[23].

Considering �� as the present total current
�� = �� + ��, (17)

where �� is the current density vector (A/m²) of TL and �� is the induced current density vector

(A/m²). In this case, there is no �e portion, that is �� = �� , the current density in each TL

conductor.

� × � = � ×� × �, (18)

doing B=∇ × A where A is the magnetic vector potential, and with �� and A perpendicular to the

plane of interest, we have A = Ak and J = Jk.

Substituting (19) into (18) results the Poisson equation (20) [23]:

� = Bx� + By� =
∂A
∂y
� −

∂A
∂x
�, (19)

∂
∂x


∂A
∂x

+
∂
∂y


∂A
∂y

= −Jt, (20)

Rewriting (20), results in (21)

� ∙ � A =− Js. (21)

It is necessary to apply the respective boundary conditions in the problem: Dirichlet (Essential

Boundary Condition - EBC) (22) and Neumann (Natural Boundary Condition) (23):

A = Au in u, (22)
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−
∂A
∂n

= t � in t, (23)

where n is the outward normal direction on the Neumann boundary, t � and Au are the values at the

boundaries t, and u, respectively and = t U u.

In the calculation of magnetic flux density, Fig. 3 (a) illustrates the Dirichlet boundary indicated in

red with zero value and JsA, JsB, JSc are phase conductors in a three phase balanced system. Fig. 3 (b)

shows nodes in blue that are located at the surface of one of the conductors. For the magnetic field, A

is only imposed in the boundary domain and it is considered null.

(a)

(b)

Fig. 3. (a) Dirichlet condition null at domain boundary. (b) Distribution of nodes in part of the domain and around the
phase-A conductor.

Equations (21), (22) and (23) represent the mathematical modeling of electromagnetic fields of

transmission lines. Since this formulation presents a difficult solution, it is essential to obtain the
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weak-form and use the Galerkin method.

The variational form of the problem and the use of Galerkin method is presented below:

Ω
−� ∙ �A− ��(t)� ω∂Ω = 0  ω ∈ H1. (24)

Whereω is the weight function and H1 is the Hilbert space of degree 1.

Manipulating the equation, making use of vector identities and applying the divergence theorem:

�=�

�

i�
�=�

�

Ω
�Φj �Φi Aj ∂Ω+

t
Φi t �� ∂ −


�� t Φi ∂Ω��� = 0. (25)

After obtaining the variational formulation, the EFGM transfers the problem from the continuous

domain to the discrete domain and yields:

Kij =

�Φj�Φi∂� , (26)

Fi =

��(t)Φi ∂ −

t
Φi t �� ∂� , (27)

The linear system is:

�� = �, (28)

where K and F are given by their equations (26) and (27):

B. Equations for Electric Field

The modeling for obtaining the electric field is similar to the magnetic field formulation, but

without the current density term, which in this case is null. As it is a quasi-static model, the following

approach is used: [10], [16], [21], [22]

�.β�U = 0. (29)

Expanding (29), where U electric potential is the solution vector and considering β described below,
results the Laplace equation [23]:

∂
∂x

β
∂U
∂x

+
∂
∂y

β
∂U
∂y

= 0. (30)

Applying the divergence on both sides of the Ampère equation (15), together with equation (30)

and using the constitutive relations D=E and J=E, gives the following PDE:

� . σ + j� ���ε �U = 0, (31)

where  is the permittivity of the medium,  is electrical conductivity, � ��� =2  f, where f is the

frequency, E is the electric field and D is the electric displacement vector.

Considering β =+ j �ε and applying the respective boundary conditions: Dirichlet (32) and

Neumann (33):

U = Uu in u, (32)

−β
∂U
∂n

= t � in t, (33)
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where n is the outward normal direction on the Neumann boundary, t � and Uu are the values at the

boundaries t, and u, respectively and = t U u.

The essential boundary condition (EBC) for the electric field computation is zero at the problem

boundary and equal to the voltage potentials on the conductor surfaces of each phase (VnA, VnB, VnC)

with voltage values lagged by 120º, as shown in Fig. 4 (a) and Fig. 4 (b).

(a)

(b)

Fig. 4. (a) Null Dirichlet condition at domain boundary. (b) Dirichlet condition on the conductor surface with potential value
of phase-A.

The (30), (32) and (33) represent the strong form of the problem. Since this formulation presents a

difficult solution, it is essential to obtain the weak-form by the Galerkin method.

Getting the variational solution of the problem and using the Galerkin method:

Ω
−� ∙ β� U)� ω∂Ω = 0  ω ∈ H1. (34)

Manipulating the equation, making use of vector identities and applying the divergence theorem:

�=�

�
i�

�=�

�

Ω
�Φj β�Φi Uj ∂Ω +

t
Φi t �� ∂�� = 0  ω ∈ H1. (35)
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One arrives to the following linear system, where K is given by the equations:

K'ij =

�Φjβ�Φi∂� , (36)

F'i =

Φi t � ∂� = 0. (37)

The linear system is:

�'�' = �', (38)

where K’ and F’ are given by equations (36) and (37):

C. External Border Truncation

This approach assumes that within a given limit, the potential or normal potential derivative is close

to zero. Thus (39) is valid for Dirichlet or Neumann conditions at the dummy boundary, having null

values [21], [22]:

 = 0… or …
∂
∂n
= 0 em u. (39)

The distance from the outer boundary (u) must be at least five times the distance to the center of
the problem [24]. In the case of TL, there are two scenarios, in the first one, the height in the center of

the tower is considered as the distance between the ground and the most distant conductor in the tower

and in the second one, the height is considered between the lowest level of the catenary and the

ground.

IV. RESULTS
A real stretch of a TL that was interconnected to the Hydro-Québec Company System was chosen

as a case study. The main characteristics of this transmission line are presented in Table I [21], [22].

TABLE I. CHARACTERISTICS OF HYDRO-QUÉBEC TL

Data TL Hydro-Québec
Average Current 4.68 kA
Operating Voltage 500 kV
Number of Phases 3

Number of Conductors per Phase 5
Geometric Mean Radius (GMR) 0.40 m

Conductors Radius 25.16 mm
Conductors Type
Phase Distance

CAA Grosbeak
5.84 m

Height of Measurement Point
Above Ground Level 1 m

Vertical Spacing Between Center
of Phase A and Ground

10.848 m

Vertical Spacing Between Center
of Phase B and Ground

12.891 m

Vertical Spacing Between Center
of Phase C and Ground

10.848 m

The TL presented in Table I is approximated by the geometry showed in Fig. 5 where A, B and C

are equivalent conductors. To simplify, the shield wires are disregarded, since their effect in the
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electric evaluation at ground level is negligible [25]. In the adopted model represented in Fig. 5, the

height considered is from the center of the conductors at the lowest level of the catenary to evaluate

the maximum electromagnetic fields of the conductors in relation to the ground level.

Fig. 5. Structure of Hydro-Québec TL 500 kV.

Having the variational model presented in topic III, it is necessary to solve the problem through the

EFGM and validate the results through the analytical calculation and the FEM, making the

appropriate comparisons, analysis and verification of the error rates.

A. Magnetic Flux Density Result
The magnetic flux density and electrical field obtained with the EFGM, as well as the analytical

solution and FEM results are presented in this section. The values were obtained at 1 m above ground

level and the results can be seen in Fig. 6, Fig. 7 and in Table II. The voltage, current and Geometric

Mean Radius (GMR) values of the conductors are show in Table I.
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Fig. 6. Magnetic flux density at 1 m from the ground (TL 500 kV Hydro-Québec).

(a) (b)
Fig. 7. (a) Magnetic field distribution (TL 500 kV Hydro-Québec). (b) Logarithmic scale magnetic field distribution (TL

500 kV Hydro-Québec).
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TABLE II. MAGNETIC FIELD ERROR ANALYSIS AT 1 M FROM THE GROUND (TL 500 KV HYDRO-QUÉBEC).

Magnetic Flux Density Error Calculation
Analytical EFGM Global

Error
Relative
Error

71.2 T 68.38 T 1.47 % 4.2 %

Magnetic fields are evaluated in the transmission line crossing range at 1 m from the ground. In this

situation, the field is maximum at the center of the conductors, suffering a decay in the lateral

conductors, this effect is observed in Fig. 6. In Fig. 7a and Fig. 7b, we can see that the values of the

magnetic field are high in the vicinity of the conductors and decrease as the distance from the

conductors rises.

It is seen that the results found by EFGM are satisfactory. The maximum magnetic flux density value

of 68.38 µT is found to be within the limit adopted by the International Commission for Non-Ionizing

Radiation Protection (ICNIRP) [26]. In this case, the proposed method achieved a better result than the

FEM, based on the analytical solution.

B. Electric Field Result
The electric field obtained with the EFGM, as well as the analytical solution can be observed in Fig.

8, Fig. 9 and Table III.
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Fig. 8. Electric field at 1 m from the ground (TL 500 kV Hydro-Québec).

The electric field curve shown in Fig. 8 indicates a higher value in the lateral conductors, decreasing

at central conductor, in the measurement range at 1 meter from the ground. It is possible to see that at

the center of the TL the errors inherent to the numerical procedure are greater compared to the

analytical model.

The distribution of the electric field next to the TL is shown in Fig. 9. A logarithmic scale (log10)

was used to obtain a better visualization, once the fields decrease rapidly.
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Fig. 9. EFGM Electric field distribution along the logarithmic servitude range (TLs 500 kV Hydro-Québec).

Table III indicates the maximum electric field and error calculation.

TABLE III. ELECTRICAL FIELD ERROR ANALYSIS AT 1 M FROM THE GROUND (TL 500 KV HYDRO-QUÉBEC).

Electric Field Error Calculation
Analytical EFGM Global

Error
Relative
Error

10.0 kV/m 10.5 kV/m 0.9 % 1.3 %

C. Parameter Analysis
EFGM has several configuration parameters such as: number of Gauss points for numerical

integration, size of influence domain (dmax) and number of nodes (shown in Fig. 10 and Fig. 11). Thus,

some simulations are performed in order to certify these parameters and identify a better configuration

for the application in TLs.

According to [14] the size of the influence domain is represented again by (40):

dI = dmaxCI (40)
where dmax is a proportionality constant with values between 2 ≤ dmax ≤ 4 , and �� is the average

nodal distance between nodes near the node of interest. For example, if dmax = 2.0, this indicates an

influence domain whose radius is 2.0 times the average value of distances between the nodes [19].
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Fig. 10. Analysis of the variation of the size of the electric field influence domain (TL 500 kV Hydro-Québec).
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Fig. 11 shows the approximation of the solution by employing 2 and 4 Gauss points per cell for the

numerical integration. It is found that when using two Gauss points the accuracy is satisfactory and the

computational cost is approximately the half time compared to four Gauss points.
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Fig. 11. Analysis of the number of Gaussian integration points for the electric field (TL 500 kV Hydro-Québec).

Table IV indicates the maximum magnetic field error calculation for 2 and 4 Gauss points per cell.

TABLE IV. MAGNETIC FIELD ERROR ANALYS FOR SENSITIVITY ANALYSIS OF NUMBER OF GAUSS.

Magnetic Field Error Calculation

Analytical 2 points
EFGM

4 points
EFGM

Relative Error
2 Gauss point

Relative Error
4 Gauss points

71.2 T 68.38 T 65.72 T 7.7 % 4.2 %

D. Case study – Furnas TL
Table V describes the electrical characteristics of the Furnas TL analyzed by [21], [22].

TABLE V. GEOMETRIC CHARACTERISTICS (TL 525 KV FURNAS).

Data TL Furnas
Average Current 675.23 A
Operating Voltage 525 kV
Number of Phases 3

Number of Conductors per Phase 4
Geometric Mean Radius (GMR) 0.35 m

Conductors Radius 31.96 mm
Conductors Type CAA Ruddy
Phase Distance 7.5 m

Height of Measurement Point
Above Ground Level 1 m

Vertical Spacing Between Center
of Phase A and Ground

17.975 m

Vertical Spacing Between Center
of Phase B and Ground

25.475 m

Vertical Spacing Between Center
of Phase C and Ground

17.975 m

Fig. 12 shows the curves calculated by [21], [22] and by the EFGM for the Furnas TL. Note that all

solutions are symmetrical with respect to the x axis from -20 to 20 meters. Such behavior is indicated
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by the fact that the geometric configurations of the TL under study are balanced. In this case the height

considered is the distance from the center of the conductors at the tower to the ground.
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Fig. 12. Electric field distribution along the logarithmic servitude range (TL 525 kV Furnas).

Table VI indicates the maximum electric field and error calculation.

TABLE VI. ELECTRICAL FIELD ERROR ANALYSIS AT 1 M FROM THE GROUND (TL 525 KV FURNAS).

Electric Field Error Calculation
Analytical EFGM Global

Error
Relative
Error

4.42 kV/m 4.14 kV/m 4.79 % 6.3 %

It is seen that the results found by FEM in this case are better than EFGM. The maximum electric

field value of 4.42 kV/m is found to be within the limit adopted by the International Commission for

Non-Ionizing Radiation Protection (ICNIRP) for occupational exposure that is 8.3 kV/m [26].

E. Comparison between FEM and EFGM algorithms
Fig. 13 represents the flowchart computational modeling for FEM and EFGM [16].

Fig. 13. Flowchart of the EFGM and FEM algorithms [16].
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The main difference between the two algorithms is that EFMG does not need a mesh, being

necessary only the distribution of nodes throughout the problem domain. The shape function can be

built for a point of interest and can change through the local nodal distribution. In the FEM, as shown

in Fig 13, the shape function has pre-defined elements and is the same throughout the problem region.

The EFGM algorithm is shown more detailed in Fig.14 [10]:

Fig. 14. Flowchart for EFGM.
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The step by step to EFGM algorithm is described below:

1) The geometry of the problem and its physical characteristics are defined;

2) Then it is necessary to configure the nodal coordinates;

3) Generate the integration cells;

4) Insert the points of integration, weight, Jacobian for each cell;

5) Determine the domain of influence of each node;

6) Start the loop over the integration points;

a) Determine the nodes of the neighbor of the Gaussian points.

b) Determine the shape function and its derivatives.

c) Store matrix B.

d) Add the contribution of matrix K.

7) Enforce boundary conditions;

8) System solution, solving for nodal parameters;

9) Draw the graphs.

Table VII compares FEM and EFGM characteristics for the purpose of this work [16].

TABLE VII. DIFFERENCES BETWEEN FEM AND EFGM

Item FEM EFGM
Configuration Mesh Generation Node Generation
Shape function Pre-defined elements Local support domains

Discretized system Banded, symmetric Banded, symmetric
Imposition of essential
Boundary condition Standard and easy Standard and easy

Adaptive analysis Difficult for 3D cases Easier
Commercial software
packages availability

Many Few

Accuracy Accurate compared to
Finite Difference Method (FDM)

More accurate than FEM in
some cases

Computation speed Fast Slower (not optimized)

Stage of development Well developed With many
challenging problems

V. CONCLUSIONS

The computational model EFGM has been successfully applied in the evaluation of electromagnetic

fields generated by a real TL with four and five conductors per phase. As seen in Fig. 6, the EFGM

indicates a better approximation (to the analytical calculation curve) and a lower error rate when

compared to the FEM. However, in Fig. 12, the FEM modeling is better than EFGM in relation to the

analytical curve. This indicates that in some cases the use of EFGM is better than the use of FEM.

Therefore, due to the nature of this work, several aspects related to EFGM can be further studied

and/or improved. For example: study a non-uniform node distribution throughout the domain region,

using specific softwares for node creation, and implement a 3D model for the catenary region between

the spans of the towers, with towers being located at different levels.
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The use of FEM in calculations of electromagnetic fields is already consolidated. The EFGM

method code is not yet optimized and the shape function calculation is more complex, hence, the

processing time is longer than the FEM. However, the application of the Meshless technique in TLs is

a promising tool, as there is no need for mesh generation as in Finite Elements, thus allowing great

flexibility to deal with complex geometry problems. In contrast, Meshless technique has a complexity

involved in the construction of shape functions.

Through EFGM, a weak global form is applied, thereby avoiding a number of implications found in

meshless methods that make use of local domain. Another characteristic of EFGM is its great

accuracy, in some cases greater than the Finite Element Method.

Calculations of electromagnetic fields in the vicinity of the TL are of great importance. With the

method presented in this work it was possible to evaluate the electromagnetic field values considering

international standards and guidelines.
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