
Floresta e Ambiente 2019; 26(4): e20170439
https://doi.org/10.1590/2179-8087.043917

ISSN 2179-8087 (online)

Original Article

Forest Management

Creative Commons License. All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License.

Additive and Non-additive Biomass Equations for Black Wattle

Alexandre Behling1 , Sylvio Péllico Netto1 , 
Carlos Roberto Sanquetta1 , Ana Paula Dalla Corte1 , Augusto Arlindo Simon2 , 

Aurélio Lourenço Rodrigues1 , Braulio Otomar Caron3 
1Universidade Federal do Paraná – UFPR, Curitiba/PR, Brasil 

2TANAC S.A. e TANAGRO S.A., Montenegro/RS, Brasil
3Universidade Federal de Santa Maria – UFSM, Santa Maria/RS, Brasil

ABSTRACT
The objectives of this work were to propose additive equations for biomass components (stem and 
crown) and total biomass for black wattle (Acacia mearnsii De Wild.) and show the inconsistency 
of independently adjusted biomass equations. Two procedures were used to fit nonlinear equations 
of biomass: i) independent and ii) systems of equations. The second procedure, defined by the 
application of the seemingly unrelated regression model, has better biological and statistical 
properties to estimate allometric equations of biomass components and total biomass when 
compared with the independent estimation. An effective property of this procedure is the 
additivity, i.e., the estimates of component biomass are compatible with those of total biomass. 
Independent fitted adjusted equations do not consider the dependence between the biomass 
components, thus, besides the estimates being non-additive, which is an undesirable property, 
they will result in estimates with larger variance.

Keywords: nonlinear seemingly unrelated regression, error modeling, additivity.

Equações de Biomassa Aditivas e não Aditivas para Acácia Negra 

RESUMO
Os objetivos desse trabalho foram propor equações aditivas de biomassa dos componentes (fuste 
e copa) com a biomassa total para a espécie acácia negra (Acacia mearnsii De Wild.) e demonstrar 
a inconsistência de equações de biomassa ajustadas independentemente. Dois procedimentos 
foram utilizados para ajustar equações não lineares de biomassa: i) independente e ii) sistemas 
de equações. O segundo procedimento, definido pela aplicação do modelo de regressão 
aparentemente não relacionada, apresenta melhores propriedades biológicas e estatísticas para 
estimar equações alométricas de biomassa dos componentes e biomassa total, quando comparado 
com a estimação independente. Uma propriedade efetiva desse procedimento é a aditividade, 
isto é, as estimativas de biomassa dos componentes são compatíveis com as de biomassa total. 
As equações ajustadas independentes não consideram a dependência entre os componentes de 
biomassa, assim, além das estimativas não serem aditivas, propriedade indesejável, resultarão 
em estimativas com maior variância.

Palavras-chave: regressão não linear aparentemente não relacionada, modelagem do 
erro, aditividade.
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1. INTRODUCTION

Energy generation from forest biomass has the 
potential to reduce carbon emissions when compared with 
other energy sources, especially fossil fuels. Therefore, 
accurate biomass estimates have been fundamental for 
diverse applications. Information on biomass stocks is 
especially useful for forest managers to determine the 
role of forest biomass in the global carbon cycle and 
to manage energy production from biomass. Hence 
the importance of establishing equations and enabling 
forest biomass inventories.

The development and testing of allometric biomass 
models depend on the availability of data from 
destructive tree evaluations and is a time-consuming 
and expensive task (Chave et al., 2014). To avoid this 
work being carried out frequently, it is possible to use 
existing biomass equations and to estimate biomass 
stocks using forest inventory information.

These equations must be established by asserting 
some assumptions. Genet et al. (2011) pointed out that a 
good set of biomass equations must meet the following 
characteristics: i) consistency, to ensure the additivity 
of the estimates between biomass components and 
total biomass; ii) robustness, to compose an operating 
system that works correctly for wide variations in the 
sample population and with low sensitivity to the 
sampling process and to the formulated hypotheses; 
and iii) accuracy.

Consistency can be ensured by applying the 
seemingly unrelated regression for linear models 
and its variation for non-linear models, according 
to Parresol (1999, 2001). Additive biomass equations 
are desirable because the estimates of the component 
biomass and total biomass are harmonic, overcoming 
the lack of consistency in the estimates.

Black wattle (Acacia mearnsii De Wild.) is one of the 
most grown forest trees in the state of Rio Grande do 
Sul. It is a versatile species with characteristics allowing 
the generation of economic, social, and, above all, 
environmental benefits. Growing black wattle forests 
and trading their products is a solid economic activity 
and, according to Stein & Tonietto (1997), has brought 
benefits and prosperity to more than 40 municipalities 
and approximately 40 thousand families.

Equations for estimating black wattle biomass 
have already been proposed by several researchers, 
as we highlight throughout this text. In the present 
work a new approach is applied to fit the equations, 
using data from the main forest sites in the state of Rio 
Grande do Sul, from stands with different ages, and 
an expressive sample size in terms of number of trees. 
The new approach used to adjust equations was based 
on the following hypothesis: given that the estimators 
of equation systems include constraints to obtain the 
coefficients in their adjustments, their estimates might 
result in additivity of the components, when compared 
with the estimators obtained in a single equation, and 
therefore result in estimates of biomass components 
additive with estimates of total biomass.

Therefore, the objectives of this study were to 
propose additive equations for biomass components 
(stem and crown) and total biomass for black wattle 
and demonstrate the inconsistency of independently 
adjusted biomass equations.

2. MATERIAL AND METHODS

2.1. Sampling in stands of black wattle

The field research was carried out in commercial 
stands of black wattle (Acacia mearnsii de Wild.) in 
areas where the species is prevalent in the state of Rio 
Grande do Sul, in June and July 2014. It was possible 
to divide these areas into three regions: Cristal, 
Encruzilhada do Sul, and Piratini. These regions 
have their climate, relief type, and soil characterized 
in Mochiutti (2007).

The stands were sampled in a sequence of ages 
after planting, to cover all crop rotation (Table 1). 
Four circular plots with 10 m in diameter (78.54 m2) 
were randomly allocated in each stand. All trees in 
the plots were felled and measured for the following 
characteristics: diameter at breast height, total height, 
stem and crown biomass. The research involved the 
allocation of 48 temporary plots and the measurement 
of the characteristics on 670 trees.

The diameter at breast height (d) was measured 
with a dendrometric tape and the total height (h) 
with a tape. Biomass measurement was performed 
for the stem component (stem wood + bark) and 
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crown (live and dead branches, leaves, flowers and 
fruits), as defined in Picard et al. (2012). For each 
tree, these components were separated and weighed 
to obtain the wet biomass with a Portable Scale with 
5g of accuracy. Total biomass was defined as the sum 
of the stem biomass and crown components.

Samples of the components were taken and 
immediately weighted with a digital scale (Hoyle) with 
1g of accuracy. Samples of the crown, approximately 
1,500 g, were taken at positions 0%, 25%, 50%, 75%, 
and 95% of the total crown length (distance of the 
first branch, regardless of being alive or dead, to the 
apex of this component). In each stem, 5 discs of 2 cm 
thick were removed at the positions: 0%, 25%, 50%, 
75%, and 95% of the total height. The samples were 
dried in an oven with air-circulation and air renewed 
at 100° C to constant mass and weighed with a digital 
scale with 1g of accuracy. Dry biomass was calculated 
from the values of biomass moisture content.

2.2. Aboveground biomass equations

The equations for biomass components and total 
aboveground biomass were proposed according to 
the age of the stands, as shown in Table 1. Equations 
estimated independently were named as equation 
group, and those estimated jointly as equation system.

2.2.1. Independently estimated biomass 
equations: procedure 1

The first step in the independent estimation of 
equations was the evaluation of the competing models, 
described by Behling (2016) for the input variables 
d (in cm) and h (in m) for crown biomass ( Cy , in kg), 
stem biomass ( Fy , in kg), and total biomass ( Totaly , in kg).

The linear models were adjusted by ordinary 
least squares, and the nonlinear models by estimated 
generalized nonlinear least squares, with estimators 
defined by Greene (2008). The performance of each 
model was evaluated based on the adjusted coefficient 
of determination ( )2R  and coefficient of variation (CV), 
according to the concepts presented in Steel et al. (1996) 
and Greene (2008). The models selected to express the 
allometry of biomass components and total biomass 
as a function of the variables d and h are defined in 
Equations 1 and 2.

Group of equations

Models

1, 2 and 3

( ) 22
1ˆ  C Cy d h

β
β ε= +

( ) 22
1ˆ  F Fy d h

β
β ε= +

( ) 22
1ˆ  Total Totaly d h

β
β ε= +

	

(1)

4 and 5

( ) 22
1ˆ  C Cy d h

β
β ε= +

32
1ˆ   F Fy d hβββ ε= +

32
1ˆ   Total Totaly d hβββ ε= + 	

(2)

White’s test (1980) was applied to test the hypothesis 
of homogeneity of residuals in each equation, with 95% 
probability. When the hypothesis was rejected, the 
weights were obtained through the variance structure, as 
defined by Harvey (1976) and Parresol (2001), followed 
by a new equation fitting and White’s test application. 
The variance-covariance matrices of ib  (where i refers 
to the coefficient of each equation) were also presented. 
They are useful for making inferences about the estimation 

Table 1. Group and systems of equations organized by age and maturity of the stands, ranges of independent 
variables (d  and h), and number of individuals (T) used to fit biomass equations in black wattle stands in the state 
of Rio Grande do Sul, Brazil.

Group and 
systems of 
equations

Age
(years)

Maturity of the 
stands T d (cm) h (m)

1 1 Too young 69 0.64-03.34 1.60-04.25
2 1.75-1.83 Young 115 2.23-10.66 4.40-10.20
3 2.33-3.08 Medium-inicial 163 2.86-16.55 5.40-15.40
4 5-5.75 Medium-advanced 153 2.55-18.46 4.70-20.60
5 9.83-10.75 Mature 170 3.82-23.55 7.70-21.90
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of parameters and confidence intervals and are calculated 
according to Parresol (2001).

2.2.2. Biomass equation systems: procedure 2

The biomass equation systems were developed for 
total biomass, crown biomass and stem components. 
The models selected for the components were those 
defined in [1] and [2]. The model for total biomass 
was defined as a function of the independent variables 
of each function of component i. Thus, the equation 
systems were defined according to Equations 3 and 4.

( ) 122
11ˆ  C Cy d h

β
β ε= +

( ) 222
21ˆ  F Fy d h

β
β ε= +

	
(3)

( ) ( )12 222 2
11 21  ˆTotal Totaly d h d h

β β
β β ε= + +

	

( ) 122
11ˆ  C Cy d h

β
β ε= +

32
1ˆ   F Fy d hβββ ε= + 	

(4)

( ) 12
322

11 1  ˆ  Total Totaly d h d h
β βββ β ε= + + 	

We used the model of nonlinear seemingly unrelated 
regressions to solve the systems of Equations 3 and 
4, with parameter estimates made in SAS software. 
The White’s test was applied to test the hypothesis of 
homogeneity of residuals for the component equations 
and the equation of the total, at 95% probability. 
For the cases in which the hypothesis was rejected, the 
weights obtained in the previous section were used and 
the system was adjusted again using the estimator of 
weighted-nonlinear seemingly unrelated regressions 
(WNSUR), followed by the application of the White’s 
test. Note that the residual scatter plots were not 
included, since one of the objectives of the residuals 
analysis is already met by presenting the White’s test 
and its interpretation. In addition, given the appropriate 
conditions to perform the adjustment (homogeneity of 
residual variances), the authors believe that it is more 
important to present the variance-covariance matrices, 
since they are useful to make several inferences, which 
will be shown in the following sections.

The performance of each model was evaluated 
based on the adjusted coefficient of determination 
( )2R  and coefficient of variation (CV), according to 
Steel et al. (1996). The variance-covariance matrices of 

ijb  (in which i is the coefficient between the equations 

and j the coefficients of each equation), are calculated 
according to Parresol (2001). These matrices were 
presented because they show the correlations between 
the components measured in the same tree, i.e., the 
dependence between the biomass components. These 
correlations will determine the gains in efficiency 
owing to the application of WNSUR. In addition, these 
matrices are needed for applications combined with 
the fitted equations in order to make inferences about 
the confidence intervals of the estimates.

3. RESULTS

3.1. Independently estimated biomass 
equations: procedure 1

The null hypothesis of homogeneity of the residuals 
was rejected for most equations, according to the 
White’s test. Thus, we obtained the weights for the 
biomass of the components and total biomass using 
the structures of variance in Equations 5 to 19. For the 
equations with null hypothesis accepted, the weights 
were considered equal to one.

Group 1

2 1ˆ: cy σ = 	 (5)

2 1ˆ: Fy σ = 	 (6)

2: 1ˆTotaly σ = 	 (7)

Group 2

2 1ˆ: cy σ = 	 (8)

( )0.8565112 2ˆ: Fy d hσ = 	 (9)

( )0.4854652 2: ˆTotaly d hσ = 	 (10)

Group 3

( )1.2648662 2ˆ: cy d hσ = 	 (11)

( )1.3340492 2ˆ: Fy d hσ = 	 (12)

( )1.6707472 2: ˆTotaly d hσ = 	 (13)

Group 4

( )0.9450542 2ˆ: cy d hσ = 	 (14)

2 4.002528 0.716350 ˆ: Fy d hσ −= 	 (15)
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2 3.539289 0.052788:  ˆTotaly d hσ = 	 (16)

Group 5

( )1.2367762 2ˆ: cy d hσ = 	 (17)

2 4.514350 0.595380 ˆ: Fy d hσ −= 	 (18)

2 4.786551 0.249140:  ˆTotaly d hσ −= 	 (19)

The statistics of the equations adjusted by procedure 
1 and complemented with the weighting are shown in 
Equations 20 to 34. The correction of heteroscedasticity 
was evidenced by the weighting via White’s test and 
residual graphic analysis. In addition, all coefficients were 
significant at 95% probability by application of t-test.

2R  CV  White

Group 1

( )0.4452972ˆ 0.215867 69.22% 22.11% 3.03ns
Cy d h= 	 (20)

( )0.5006782ˆ 0.178804 83.98% 16.13% 10.01ns
Fy d h= 	 (21)

( )0.4719042ˆ 0.394430 81.19% 16.86% 2.05ns
Totaly d h= 	 (22)

Group 2 

( )0.8264342ˆ 0.0328047 64.07% 31.51% 1.71ns
Cy d h= 	 (23)

( )0.8394632ˆ 0.051673 92.94% 12.45% 13.02ns
Fy d h= 	 (24)

( )0.8302912ˆ 0.086821 89.28% 15.27% 4.84ns
Totaly d h= 	 (25)

Group 3

( )1.0771432ˆ 0.003410 89.80% 24.86% 1.38ns
Cy d h= 	 (26)

( )0.9007972ˆ 0.039333 95.24% 13.39% 6.86ns
Fy d h= 	 (27)

( )0.9447182ˆ 0.037582 95.94% 12.99% 1.67ns
Totaly d h= 	 (28)

Group 4

( )0.9769562ˆ 0.005891 80.70% 29.58% 6.97ns
Cy d h= 	 (29)

2.033388 0.667959ˆ 0.048390   95.19% 13.34% 6.69ns
Fy d h= 	(30)

2.102267 0.5912720.062245   95.43% 13.5ˆ 8% 6.04ns
Totaly d h= 	(31)

Group 5

( )1.2142492ˆ 0.000778 82.89% 38.42% 4.67ns
Cy d h= 	 (32)

1.984245 0.829223ˆ 0.039145  95.73% 13.41% 8.58ns
Fy d h= 	 (33)

2.139698 0.6112130.057760   95.95% 13.7ˆ 5% 4.84ns
Totaly d h= 	(34)

The variance-covariance matrices of ijb  
(where i is the coefficient of each equation) for each 
group are presented in the supplementary material.

3.2. Biomass equation systems: procedure 2

Heteroscedasticity was confirmed for the same 
previous cases by the rejection of the null hypothesis via 
White’s test. Therefore, the new fitting of the functions 
was carried out using procedure 2, with the application 
of the weights already obtained in procedure 1. The new 
equations and the resulted statistics are shown in 
Equations 35 to 49. The correction of heteroscedasticity 
was evidenced by the weighting via White’s test and 
residual graphic analysis. All adjusted coefficients were 
significant at 95% probability by application of t-test.

2R  CV  White

System 1

( )0.4593282ˆ 0.205422 69.58% 21.98% 2.57ns
Cy d h= 	 (35)

( )0.5065692ˆ 0.17493 84.19% 16.03% 9.63ns
Fy d h= 	 (36)

.ˆ 1ˆ ˆ 81 15% 6.88% 1.65ns
Total C Fy y y= + 	 (37)

System 2 

( )0.8272962ˆ 0.032844 64.37% 31.38% 1.77ns
Cy d h= 	 (38)

( )0.8379922ˆ 0.052046 92.99% 12.41% 11.93ns
Fy d h= 	 (39)

.ˆ 1ˆ ˆ 89 29% 5.26% 4.78ns
Total C Fy y y= + 	 (40)

System 3 

( )1.0793252ˆ 0.003320 89.84% 24.81% 1.28ns
Cy d h= 	 (41)

( )0.8990842ˆ 0.039548 95.31% 13.30% 6.06ns
Fy d h= 	 (42)

.ˆ 1ˆ ˆ 95 97% 2.95% 1.62ns
Total C Fy y y= + 	 (43)

System 4 

( )1.0108992ˆ 0.004438 80.58% 29.67% 6.33ns
Cy d h= 	 (44)

1.979083 0.692747ˆ 0.051517  95.24% 13.32% 6.21ns
Fy d h= 	 (45)

3ˆ 95. 8% 13.15% .ˆ 1ˆ 2 11ns
Total C Fy y y= + 	 (46)

System 5 

( )1.1651862ˆ 0.001216 82.39% 38.98% 5.37ns
Cy d h= 	 (47)
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1.967389 0.736520ˆ 0.053628  95.84% 13.24% 6.63ns
Fy d h= 	 (48)

.ˆ 1ˆ ˆ 95 86% 3.89% 9.15ns
Total C Fy y y= + 	 (49)

The variance-covariance matrices of ijb  (where i 
is the coefficient of each equation) for each group are 
presented in the supplementary material.

4. DISCUSSION

4.1. Nonlinear biomass equations

The biomass components and total biomass 
were modeled by non-linear biomass functions. 
The adjustment of these functions requires more 
demanding computational methods, although their 
implementation is made possible by the low operational 
cost currently available in computers and softwares. 
Therefore, the use of nonlinear equations is not a limiting 
factor and provides certain positive conditions that are 
not achieved through linear regression, although there 
must be attention to ensure if appropriate functions 
are obtained.

In this work, biomass was modeled in the original 
(nonlinear) form for the following reasons: the relationship 
between dependent and independent variables are 
non-linear; model linearization causes an inherent 
bias in the transformation of data in relation to the 
original arithmetic scale, thus correction is necessary; 
the application of nonlinear models allows the use of 
the original values not implying in data transformation 
as in the cases of model linearization; nonlinear models 
are better than linear models.

Although certain positive aspects of the nonlinear 
approach are highlighted, it also provides some 
challenges in relation to the linear approach. It is 
often necessary to work on the convergence criteria 
to avoid premature stopping of the iterations and a 
subsequent loss of precision of the resulted coefficients. 
This requires a more experienced modeler, compared 
to the use of linear models. In the nonlinear approach, 
the first challenge refers to the estimates of the initial 
parameters that must be specified, and experience is 
required to define them or, where possible, by means 
of a consistent β vector. In this condition, the functions 
must be linearized and adjusted by ordinary least 
squares to obtain the initial values, as performed in this 
work. The second challenge refers to which algorithm 

to use in the iteration process, such as Gauss-Newton 
and Marquardt.

Failures in convergence processes reveal other 
challenges in the nonlinear approach. According to 
Parresol (2001), they can occur for several reasons and 
the most important ones are: partial derivative matrix 
and direction matrix can be singular, indicating that 
the model can be over-parameterized; it is possible 
for the parameters to occur in a numerical space in 
which the logarithmic and square root arguments are 
not valid, resulting in excess of calculations. Logically, 
these problems can be avoided by the careful choice 
of models and the establishment of different initial 
β vectors.

There are still other difficulties, that is, the iteration 
method can lead to steps that do not improve the 
estimates. In this case, according to Parresol (2001), the 
length of step nl  needs to be controlled to change the 
starting values or to choose another iteration method. 
The result of the gradient should also be considered it 
may cause small changes in the residual sum of squares 
and (or) small changes in the parameter estimates with 
successive iterations, but still be far from the solution.

4.2. Modeling of variance structure

Heteroscedasticity of residuals is common 
in the modeling of tree biomass, and it has been 
reported by several researchers: Parresol (1999, 
2001), Saint-André et al. (2005), Basuki et al. (2009), 
Bi et al. (2010), Sileshi (2014), Wayson et al. (2015), 
Sanquetta et al. (2015b), and Zhao et al. (2015). Cunia 
& Briggs (1984) pointed out that it is natural to expect 
that the biomass variability of trees with smaller 
diameters is smaller than the biomass variability of 
trees with larger diameters, leading to the variance of 
residuals to be non-constant for the biomass equations.

This should not be ignored when fitting equations by 
regression analysis. Constant variance is fundamental in 
regression analysis, since it directly affects the validation 
of several hypotheses tested, as demonstrated in Maddala 
(2001) and Greene (2008). Under heteroscedasticity of 
residuals two approaches can be applied to establish 
constant variance. The first one refers to the application 
of logarithmic transformation, and the second one of 
regression weighting. In regression weighting, instead 
of using simple weights such as 1d − , 1h−  and ( ) 12d h

− , 
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the approach by modeling the variance structure is 
more appropriate (Parresol, 1993, 1999, 2001).

The logarithmic transformation to correct 
heteroscedasticity is an approach easier and faster 
than applying regression weight, because it does 
not require the modeling of the variance structure. 
However, it reverts to problems already evidenced, 
caused by data transformation. For these reasons, it 
is logical to model the variance structure instead of 
applying logarithmic or even another transformation. 
Parresol (2001) also recommended modeling the error 
variance structure rather than using the logarithmic 
transformation to correct the heteroscedasticity of 
biomass data. He demonstrated that transformed or 
weighted equations for stem and bark biomass resulted 
in similar standard errors of the coefficients and in 
the statistics used for evaluation of goodness-of-fit. 
However, for crown biomass and total biomass, the 
weighted equations showed better results for standard 
error of the coefficients and prediction intervals of the 
estimates. The transformed equations resulted in slightly 
more elastic prediction intervals, but this would have 
a greater impact if considered the cumulative effect 
by applying the equations to hundreds or thousands 
of trees.

Using the variance structure, we established 
the weights and readjusted the equations. This led 
to the stabilization of variance, hence the weighted 
functions allowed the homoscedasticity of residuals. 
Homoscedasticity is indispensable to obtain appropriate 
confidence intervals and to validate the hypothesis tests. 
An effect of achieving constant variance is observed 
when the standard errors of the coefficients are smaller 
than those obtained under heteroscedasticity of the 
residuals (although these results were not presented in 
this manuscript), which was also observed by Parresol 
(1999, 2001).

4.3. Aboveground tree biomass equations for 
black wattle

The coefficients of variation for the equations of the 
crown component were greater than those evaluated 
for the equations of stem and total components, 
because the crown biomass (composed by biomass 
of leaves and branches) presents more variability on 
allometric relationship with the independent variables. 
Poorter et al. (2012) reported an interesting discussion 

about biomass allocation to leaves, stems, and roots. 
The authors discussed the pattern of variation of these 
components and how their growth is influenced by 
the environment, plant size, dynamic process, and 
competition. It is known that the evolutionary patterns 
of plants are influenced by environmental conditions 
and, therefore, this reflects on the proportions among 
tree components, as well as in their allometry, i.e., 
the allometric relationship of the crown and stem 
components with the independent variables should 
not be the same, because their biomass proportions 
are different when equated to the same independent 
variable.

Adjusted coefficients of determination and variation 
from the fitted equations through procedures 1 and 2 are 
within the range obtained in other black wattle studies. 
Coefficients of determination greater than 80% for 
black wattle biomass equations have been frequently 
reported in the literature, with approaches developed 
by several researchers: Dudley & Fownes (1992), 
Carbonera Pereira  et  al. (1997), Caldeira (1998), 
Barichello  et  al. (2005), Saidelles (2005), Mochiutti 
(2007), Caldeira et al. (2011), and Sanquetta et al. (2014).

The coefficients estimated from equations of 
biomass components via procedures 1 and 2 led to close 
relationship with the groups or systems of equations, 
determined according to the stand age. This finding 
was also evidenced by Williams  et  al. (2003), who 
observed that the allometry of the components was 
not the same for populations of the same species with 
different ages. The authors pointed out that stand age 
influences the relationship between biomass and the 
variables that express tree dimensions such as d and 
h, as discussed by Niklas (1995).

Saint-André  et  al. (2005) also found that the 
parameters estimated from the biomass models 
varied clearly with the stand age. They argued that 
this is not only a result of a change in tree maturity, 
but rather a combined effect of the tree age and its 
sociological position. The authors observed that two 
trees with same d and h, but with different ages, show 
differences in their sociological position. In this case, 
the younger tree may be dominant, while the older 
tree is likely to be suppressed. Thus, both effects, age 
and sociological position, cause an increase in stem 
biomass of the oldest tree. This occurs because the 
wood density increases with the stand age and the form 
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factor (ratio between stem volume and 2

4
d hπ ), which 

is higher in dominated trees. On the other hand, both 
effects tend to decrease the biomass of live leaves and 
branches of old and suppressed trees, because most 
leaves are allocated in the periphery of the crown. Other 
reason is that the crown height is strongly reduced 
depending on its sociological position.

In addition, there is the effect of the biomass 
components allocation, which varies with the stand 
age, being also a common characteristic. In this study, 
the proportion of stem biomass in relation to the total 
biomass increased as a function of age, i.e., from the 
very young to mature forest, while the proportion of 
the crown biomass in relation to the total biomass 
decreased.

Therefore, the development of biomass equations 
according to age range can benefit forest managers 
when evaluating biomass stocks per component.

All intercept and exponential coefficients of the 
equations were significant. The intercept values were 
higher for the groups or systems of equations adjusted 
for the younger stands than for the older ones. Angular 
coefficients behave inversely. This inverse proportion 
relationship between the intercept and the angular 
coefficients was also observed by Fehrmann & Kleinn 
(2006), Zianis (2008), Zapata-Cuartas et al. (2012), and 
Sileshi (2014) and thoroughly discussed by Pilli et al. (2006).

The dependence of the coefficients of the biomass 
equations on the stand ages is fundamental to generalize 
the black wattle biomass equations. The generalization 
of the equations – when they are adjusted for data 
from regional, state and national forest inventories – 
increases in importance and aims to create equations 
for various species, sites and ages. Generalization 
facilitates the application of the equations, because 
they are robust and present fewer restrictions, mainly 
owing to regional characteristic and age range of the 
tree sampling trees. In this scenario, the possibilities of 
using generalized biomass equations in the present case 
are clear, especially because stratification by age is not 
required anymore. Although this is an important theme, 
it was not considered in this work. We considered age 
stratification previous to define the equations. 

The equations presented in this work are intended 
to be used in biomass inventories of black wattle stands 
and come from the main grown sites in the state of Rio 
Grande do Sul, covering a wide range of stand ages. 

Additional information regarding the variance-covariance 
matrix of coefficients and residuals was included in 
the appendix. Therefore, these equations are useful 
for inventories of biomass components and total 
biomass, specially the equations fitted by procedure 
2 for equation systems.

The application of the equations independently 
adjusted (procedure 1) is not appropriate because they 
generate biologically inconsistent results, referred here 
as loss of compatibility between biomass components 
and total biomass. Most equations developed for 
black wattle and other species in Brazilian forests 
were independently adjusted. These equations are not 
additive and certain precautions should be considered 
before using them.

Biomass estimation for forest inventory purposes 
should use equations adjusted via procedure 2. These 
equations result in additivity of the estimates between 
biomass components and total biomass, a desirable and 
fundamental characteristic in modeling the biomass of 
trees. Ensuring additivity in tree biomass estimates has 
been recommended by several authors: Kozak (1970), 
Chiyenda & Kozak (1984), Cunia & Briggs (1984), Parresol 
(1999, 2001), Carvalho & Parresol (2003), Dong et al. 
(2014), Bi et al. (2015), Sanquetta et al. (2015a), Zhao et al. 
(2015), Zheng et al. (2015), Affleck & Diéguez-Aranda 
(2016), and Poudel & Temesgen (2016). In this study, 
additivity of the components to compose the total 
biomass was ensured using procedure 2. An equation 
for each biomass component was obtained, and the 
equation for the total biomass was composed with the 
same variables and coefficients of the equations fitted 
to the components.

5. CONCLUSIONS

Using nonlinear equations is appropriate because 
they are more accurate than linear equations.

WNSUR model presents better biological and 
statistical properties for estimating allometric equations 
of biomass components and total biomass than the 
independent estimation. Therefore, it should be used 
in forest inventories.

The independent fitted equations result in non-additivity 
of the estimates between biomass components and total 
biomass, an undesirable property. Moreover, they will 
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result in greater variance estimates than those obtained 
by WNSUR equations.

Performing the modeling of variance structure and 
adjusting weighted equations is important to ensure 
reliable estimates of each biomass component and 
total biomass with minimum variance.
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