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ABSTRACT
The objective of this study was to evaluate the use of the MSI Sentinel-2 and SRTM data to 
estimate the volume of wood in a Semidecidual Seasonal Forest. Regression equations were fitted 
based on the remote sensing data, taking into consideration the individual bands and vegetation 
index of the MSI, elevation values and their derivatives obtained from the SRTM mission and the 
combination of the data drawn from the MSI and SRTM. RMSE and graphic analysis of residues 
were used to assess the accuracy of the fitted equations. The best model revealed values of 0.6508 
and RMSE of 20.41% in the fit, and of 0.5680 and RMSE of 26.61% in the validation, using the 
combined MSI and SRTM data as predictors. The volume estimation using spectral data showed 
satisfactory results, highlighting the importance of topography in the prediction of the volume 
of wood for the area under investigation.
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1. INTRODUCTION

Forest inventory is an activity that uses the sampling 
or census procedures for the quantification of qualitative 
and quantitative characteristics of forests, thus subsidizing 
decision-making to be done in the environmental 
areas and strategic levels (Fridman et al., 2014; Silva & 
Santana, 2014; Vibrans et al., 2010; Mello et al., 2009).

Forest surveys are considered complex, in native 
forests in particular, because of their heterogeneity 
(Andrade et al., 2015). Determining the characteristics 
of natural forests by employing the traditional 
forest inventory techniques is a laborious and often 
time‑consuming procedure. However, the prediction 
of forest development is reiterated to be of paramount 
importance for forest planning and management 
(Mura et al., 2018). Therefore, identifying alternatives 
that give information complementing those obtained 
through the use of the traditional techniques already 
developed in the forest survey is a vital requirement.

In this sense, the utilization of remote sensing 
techniques enables an easier and faster method 
of acquisition and organization of the pertinent 
information in the inventory (Alba  et  al., 2017). 
Remote sensing techniques is been applied in forest 
studies looking to facilitate the characterization of 
forest formations in terms of the quantification of 
forest stocks (Watzlawick  et  al., 2009). In order to 
optimize forest activities, new techniques such as 
the use of satellite images have been employed in the 
prediction models to dendrometric variables as height, 
basal area and wood volume (Almeida et al., 2014), 
and they have been a support to get information from 
areas of difficult access in an easy way. Besides that, 
it is important to highlight the advantage of financial 
viability when using the method (Watzlawick et al., 
2009; Miguel et al., 2015).

However, studies using data having high spatial 
resolution continue to be scarce, like the data drawn from 
the Sentinel 2 Multi-Spectral Instrument (MSI) sensor 
with 10 m spatial resolution (Fernández-Manso et al., 
2016; Immitzer  et  al., 2016; Korhonen  et  al., 2017; 
Laurin et al., 2016).

Surveys that use orbital data in studies to estimate 
the dendrometric variables from native or planted forests 
generally do not appraise the topographic factor of the 
area. However, it has been suggested that in regions 
of uneven relief, this factor needs to be considered 

in the modeling because the different relief features 
are the conditioning factors that affect the vegetation 
development, its productive behavior and the creation of 
differentiated environments, related to the topographic 
effects of the region (Bispo  et  al., 2009). Thus, the 
Shuttle Radar Topography Mission (SRTM) data and 
its derivations in the geomorphometric variables are 
preferred for vegetation studies.

In this context, studies have been successfully 
developed using remote sensing data associated 
with relief data (Bispo et al., 2016) or using the data 
provided by remote sensing to estimate the wood 
volume in different formations (Maack et al., 2016; 
Magnussen et al., 2018; Matasci et al., 2018), to predict 
the biomass and carbon (Fassnacht et al., 2018; Knapp 
et al., 2018; Rajashekar et al., 2018), to estimate the 
tree height (Cabo et al., 2018; Plowright et al., 2017), 
as well as the leaf area index (Varvia  et  al., 2018; 
Wang et al., 2017).

The aim of this study was to assess the use of 
spectral information from the satellite MSI Sentinel-2 
sensor and data on relief derived from the SRTM 
mission in the construction of models that could 
estimate the wood volume in a fragment of a Seasonal 
Semideciduous Forest.

2. MATERIAL AND METHODS

2.1. Location and characterization of the 
study area

The area where the study was conducted (Figure 1) 
is the Private Natural Heritage Reserve (RPPN) Cafundó 
(20°43’ S and 41°13’ W), a part of the Boa Esperança 
farm, located in the municipality of Cachoeiro de 
Itapemirim, Espírito Santo. This area includes about 
517 hectares of native forest vegetation (Archanjo et al., 
2012).

The RPPN Cafundó vegetation is classified as a 
Semidecidual Submontane Seasonal Forest (IBGE, 2012). 
According to Köppen, the local climate is classified as 
Aw, tropical with dry winter (Alvares et al., 2013) and 
precipitation from 1200 to 1300 mm.

The soil is classified as Dystrophic Yellow Red 
Latosol. This region shows areas with sparse and soft 
elevations, the appearance of rocky outcrops in different 
places, and the relief shows wavy to strongly undulated 
features called the “Sea of hills” (IBGE, 1987).
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2.2. Forest inventory

Sampling was performed between May and 
August 2017. It was used a total of 25 plots (Figure 1) 
demarcated in the study of Archanjo et al. (2012) in 
2007, in which the goal was to analyze the floristic and 
phytosociological structure of the reserve.

Systematic sampling was done with the fixed 
area plots of 20 m × 50 m (1000 m2) each, being 
350 m equidistant from one another, totalizing 2.5 ha 
sampled. In each plot it was measured the diameter at 
1.30 m of soil (DBH) of all the trees with a diameter 
equal to or greater than 5 cm. Bifurcated trees had 
their branches included, as long as they were alive 
and satisfied the inclusion criteria defined earlier. 
The DBH was measured using diametric tape, while 
the total heights were assessed with a telescopic ruler 
(boom height up to 15 m) and Suunto hypsometer 
(shafts above 15 m).

In order to estimate the wood volume, the six 
species showing the highest importance value index 
(24.36%) were cubed. The wood volume was obtained 

by rigorous sampling, adopting the Huber method in 
a non-destructive manner, with the shaft diameter of 
the trees being measured with the aid of the summit 
at heights of 0.50 m, 1.00 m, 1.30 m, 1.80 m, and from 
1.80 m height at each 1.00 m the Criterion RD1000 
dendrometer was used, until the beginning of the canopy. 
Later, the Schumacher-Hall model was adjusted for each 
of the six species and a general equation, combining 
the six species into a single equation.

2.3. Obtaining remote sensing data

The MSI Sentinel-2 satellite images were acquired 
from the United States Geological Survey (USGS) 
website, containing band 2 (blue), 448 at 546 nm; 
band 3 (green), 538 at 583 nm; band 4 (red), 
646 at 684 nm; and band 8 (near infrared), 763 at 908 
nm, all with 10-meter spatial resolution and 12 bit 
radiometric (0 at 4095 gray levels). The selected 
image was free of clouds and related to May 2017, 
which coincided with the initial data sampling date 
performed in the field.

Figure 1. Location of the study area, with emphasis on the Digital Elevation Model (MDE) generated from the 
SRTM data.
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Then, georeferencing of the spectral bands was 
done with the final projection SIRGAS 2000, zone 
24 Sul and the coordinates in Universal Transverse 
Mercator (UTM). For the radiometric and atmospheric 
correction of the images, the Dark Object Subtraction 
(DOS) algorithm was used. The digital numbers 
(ND) were first converted to spectral radiance 
and then to reflectance (ρ). The  radiometric and 
atmospheric calibration parameters were obtained 
from the MTD_MSIL1C file available in the image 
download.

The SRTM was obtained from the USGS, which 
provides a Terrain Digital Elevation Model file, with 
information on the altitude (in meters) and spatial 
resolution of 90 m. The SRTM data were re-sampled 
from 90 m to 10 m using the bilinear resampling method. 
Later, it was proceeded the neighborhood operation 
achieving the following geomorphometric variables: 
orientation of the slopes, slope and roughness, both 
with a final resolution of 10 m.

All preprocessing and data processing steps were 
performed using the QGIS software 2.18.

2.4. Explanatory variables used

After the data were pre-processed, we extracted 
the explanatory variables of each of the spectral 
bands and the data derived from the SRTM using R. 
The  information extraction was done from the polygons 
of the 25 plots in the forest inventory.

Three perspectives were considered when 
adjusting the regression models: (1) only the data 
received from the MSI sensor were considered as 
explanatory variables; (2) only the SRTM mission data; 
and (3) the combined two data from both sources. 
In the first instance, the explanatory variables were 
obtained from the MSI sensor in the spectral bands 
2, 3, 4 and 8, and six vegetation indexes: normalized 
difference vegetation index (NDVI) (Rouse  et  al., 
1973), simple ratio vegetation index (SR) (Jordan, 
1969), soil moisture content (SAVI) (Huete, 1988), 
modified soil vegetation index (MSAVI) (Qi et al., 
1994), improved vegetation index (EVI) (Justice et al., 
1998), and the transformed vegetation index (TVI) 
(Rouse  et  al., 1973); in the second moment, the 
explanatory variables were came drawn from the 
SRTM, with slope (%), altitude (m), roughness and 

slope orientation (°); finally, in the third modeling 
perspective, the MSI and SRTM data were combined 
and used as the explanatory variables.

The field sampling data were consolidated with 
the remote sensing data, using the geographic 
coordinates of each of the plots vertices, employing 
the GPS model Garmin GPSMAP 76CSx with an 
error of around 10 m.

2.5. Estimation of the volume of wood by 
regression analysis

The explanatory variables were selected and 
the data were modeled with the software R version 
3.3.3. The independent variables of the model were 
selected using package leaps. To the selection, it 
was used the exhaustive search method, which 
tests and compares all possible combinations of the 
explanatory variables.

After selecting the explanatory variables, the model 
was adjusted (1):

0 1 1 2 2 ...i i i p pi iY X X Xβ β β β ε= + + + + +  	 (1)

Yi = value of the dependent variable in the i-th 
observation, corresponding to the volume of wood; 

pβ  = coefficients of the model; X1i, X2i, ..., Xp,i are the 
values of the p-th explanatory variable in the i-th 
observation; εi = random error with mean {εi} = 0 and 
variance σ2 {εi} = σ2.

For each of the three modeling perspectives, 
all possible combinations of the equation were 
considered and the one with the best statistical 
results was selected.

To validate the models, the data cross-validation 
technique called Leave-one-out, a special case of the 
K-partitions technique, was used. At this stage of 
data processing, the Statistics and Machine Learning 
Toolbox™ package of MATLAB software version 
R2017a was used.

2.6. Evaluation of the fit and validation of 
equations

To assess the performance of the adjusted equations 
chosen to estimate the wood volume, the adjusted 
coefficient of determination ( 2R ) (Expression 2) and 
root mean square error (RMSE%) (Expression 3) 
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were obtained, followed by the value or the adjusted 
coefficient of determination ( 2

CVR ) and error (RMSEcv%) 
of the cross validation Leave-one-out. For the three 
equations selected, graphs of the variable observed 
versus the estimated variable and dispersion of the 
residuals in percentage were constructed.
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iY = the dependent variable observed; îY = estimated 
dependent variable; Y = average of the dependent variable 
observed; p = number of parameters estimated in the 
equation; and n = number of observations.

3. RESULTS

The traditional inventory performed by systematic 
sampling using the 25 fixed area plots produced mean 
volume of 276.46 m3 in 0.1 ha and a total volume of 
98,971.03 m3 in 358 ha. The relative sampling error 
obtained was 14.30%.

Table  1 displays the adjusted equations used to 
estimate the wood volume, explanatory variables selected 
and adjusted parameters for each of the equations 
used. All parameters were significant (p < 0.05) by 
the t test, demonstrating that the variables selected 
explained the variations observed in the wood volume 
in the Submontane Semidecidual Seasonal Forest of 
RPPN Cafundó.

Table 2 shows the adjusted and cross-validation 
statistics of the adjusted equations selected to 
estimate the wood volume. One significant fact 
is that the cross‑validation results of the selected 
equations were not as accurate as those found 
for the adjustment, indicating a deficiency of the 
models in generalizing.

From the perspective of accuracy, the equation 
referring to the combination of the variables drawn 
from MSI and SRTM variables revealed the best 
performance. Figure 2 shows the graphical analyses 
of the estimated versus observed wood volumes 
and the residual dispersion for the adjustment and 
cross‑validation data.

The graphs clearly show no bias of the data. 
In relation to the residue graphs for the cross-validation, 
a substantial residual dispersion of the data in relation 
to the zero-error line is evident.

Table 1. Equations adjusted for estimating the wood volume.

Equation Equations with selected variables

1 * * * *
2

ˆ 25679.735 70340.987 3932.279 22066.116V B EVI TVI= − + −

2 * * * *ˆ 742.5123223 3.7160581 4.0559078 0.2103762V Roughness Altitude Orientation= + − −

3 * * * * * * *
2

ˆ 27890 351400 103900 36710 88140 22.73 3.91V B EVI NDVI MSAVI Declivity Altitude= − + − − + −

* significant coefficients at 5% probability by the t test.

Table 2. Statistics of adjustment and cross-validation concerning the equations for the prediction of the volume of 
wood.

Equation
Adjustment Cross validation

2R RMSE (m3ha–1) 2
cvR RMSECV (m3ha–1)

1 0.2490 90.3904 (32.33%) 0.1340 106.7766 (38.19%)
2 0.2572 89.8910 (32.15%) 0.0842 115.1961 (41.20%)
3 0.6508 57.0594 (20.41%) 0.5680 74.3793 (26.61%)

2R  = adjusted coefficient of determination; RMSE = root mean square error; 2
CVR  = mean adjusted cross-validation coefficient of 

determination; RMSEcv = root mean square error of cross validation.
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4. DISCUSSION

According to Pandit et al. (2018), the data from 
the Sentinel-2 satellite show good accessibility and 
possess a greater number of high-resolution spectral 
bands compared to the commercial data of moderate 
resolutions, for example, ASTER data. This implies 
that it is feasible for use in forestry studies, particularly 

for large areas and where financial resources are a 
constraint, because this data is available at no cost.

Therefore, the use of spectral information from 
the MSI Sentinel-2 satellite sensor has increased 
significantly in forest studies, for example, in the 
works developed by Fernández-Manso et al. (2016), 
Immitzer et al. (2016), Korhonen et al. (2017), and 
Laurin et al. (2016).

Figure 2. Estimated versus observed volume of wood and distribution of the percentage residues for adjustment and 
cross-validation data.
where: equation 1 = refers to the MSI data; equation 2 = refers to the SRTM data; equation 3 = refers to the combined 
MSI and SRTM data.
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Earlier studies utilizing remote sensing techniques 
combined with forest inventory data in the prediction 
of the wood volume are available, where each sensor 
combined with the intrinsic features of the forest 
stands in the study reveals different types of responses. 
For  instance, the research works of Maack  et  al. 
(2016), Magnussen et al. (2018), Matasci et al. (2018), 
Saarela et al. (2015), and Takagi et al. (2015).

A few studies demonstrate the influence of the 
conditions of the topographic terrain on vegetation 
behavior, which together with the soil, climatic, 
geological and anthropogenic interventions produce 
flora and fauna with characteristics unique to a specific 
ecosystem (Bispo, 2007), directly influencing vegetation 
development. Castillo  et  al. (2017) quantified the 
biomass in a mangrove region by combining the red 
spectral bands (bands 4, 5 and 7) from Sentinel-2 with 
the SRTM elevation data, and obtained an RMSE value 
of 28.47 Mg. ha–1.

In a study conducted in the Tapajós National 
Forest using the SRTM variables (altitude, slope, 
slope orientation, as well as the horizontal and vertical 
curvatures) to estimate the basal area, canopy opening 
and tree height, it was evident that altitude was the 
variable which gave the greatest explanatory capacity 
for the vegetation structure (Bispo et al., 2016).

Using the SRTM data combined with data from the 
Hyperion sensor of the EO-1 satellite to estimate wood 
volume and to analyze whether the shading caused by 
the relief exerts an influence on this quantification, 
Canavesi et al. (2010) found R2 values varying from 
0.589 to 0.709 and the validation process with an average 
error of 200 m3 per hectare. According to the authors, 
these results confirm that the topographic conditioners 
of the study area influence the quantification of the 
volume of wood, and therefore, the relations between 
the biophysical and radiometric parameters.

Bispo (2012) emphasized the importance of using 
geomorphometric variables as an additional data source 
in biomass modeling in Central Amazonia, with the 
inclusion of the data drawn from remote sensing. 
Among the three adjusted models, a considerable 
improvement was obtained in the model by using the 
combined sensor and SRTM data. The model with 
the isolated polarimetric data obtained an R2 value 
of 0.35, while the second model with the isolated 
geomorphometric data (elevation and slope) resulted 

in an R2 value of 0.57 and the third, with the combined 
data sources, produced an R2 value of 0.74 and an error 
of 33.15 t.ha–1 or 15.78%.

On testing the use of the data drawn from the 
Sentinel-2 MSI sensor for predicting the volume of 
wood, Chrysafis et al. (2017) found an R2 value of 0.13 
and RMSE of 97.95 m3.ha–1 with the use of the NDVI 
index, and for EVI the R2 value was 0.31 and RMSE 
was 87.25 m3.ha–1. In two Italian forest areas, located 
in Tuscany and Lazio, using the Sentinel-2 satellite 
images to analyze the growth in volume of wood, a 
mean RMSE of less than 19% was obtained for the 
areas studied (Mura et al. 2018).

A study using the Landsat TM data to estimate the 
wood volume for different forest formations showed an 
R2 value of 0.31 and RMSE of 56% (Hyyppä et al., 2000) 
and RMSE of 47.6% (Mäkelä & Pekkarinen, 2004). Using 
the reflectance values from the ETM + images from 
Landsat, it was obtained an 2R  equal to 0.71 and RMSE 
of 74.7 m3.ha–1 (Hall et al., 2006), and an 2R 0.43 and 
RMSE equal to 97.4 m3.ha–1 (Mohammadi et al., 2010).

For an area of Cerrado stricto sensu, using the 
multispectral images of the Landsat 8 OLI sensor 
to estimate the volume of wood, a value of 2R  equal 
to 0.49 was obtained (Santos et al., 2017). In studies 
on Eucalyptus sp. stands using the TM images from 
Landsat 5, Berra et al. (2012) found a 2R  variations 
from 0.61 to 0.68, while Barros et al. (2015) found R2 
values ranging from 0.12 to 0.38.

The precision measures of the adjusted equations 
selected, the RMSE in particular, were not very favorable, 
showing an error greater than 20% on average in the 
adjustment and 26% in the validation. This statement 
needs to be carefully understood because, compared 
to several results reported in similar works mentioned 
above, this result would not be considered bad. On the 
other hand, in the measurement 20% is still considered 
a high error, also the greatest errors obtained in the 
validation indicate that the model does not present 
good capacity for generalization.

The traditional inventory performed, despite being 
systematic, considered the population as homogeneous, 
that is, with no stratification in it. In this sense, the concept 
of producing post-stratification and considering this 
variable in the process of constructing the model can, 
from the perspective of precision, raise the performance 
of the estimates produced. This is because, as evidenced 
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from the results, the adjusted equation resulting from 
the combined data from the MSI and SRTM presented 
a more accurate result when compared to the separately 
adjusted data from the MSI and SRTM.

In general, whenever the need to perform forest 
inventories arises, two inescapable questions emerge, cost 
and accuracy. The remote sensing technique presented 
in this work can offer great assistance because of its 
ability to cut the costs and produce results in lesser 
time, when dealing with larger areas. Still, uncertainty 
regarding the accuracy and the degree to which the 
results obtained can be trusted persists.

As this methodology is relatively new and has 
great potential in terms of cost reduction, starting 
with an error margin in the 20% range on average, 
it is not inescapably bad. In fact, this research has 
been a challenge that has inspired many researchers 
to connect with the advantages of the remote sensing 
techniques mentioned earlier, thus increasing their 
accuracy levels.

In this context, some of the research alternatives to 
achieve this goal include evaluation of other sensors, 
assets or liabilities to achieve better relations. Among the 
active sensors, the LiDAR, widely used for conducting 
forest surveys, is worthy of mention, being the high 
cost its main limitation. Another prospect will be to test 
lower cost technologies, like Unmanned Aerial Vehicles, 
or probably the use of hyperspectral images and higher 
spatial and radiometric resolutions, searching within 
each of these alternatives for a satisfactory combination 
of lower cost and greater accuracy.

5. CONCLUSION

The combined data from the MSI Sentinel-2 
satellite sensor with the SRTM data revealed the best 
prediction of the volume of wood per hectare for the 
Atlantic Forest vegetation analyzed.

The geomorphometric characteristics of the study 
site should not be disregarded during the spectral 
characterization of the forest dendrometric variables.

The blue band, vegetation indexes EVI, NDVI and 
MSAVI, as well as the slope and altitude variables, 
possess the potential for use in the construction of forest 
inventory in native forests possessing characteristics 
similar to the one investigated in this study.

ACKNOWLEDGEMENTS

The authors express their gratitude to the 
Coordination of Improvement of Higher Education 
Personnel (CAPES) and the Foundation for Support 
to Research and Innovation of Espírito Santo (FAPES) 
for the grants awarded.

SUBMISSION STATUS

Received: 17 sep., 2018 
Accepted: 4 dec., 2018

CORRESPONDENCE TO

Anny Francielly Ataide Gonçalves 
Rua Aquenta Sol, Campus Universitário, 
CP 3037, CEP 37200-000, Lavras, MG, Brasil 
e-mail: annyfrancielly@gmail.com

FINANCIAL SUPPORT

Coordenação de Aperfeiçoamento de Pessoal 
de Nível Superior - Brasil (CAPES) - Código de 
Financiamento 001.

Fundação Estadual de Amparo à Pesquisa do 
Estado do Espírito Santo, bolsa de doutorado resolução 
124/2014, taxa de bancada processo nº 69916551e 
termo de outorga nº 199/2015.

REFERENCES

Alba E, Mello EP, Marchesan J, Silva EA, Tramontina J, 
Pereira RS. Spectral characterization of forest plantations 
with Landsat 8/OLI images for forest planning and 
management. Pesquisa Agropecuária Brasileira 2017; 
52(11): 1072-1079. http://dx.doi.org/10.1590/s0100-
204x2017001100013.

Almeida AQ, Mello AA, Dória AL No, Ferra RC. Relações 
empíricas entre características dendrométricas da Caatinga 
Brasileira e dados TM Landsat 5. Pesquisa Agropecuária 
Brasileira 2014; 49(4): 306-315. http://dx.doi.org/10.1590/
S0100-204X2014000400009.

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, 
Sparovek G. Köppen’s climate classification map for Brazil. 
Meteorologische Zeitschrift 2013; 22(6): 711-728. http://
dx.doi.org/10.1127/0941-2948/2013/0507.

Andrade DF, Gama JRV, Melo LO, Ruschel AR. Inventário 
florestal de grandes áreas na Floresta Nacional do Tapajós, 

https://doi.org/10.1590/s0100-204x2017001100013
https://doi.org/10.1590/s0100-204x2017001100013
https://doi.org/10.1590/S0100-204X2014000400009
https://doi.org/10.1590/S0100-204X2014000400009
https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/10.1127/0941-2948/2013/0507


9/11Wood Volume Estimation...Floresta e Ambiente 2019; 26(Spec No 1): e20180379

Pará, Amazônia, Brasil. Biota Amazônia 2015; 5(1): 109-
115. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.
v5n1p109-115.

Archanjo KMPA, Silva GF, Chichorro JF, Soares CPB. 
Estrutura do componente arbóreo da reserva particular 
do patrimônio natural cafundó, Cachoeiro de Itapemirim, 
Espírito Santo, Brasil. Floresta 2012; 42(1): 145-160. http://
dx.doi.org/10.5380/rf.v42i1.26311.

Barros BSX, Guerra SPS, Barros ZX, Catita CMS, Fernandes 
JCC. Uso de imagens de satélite para cálculo de volume 
em floresta de eucalipto no Município de Botucatu/SP. 
Energia na Agricultura 2015; 30(1): 60-67. http://dx.doi.
org/10.17224/EnergAgric.2015v30n1p60-67.

Berra EF, Brandelero C, Pereira RS, Sebem E, Goergen 
LCG, Benedetti ACP et al. Estimativa do volume total de 
madeira em espécies de eucalipto a partir de imagens de 
satélite landsat. Ciência Florestal 2012; 22(4): 853-864. 
http://dx.doi.org/10.5902/198050987566.

Bispo PC. Dados geomorfométricos como subsídio ao 
mapeamento da vegetação. [dissertação]. São José dos 
Campos: Instituto Nacional de Pesquisas Espaciais; 2007.

Bispo PC. Efeitos de geomorfometria na caracterização 
florístico-estrutural da floresta tropical na região de tapajós 
com dados SRTM e PALSAR [tese]. São José dos Campos: 
Instituto Nacional de Pesquisas Espaciais; 2012.

Bispo PC, Santos JR, Valeriano MM, Graça PMLA, Balzter 
H, França H et al. Predictive models of primary tropical 
forest structure from geomorphometric variables based 
on SRTM in the Tapajo’s region, Brazilian Amazon. PLoS 
One 2016; 11(4): 1-13. http://dx.doi.org/10.1371/journal.
pone.0152009.

Bispo PC, Valeriano MM, Kuplich TM. Variáveis 
geomorfométricas locais e sua relação com a vegetação 
da região do interflúvio Madeira-Purus (AM-RO). Acta 
Amazonica 2009; 39(1): 81-90. http://dx.doi.org/10.1590/
S0044-59672009000100008.

Cabo C, Ordónez C, López-Sánchez CA, Armesto J. 
Automatic dendrometry: Tree detection, tree height 
and diameter estimation using terrestrial laser scanning. 
International Journal of Applied Earth Observation 
and Geoinformation 2018; 69: 164-174. http://dx.doi.
org/10.1016/j.jag.2018.01.011.

Canavesi V, Ponzoni FJ, Valeriano MM. Estimativa 
de volume de madeira em plantios de Eucalyptus spp. 
utilizando dados hiperespectrais e dados topográficos. 
Revista Árvore 2010; 34(3): 539-549. http://dx.doi.
org/10.1590/S0100-67622010000300018.

Castillo JAA, Apan AA, Maraseni TN, Salmo SG 3rd. 
Estimation and mapping of above-ground biomass of 
mangrove forests and their replacement land uses in 
the Philippines using Sentinel imagery. ISPRS Journal of 
Photogrammetry and Remote Sensing 2017; 134: 70-85. 
http://dx.doi.org/10.1016/j.isprsjprs.2017.10.016.

Chrysafis I, Mallinis G, Siachalou S, Patias P. Assessing 
the relationships between growing stock volume and 
sentinel-2 imagery in a mediterranean forest ecosystem. 
Remote Sensing Letters 2017; 8(6): 508-517. http://dx.doi.
org/10.1080/2150704X.2017.1295479.

Fassnacht FE, Latifi H, Hartig F. Using synthetic data to 
evaluate the benefits of large field plots for forest biomass 
estimation with LiDAR. Remote Sensing of Environment 2018; 
213: 115-128. http://dx.doi.org/10.1016/j.rse.2018.05.007.

Fernández-Manso A, Fernández-Manso O, Quintano 
C. Sentinel-2A red-edge spectral indices suitability for 
discriminating burn severity. International Journal of 
Applied Earth Observation and Geoinformation 2016; 
50: 170-175. http://dx.doi.org/10.1016/j.jag.2016.03.005.

Fridman J, Holm S, Nilsson M, Nilsson P, Ringvall AH, 
Stahl G. Adapting National Forest Inventories to changing 
requirements - the case of the Swedish National Forest 
Inventory at the turn of the 20th century. Silva Fennica 
2014; 48(3): 1-29. http://dx.doi.org/10.14214/sf.1095.

Hall RJ, Skakun RS, Arsenault EJ, Case BS. Modeling 
forest stand structure attributes using Landsat ETM+ data: 
Application to mapping of aboveground biomass and stand 
volume. Forest Ecology and Management 2006; 225(1-3): 
378-390. http://dx.doi.org/10.1016/j.foreco.2006.01.014.

Huete AR. A soil-adjusted vegetation index (SAVI). Remote 
Sensing of Environment 1988; 25(3): 295-309. http://dx.doi.
org/10.1016/0034-4257(88)90106-X.

Hyyppä J, Hyyppä H, Inkinen M, Engdahl M, Linko S, Zhu 
YH. Accuracy comparison of various remote sensing data 
sources in the retrieval of forest stand attributes. Forest 
Ecology and Management 2000; 128(1-2): 109-120. http://
dx.doi.org/10.1016/S0378-1127(99)00278-9.

Immitzer M, Vuolo F, Atzberger C. First experience with 
Sentinel-2 data for crop and tree species classifications in 
central Europe. Remote Sensing 2016; 8(3): 1-27. http://
dx.doi.org/10.3390/rs8030166.

Instituto Brasileiro de Geografia e Estatística – IBGE. 
Projeto RADAM. de Janeiro: IBGE; 1987.

Instituto Brasileiro de Geografia e Estatística – IBGE. 
Manual técnico da vegetação brasileira: sistema fitogeográfico, 
inventário das formações florestais e campestres, técnicas 
e manejo de coleções botânicas, procedimentos para 
mapeamentos. 2. ed. Rio de Janeiro: IBGE; 2012.

Justice CO, Vermote E, Townshend JRG, Defries R, Roy 
DP, Hall DK  et  al. The moderate resolution imaging 
spectroradiometer (MODIS): Land remote sensing for 
global change research. IEEE Transactions on Geoscience 
and Remote Sensing 1998; 36(4): 1228-1249. http://dx.doi.
org/10.1109/36.701075.

Jordan CF. Derivation of leaf-area index from quality 
of light on the forest floor. Ecological Society of America 
1969; 50(4): 663-666. http://dx.doi.org/10.2307/1936256.

https://doi.org/10.18561/2179-5746/biotaamazonia.v5n1p109-115
https://doi.org/10.18561/2179-5746/biotaamazonia.v5n1p109-115
https://doi.org/10.5380/rf.v42i1.26311
https://doi.org/10.5380/rf.v42i1.26311
https://doi.org/10.17224/EnergAgric.2015v30n1p60-67
https://doi.org/10.17224/EnergAgric.2015v30n1p60-67
https://doi.org/10.5902/198050987566
https://doi.org/10.1371/journal.pone.0152009
https://doi.org/10.1371/journal.pone.0152009
https://doi.org/10.1590/S0044-59672009000100008
https://doi.org/10.1590/S0044-59672009000100008
https://doi.org/10.1016/j.jag.2018.01.011
https://doi.org/10.1016/j.jag.2018.01.011
https://doi.org/10.1590/S0100-67622010000300018
https://doi.org/10.1590/S0100-67622010000300018
https://doi.org/10.1016/j.isprsjprs.2017.10.016
https://doi.org/10.1080/2150704X.2017.1295479
https://doi.org/10.1080/2150704X.2017.1295479
https://doi.org/10.1016/j.rse.2018.05.007
https://doi.org/10.1016/j.jag.2016.03.005
https://doi.org/10.14214/sf.1095
https://doi.org/10.1016/j.foreco.2006.01.014
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/S0378-1127(99)00278-9
https://doi.org/10.1016/S0378-1127(99)00278-9
https://doi.org/10.3390/rs8030166
https://doi.org/10.3390/rs8030166
https://doi.org/10.1109/36.701075
https://doi.org/10.1109/36.701075
https://doi.org/10.2307/1936256


10/11 Floresta e Ambiente 2019; 26(Spec No 1): e20180379
Gonçalves AFA, Fernandes MRM, Silva JPM, Silva GF, Almeida AQ, 
Cordeiro NG et al.

Knapp N, Fischer R, Huth A. Linking lidar and forest 
modeling to assess biomass estimation across scales and 
disturbance states. Remote Sensing of Environment 2018; 
205: 199-209. http://dx.doi.org/10.1016/j.rse.2017.11.018.

Korhonen L, Hadi, Packalen P, Rautiainen M. Comparison 
of Sentinel-2 and Landsat 8 in the estimation of boreal 
forest canopy cover and leaf area index. Remote Sensing of 
Environment 2017; 195: 259-274. http://dx.doi.org/10.1016/j.
rse.2017.03.021.

Laurin GV, Puletti N, Hawthome W, Liesenberg V, Corona 
P, Papale D et al. Discrimination of tropical forest types, 
dominant species, and mapping of functional guilds by 
hyperspectral and simulated multispectral Sentinel-2 
data. Remote Sensing of Environment 2016; 176: 163-176. 
http://dx.doi.org/10.1016/j.rse.2016.01.017.

Maack J, Lingenfelder M, Weinacker H, Koch B. Modelling 
the standing timber volume of Baden-Württemberg - A 
large-scale approach using a fusion of Landsat, airborne 
LiDAR and National Forest Inventory data. International 
Journal of Applied Earth Observation and Geoinformation 
2016; 49: 107-116. http://dx.doi.org/10.1016/j.jag.2016.02.004.

Magnussen S, Nord-Larsen T, Riis-Nielsen T. Lidar supported 
estimators of wood volume and aboveground biomass 
from the Danish national forest inventory (2012–2016). 
Remote Sensing of Environment 2018; 211: 146-153. http://
dx.doi.org/10.1016/j.rse.2018.04.015.

Mäkelä H, Pekkarinen A. Estimation of forest stand volumes 
by Landsat TM imagery and stand-level field-inventory 
data. Forest Ecology and Management 2004; 196(2-3): 
245-255. http://dx.doi.org/10.1016/j.foreco.2004.02.049.

Matasci G, Hermosilla T, Wulder MA, White JC, Coops 
NC, Hobart GW et al. Large-area mapping of Canadian 
boreal forest cover, height, biomass and other structural 
attributes using Landsat composites and lidar plots. Remote 
Sensing of Environment 2018; 209: 90-106. http://dx.doi.
org/10.1016/j.rse.2017.12.020.

Mello JM, Diniz FS, Oliveira AD, Scolforo JRS, Acerbi FW 
Jr, Thiersch CR. Métodos de amostragem e geoestatística 
para estimativa do número de fustes e volume em plantios 
de Eucalyptus grandis. Floresta 2009; 39(1): 157-166. http://
dx.doi.org/10.5380/rf.v39i1.13735.

Miguel EP, Rezende AV, Leal FA, Matricardi EAT, Vale AT, 
Pereira RS. Redes neurais artificiais para a modelagem do 
volume de madeira e biomassa do cerradão com dados de 
satélite. Pesquisa Agropecuária Brasileira 2015; 50(9): 829-
839. http://dx.doi.org/10.1590/S0100-204X2015000900012.

Mohammadi J, Shataee Joibary S, Yaghmaee F, Mahiny 
AS. Modelling forest stand volume and tree density 
using landsat ETM+ data. International Journal of 
Remote Sensing 2010; 31(11): 2959-2975. http://dx.doi.
org/10.1080/01431160903140811.

Mura M, Bottalico F, Giannetti F, Bertani R, Giannini 
R, Mancini M  et  al. Exploiting the capabilities of the 
Sentinel-2 multi spectral instrument for predicting growing 

stock volume in forest ecosystems. International Journal 
of Applied Earth Observation and Geoinformation 2018; 
66: 126-134. http://dx.doi.org/10.1016/j.jag.2017.11.013.

Pandit S, Tsuyuki S, Dube T. Estimating above-ground 
biomass in sub-tropical buffer zone community forests, 
Nepal, using Sentinel 2 data. Remote Sensing 2018; 10(4): 
1-18. http://dx.doi.org/10.3390/rs10040601.

Plowright AA, Coops NC, Chance CM, Sheppard SRJ, 
Aven NW. Multi-scale analysis of relationship between 
imperviousness and urban tree height using airborne 
remote sensing. Remote Sensing of Environment 2017; 
194: 391-400. http://dx.doi.org/10.1016/j.rse.2017.03.045.

Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S. A 
modified soil adjusted vegetation index. Remote Sensing 
of Enviroment 1994;48: 119-126.

Rajashekar G, Fararoda R, Reddy RS, Jha CS, Ganeshaiah 
KN, Singh JS et al. Spatial distribution of forest biomass 
carbon (Above and below ground) in Indian forests. 
Ecological Indicators 2018; 85: 742-752. http://dx.doi.
org/10.1016/j.ecolind.2017.11.024.

Rouse JW, Hass RH, Schell JA, Deering DW. Monitoring 
vegetation systems in the great plains with ERTS. In: Third 
earth resources technology satellite (ERTS) symposium; 
1974; Greenbelt. Washington: NASA; 1973. p. 301-317.

Saarela S, Grafstrom A, Stahl G, Kangas A, Holopaonen 
M, Tuominen S  et  al. Model-assisted estimation of 
growing stock volume using different combinations of 
LiDAR and Landsat data as auxiliary information. Remote 
Sensing of Environment 2015; 158: 431-440. http://dx.doi.
org/10.1016/j.rse.2014.11.020.

Santos MM, Machado IES, Carvalho EV, Viola MR, 
Giongo M. Estimativa de parâmetros florestais em área 
de Cerrado a partir de imagens do sensor Oli Landsat 8. 
Floresta 2017; 47(1): 75-83. http://dx.doi.org/10.5380/
rf.v47i1.47988.

Silva EM, Santana AC. Modelos de regressão para 
estimação do volume de árvores comerciais, em florestas 
de Paragominas. Revista Ceres 2014; 61(5): 631-636. http://
dx.doi.org/10.1590/0034-737X201461050005.

Takagi K, Yone Y, Takahashi H, Sakai R, Hojyo H, Kamiura 
T  et  al. Forest biomass and volume estimation using 
airborne LiDAR in a cool-temperate forest of northern 
Hokkaido, Japan. Ecological Informatics 2015; 26: 54-60. 
http://dx.doi.org/10.1016/j.ecoinf.2015.01.005.

Varvia P, Rautiainen M, Seppänen A. Bayesian estimation 
of seasonal course of canopy leaf area index from 
hyperspectral satellite data. Journal of Quantitative 
Spectroscopy & Radiative Transfer 2018; 208: 19-28. http://
dx.doi.org/10.1016/j.jqsrt.2018.01.008.

Vibrans AC, Sevgnani L, Lingner DV, Gasper AL, 
Sabbagh S. Inventário florístico florestal de Santa Catarina 
(IFFSC): aspectos metodológicos e operacionais. Pesquisa 
Florestal Brasileira 2010; 30(64): 291-302. http://dx.doi.
org/10.4336/2010.pfb.30.64.291.

https://doi.org/10.1016/j.rse.2017.11.018
https://doi.org/10.1016/j.rse.2017.03.021
https://doi.org/10.1016/j.rse.2017.03.021
https://doi.org/10.1016/j.rse.2016.01.017
https://doi.org/10.1016/j.jag.2016.02.004
https://doi.org/10.1016/j.rse.2018.04.015
https://doi.org/10.1016/j.rse.2018.04.015
https://doi.org/10.1016/j.foreco.2004.02.049
https://doi.org/10.1016/j.rse.2017.12.020
https://doi.org/10.1016/j.rse.2017.12.020
https://doi.org/10.5380/rf.v39i1.13735
https://doi.org/10.5380/rf.v39i1.13735
https://doi.org/10.1590/S0100-204X2015000900012
https://doi.org/10.1080/01431160903140811
https://doi.org/10.1080/01431160903140811
https://doi.org/10.1016/j.jag.2017.11.013
https://doi.org/10.3390/rs10040601
https://doi.org/10.1016/j.rse.2017.03.045
https://doi.org/10.1016/j.ecolind.2017.11.024
https://doi.org/10.1016/j.ecolind.2017.11.024
https://doi.org/10.1016/j.rse.2014.11.020
https://doi.org/10.1016/j.rse.2014.11.020
https://doi.org/10.5380/rf.v47i1.47988
https://doi.org/10.5380/rf.v47i1.47988
https://doi.org/10.1590/0034-737X201461050005
https://doi.org/10.1590/0034-737X201461050005
https://doi.org/10.1016/j.ecoinf.2015.01.005
https://doi.org/10.1016/j.jqsrt.2018.01.008
https://doi.org/10.1016/j.jqsrt.2018.01.008
https://doi.org/10.4336/2010.pfb.30.64.291
https://doi.org/10.4336/2010.pfb.30.64.291


11/11Wood Volume Estimation...Floresta e Ambiente 2019; 26(Spec No 1): e20180379

Wang R, Chen JM, Liu Z, Arain A. Evaluation of 
seasonal variations of remotely sensed leaf area index 
over five evergreen coniferous forests. ISPRS Journal of 
Photogrammetry and Remote Sensing 2017; 130: 187-201. 
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.017.

Watzlawick LF, Kirchner FF, Sanquetta CR. Estimativa 
de biomassa e carbono em floresta com araucaria 
utilizando imagens do satélite IKONOS II. Ciência 
Florestal 2009; 19(2): 169-181. http://dx.doi.
org/10.5902/19805098408.

https://doi.org/10.1016/j.isprsjprs.2017.05.017
https://doi.org/10.5902/19805098408
https://doi.org/10.5902/19805098408

