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Abstract
Fire behavior prediction models can assist environmental agencies with fire prevention and control. This study aimed 
to adjust a fire prediction model for the state of Minas Gerais, Brazil. Using the R program and hotspots provided 
by the National Institute for Space Research (INPE) for 2010, prediction of the probability of fires through the 
Random Forest algorithm was conducted using the Bootstrapping method. The model generated a prediction map 
with global kappa value of 0.65. External validation was performed with hotspots in 2015. Results showed that 58% 
of the hotspots are in areas with ignition probability > 50%, being 24% of them in areas with 25-50% probability, 
and 17% in areas with < 25% probability. These results were considered satisfactory, demonstrating that the model 
is suitable for predicting fires.
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1. INTRODUCTION AND OBJECTIVES

The controlled and natural forest fires are among the main 
environmental problems, because in addition to the biodiversity loss 
(of both fauna and flora), they are responsible for greenhouse gas 
emission. Moreover, depending on their intensity and frequency, 
they cause soil degradation through a series of modifications in 
its physical, chemical and biological nature (Redin et al., 2011).

In this context, agility and efficiency in the detection 
and monitoring of forest fires is essential for the control, 
management, and operational costs reduction in combating 
fires and reducing the damages caused (Alves & Nóbrega, 2011). 

The development of models that enable the prediction 
of areas susceptible to fires is fundamental in environmental 
management and monitoring. These tools enable identification 
of numerous variables (meteorological, geographic, land 
cover, seasonal, human etc.) that, generally in a Geographic 
Information System (GIS) environment, are classified as with 
greater susceptibility to fire (He et al., 2004).

The categorical maps produced via simulation or statistical 
modeling from samples and mapped environmental variables 
are widely used in the definition of models (Prasad et al., 2006). 
The results of these analyses can be used to compare current 
with previous fire data and assess their temporal dynamics 
in a given historical series or season (months) more prone to 
fire occurrence, generating useful information for managers 
and decision-makers. 

Currently, there are many fire behavior prediction models, 
with peculiarities and different data collection and processing 
forms, and the most commonly used ones are conceptually 
divided into two categories: deterministic and stochastic.  
The deterministic model incorporates physical mechanisms for 
fire spread and growth, enabling only qualitative comparisons 
with real systems (Boychuk et al., 2009), whereas the stochastic 
model incorporates random phenomena that are not detected 
by the deterministic models, and it is necessary to specify 
a probability distribution for the data identified variations 
(Bolker, 2008).
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Also, according to Bolker (2008), the stochastic models 
are more useful in data manipulation compared with the 
deterministic approach, assisting with the identification of 
the existing variability and providing an appropriate model to 
determine the probability of future uncertainties. This can be 
observed in the studies addressing prediction and modeling 
of fires conducted by Boadi et al. (2015), in which models to 
predict fires were formulated and greater robustness or data 
inclusion in the model were suggested in order to include 
activities with fire potential in the processing, respectively. 

This study aimed to predict burned areas in the state 
of Minas Gerais for 2010, as well as areas with higher fire 
probability, assessing the accuracy of the maps through 
external validation with hotspots in 2015. 

2. MATERIALS AND METHODS

The study area comprises the state of Minas Gerais, located 
in the southeastern region of Brazil, as shown in Figure 1, 
with an area of 586,522,122 km2. According to Valadão et 
al. (2008), the relief is composed of plateaus, highlands, and 
depressions. Located in a region with the predominance of 
the Atlantic Plateau, where a rather rugged relief is observed 

with altitudes ranging from 700 m to over 2,000 m, called “seas 
of hills”. From the central region to the north of the state, the 
Espinhaço Massif stands out, and in it, the Cipó Ridge. In the 
south of the state, there is the Campo das Vertentes, where 
the Mantiqueira Ridge is located. In the eastern region, there 
is the Caparaó Ridge, where the Bandeira Peak is located.  
As for vegetation, the state comprises Cerrado, Caatinga, 
and Atlantic Forest biomes. 

According to the Koppen classification, the climate in the 
state is predominantly Aw, but Cwa and Cwb also occur in 
the southern region and in the Espinhaço and Mantiqueira 
Ridges; wet conditions are also observed between spring 
and autumn, except in the northern region. During winter, 
the aridity index corresponds to semi-arid in the southern 
region of the state, arid in the central region, and hyperarid 
in the extreme north (Reboita et al., 2015). 

Mean annual rainfall varies from 900 to 1,800 mm. Most 
rainfall occurs in the entire state between October and March, 
with even higher mean volumes in January, mainly in the 
southern region. July is the driest month. Considering the 
spatial distribution, the center-southern region presents the 
highest annual rainfall, whereas the northern region has the 
lowest (Silva, 2014; Souza et al., 2011).

 

Localization map of the state of 
Minas Gerais Belo Horizonte
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Figure 1. The study area localization.
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The burned areas were determined using the hotspots 
database available for download at the INPE website. The 
driest period of 2010 (May to October) was chosen for the 
data processing. During this period, 22,698 hotspots were 
identified throughout the state of Minas Gerais.

The prediction was made using the 65 following covariates 
extracted from different databases:

•	 Altitude: originated from the Shuttle Radar Topography 
Mission (SRTM) with 90 m resolution;

•	 Aspect, solar radiation, and slope: derived from the 
SRTM via ArcGIS 10.1 platform;

•	 Bioclimatic variables: obtained from WorldClim with 
1 km resolution and present in Chart 1;

•	 Biomass: obtained at the IBGE website;
•	 Euclidean distance of federal and/or state highways: 

derived from the IBGE highway archive and processed 
via ArcGIS 10.1 platform;

•	 The vegetation Indices (Normalized Difference 
Vegetation Index – NDVI and Enhanced Vegetation 
Index – EVI) for the state of Minas Gerais of all 
months in analyses derived from the Modis sensor: 
available for download at the INPE website;

•	 Simplified geomorphology: available for download at 
the Mineral Resources Research Company - CPRM 
website (2010).

Aiming to standardize the spatial resolution of the different 
databases and considering the large extension of the studied 
area, all variables were interpolated in the ArcGIS 10.1 software 
for a 1 km cell size as a variable function with the lowest spatial 
resolution, in this case, the climatic variables. 

The burned areas, represented by the locations of the 
hotspots, and the unburned areas were sampled for the Classifier 
training set. In this case, an 8 km exclusion buffer was created 
around each hotspot to ensure that the unburned areas were not 
influenced by the burned ones. The exclusion radius was defined 

considering the study by Kobler et al. (2006). According to the 
authors, it should be noted that, in order to obtain predictive 
models of fire outbreaks, positive and negative history of their 
manifestation is needed. Positive examples may be represented 
by fire occurrence sites in the past, whereas negative examples 
may be represented by an equal number of random points with 
no past fire outbreaks occurrence. In this sense, for the sampling 
of the unburned areas, all previously generated buffer areas 
(22,698 hotspots in the state of Minas Gerais) were discarded 
so that only the unburned areas remain. 

Subsequently, still using the ArcGIS 10.1 software, 22,698 
points were randomly generated in the unburned areas for 
sampling. After combining the two sample types (cloud 
of burned and unburned areas), the value of each point of 
the 65 covariates (rasters) was extracted and a table was 
generated with 45,378 points containing two classes: class 1  
(the burned areas), class 2 (the unburned areas), and the 
values of all covariates for all samples.

The prediction of the burned areas was performed through 
the Random Forest algorithm, based on the decision tree, 
using the R software and the Bootstrapping method. This is 
a resampling method proposed by Bradley Efron in 1979. 
It consists of resampling the original data with repetition. 
At each resampling, a data set is obtained by averaging 
each procedure. After n bootstrap interactions, the mean 
average is calculated. In this way, the bootstrap distribution is 
obtained, from which all the statistical analyses are conducted  
(Silva et al., 2018). Kappa statistics were used to evaluate the 
accuracy of the prediction of burned areas. 

The first step of the analysis consisted in reducing the 
number of covariates, with elimination of those that presented 
high correlation degree with each other, considering that they 
are redundant, to obtain a simple and parsimonious model. This 
elimination was performed using the kappa values as markers, 
which means, correlated variables were removed without 
significant decrease in the kappa values compared with those 
of the initial model with the presence of all covariates.

Chart 1. Bioclimatic variables – WorldClim.

Variables 

1 – mean annual temperature 8 – mean temperature in the wettest month 15 – rainfall seasonality

2 – mean monthly daytime temperature 9 – mean temperature in the driest quarter 16 – rainfall in the wettest quarter 

3 – isotherm 10 – mean temperature in the wettest quarter 17 – rainfall in the driest quarter 

4 – seasonal temperature 11 – mean temperature in the coldest quarter 18 – rainfall in the hottest quarter 

5 – maximum temperature in the hottest month 12 – annual rainfall 19 – rainfall in the coldest quarter 

6 – minimum temperature in the coldest month 13 – rainfall in the wettest month 

7 – maximum annual temperature 14 – rainfall in the driest month 



Floresta e Ambiente 2020; 27(3): e20180115

4 - 7 Santos EE, Sena NC, Balestrin D, Fernandes Filho EI, Costa LM, Bozzi L

4

After obtaining the prediction map with the variables 
selected by the model, the probability map of fires was attained. 
The probability values vary from zero to one, and they were 
divided into four classes according to occurrence probability 
of the fire: (1) 0-25% – low; (2) 25-50% – moderate; (3) 50-
75% – high; (4) 75-100% – very high.

In order to validate the fire probability map, data on 
hotspots between May and October 2015 (82,083 hotspots) 
were used, and the class of the probability map in which there 
was the highest hotspots occurrence was verified, evaluating 
the efficiency of this prediction. In the randomized nonlinear 
correlation analysis, correlation intervals between the variables 
were adjusted so that redundant variables were excluded. The 
kappa values did not change significantly. 

3. RESULTS

Global kappa for all variables was 0.65, with overall accuracy 
of 0.82 considering 24 replications. The ideal correlation index 
for the variables in the correlation analysis was 0.92. Thirty-
one continuous variables were excluded, and 29 variables 
remained as shown in Figure 2. In the prediction assessment 
for these variables plus the five categorical variables the kappa 
index was 0.63, with the accuracy of 0.81.

The dissimilarity analysis for the six categorical variables 
presented a cut-off point of 0.7, with an exclusion of only the 
“biome” variable and permanence of the variables: “aspect”, 
“slope”, “altitude”, “simplified geomorphology” and “soils”.  
The prediction of the burned areas through the non-redundant 
variables showed a kappa index of 0.65, with an accuracy of 0.82.

After the exclusion of the redundant variables, both 
numerical and categorical, values of 0.63 and 0.81 were 

obtained for kappa and overall accuracy, respectively, for 
the prediction map of the burned areas resulting from the 
selection of 25 of the 33 variables. After this step and the 
exclusion of the redundant variables, the data were processed 
through the Random Forest classification tree using the 
Bootstrapping method with 25 replications, in which the 
variables were listed according to their importance, with 
the return of 15 variables whose kappa value was 0.66. 
However, the analysis of these indices showed that, with 
12 variables, the kappa value was 0.657, and thus these 12 
variables were selected. The Figure 3 shows the importance 
order of the variables. 
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With the most important variables definition, the map 
of burned areas for the state of Minas Gerais, as shown in 
Figure 4, was produced. This classification presented a final 
kappa index of 0.65, which is considered good according to 
Landis & Koch (1977).

After the generation of the fire probability map, the 
values of the pixels with hotspots of 2015 were extracted 
in order to validate the map. This step was fundamental 
for the interpretation and the verification of the accuracy 
of the performed process, thus presenting 17% (14,002) of 

hotspots classified as of low probability of fire prediction 
(0-0.25 intervals), 24.1% (19,701) of hotspots of average 
probability (0.25-0.5 intervals), 24.4% (19,926) of hotspots 
of high probability (0.50-0.75 intervals), and 34.1% (27,905) 
of the hotspots of very high probability, obtained through 
the inserted points in the 0.75-1 interval, representing the 
highest percentage of fire outbreaks.

From the map of burned areas, a fire probability map 
was generated, showing the most prone locations to the fire 
occurrences throughout the state, represented in Figure 5.

Map of burned areas 
in Minas Gerais -2010
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Figure 4. Map of burned areas for the state of Minas Gerais.
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4. DISCUSSION

The used methodology to select the most important 
variables (randomized nonlinear correlation and dissimilarity) 
was fundamental for the efficient detection of redundant 
variables and the selection of the most important variables 
for prediction. All selected variables have an intrinsic relation 
with the programing or with fire occurrences in the landscape. 

As a result of the selection of variables presented in 
the graph of Figure 2, it is possible to observe that the EVI 
spectral index was the most important among the variables. 
The reflectance values of the spectral channels before (pre-
fire) and after (post-fire) fires can identify which channels 
present the highest sensitivity in the spectral response of 
burned surfaces (Pereira et al., 2016). By showing a very 
different spectral response, from the EVI index, this variable 
contributed to more precisely identify the burned areas with 
lower values than those of the unburned areas.

The rainfall variables were the second most important. 
Rainfall distribution throughout the year also influences 
the number of affected areas by fires, because fire outbreaks 
occurred during reduced rainfall periods (Silva et al., 2016).

The “Euclidean distance of the highways” variable was 
also quite important among the variables used, because these 
areas are more susceptible to fire occurrences. Lima (2000) 
confirms that most fires that have occurred in the state of 
Minas Gerais started at roadside. From the metropolitan area 
of Belo Horizonte to the vicinity of the municipality of Ouro 
Preto, there is a high fire occurrence probability, because 
this route has important highways, whose traffic flow and 
disposal of flammable materials are intense, contributing 
to fire occurrences. Another fact associated with this area 
is the occurrence of High-altitude Rupestrian Fields mainly 
near the region of Ouro Preto, which promotes ignition of 
the vegetation caused both by the shallow depth of the soils 
and the rupestrian grasslands characteristics. 

The “altitude” variable was an important factor in the 
spread of fires, because the vegetation becomes spaced and 
shrubby in highlands, with shallower and consequently drier 
soils. The atmosphere also indirectly influences this parameter, 
considering that high altitude areas are more prone to lightening 
occurrence, causing natural fires that are difficult to combat 
due to the limited access (Ganteaume & Jappiot, 2013).

Despite being important in the incidence of fires, the 
“soils” variable presented the least importance among the 12 
variables used, a fact that can be influenced by the vegetation 
cover and/or the low resolution of the soil map (1:250.000) 
available for this study.

The prediction map of burned and unburned areas, 
represented in Figure 4, is consistent with the hotspots 

distribution for 2010, and the probability map reinforces 
the fire incidence trend in specific areas. The probability 
map analysis from Figure 4, revealed similar results to those 
observed by Pereira et al. (2016), who indicated that most 
fires occurred in the northern region of Minas Gerais state 
based on a 10-year time-series study. This fact is mainly due 
to the significant presence of areas of agricultural expansion 
and to the low humidity of this region.

Another similar result, also described in previous studies, 
was presented by Magalhães et al. (2012), who reported high-
frequency fire occurrences in the Serra da Canastra National Park.

In addition, many fires are associated with the controlled fire 
practice in agriculture, such as in the management of planted 
pastures with the purpose of regrowth. The Environmental 
Legislation of the State of Minas Gerais, joint resolution 
SEMAD/IEF no. 2075 of May 23, 2014, allows the controlled 
fire use in agropastoral and phytosanitary practices, provided 
that with justification, monitoring, and control, which usually 
do not occur. This practice can be observed mainly along 
the borderline of the states of Minas Gerais and São Paulo, 
where the intensive agriculture development occurs with 
the sugar cane cultivation, and with other crops that still use 
controlled fire in harvest or to clean the land after harvest. 

Finally, the analysis of the incidence of hotspots of years 
with the probability map showed that the classification model 
obtained a satisfactory reliability level, where 58.5% of the 
hotspots are in areas with high or very high fire probability 
and only 17% of them are in areas with low fire probability. 

5. CONCLUSION

In conclusion, the results of this study show that the fire 
prediction methodology for the state of Minas Gerais was 
efficient. The need for assessment and correlation between 
the variables made the model simpler and more reliable, 
emphasizing the importance of verifying the data consistency 
prior to any processing. Therefore, the results generated can 
serve as a good tool for fire management and control by the 
competent bodies. 
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